
Managed GridFTP 
John Bresnahan, Michael Link, Rajkumar Kettimuthu, Ian Foster 

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 
Computation Institute, University of Chicago/Argonne National Laboratory, Chicago, IL 

 
Abstract— GridFTP extends the standard FTP protocol to 
provide a high-performance, secure, reliable data transfer 
protocol optimized for high-bandwidth wide-area networks. The 
Globus GridFTP implementation has become the preeminent 
high-performance data transfer tool for the Grid community. Its 
modular architecture enables a standard GridFTP-compliant 
client access to any storage system that can implement its data 
storage interface, including the HPSS archival storage system, 
SRB, the GPFS parallel file system, and POSIX file systems. Its 
eXtensible I/O interface allows GridFTP to target high-
performance wide-area communication protocols such as UDT, 
FAST TCP, and RBUDP. The Globus GridFTP server 
implementation already implements the concept of “striping,” 
where multiple data movers are aggregated as one logical 
resource. However, there exists no mechanism in GridFTP to 
manage the use of server resources by the clients. When many 
transfer sessions occur simultaneously, the GridFTP server can 
overwhelm the transfer host and/or the underlying storage 
system. Moreover, there is no flexibility in the management of 
data movers in striped configuration. The data movers must be 
statically configured, and they cannot come and go dynamically. 
In this paper, we present a framework to manage the GridFTP 
resources efficiently so as to avoid overburdening host resources, 
prevent client starvation, and enable dynamic addition or 
removal of data movers. 

Keywords – Managed data movement, Grid data movement, 
high-speed transfers, secure WAN transfers 

I. INTRODUCTION  
The amount of data that science experiments and 

simulations produce keeps increasing, and the need to 
transport these data over wide-area networks is also 
growing, as many science experiments are collaborative 
and involve scientists who are geographically dispersed. 
The GridFTP protocol [1] was defined to make the 
transport of data secure, reliable, and efficient for these 
distributed science collaborations. The GridFTP protocol 
extends the standard File Transfer Protocol (FTP) [2] with 
useful features such as Grid Security Infrastructure (GSI) 
security [3], increased reliability via restart markers, high-
performance data transfer using striping and parallel 
streams, and support for third-party transfer between 
GridFTP servers. 

The Globus GridFTP implementation [4] has become 
the preeminent high-performance data transfer tool for the 
Grid community. Its modular architecture enables a 
standard GridFTP-compliant client access to any storage 
system that can implement its data storage interface [5], 
including the HPSS archival storage system [6], SRB [7], 
the PVFS parallel file system [8], the GPFS parallel file 
system [9], and POSIX [10] file systems. Its eXtensible I/O 
interface [11] allows GridFTP to target high-performance 

wide-area communication protocols such as UDT [12], 
FAST TCP [13], and RBUDP [14]. Globus GridFTP is 
optimized to handle various types of datasets—from a 
single, huge file to datasets comprising lots of small files 
[15, 16].  

Even though GridFTP has been widely adopted and 
has proven to be a robust tool for bulk data movement over 
wide-area networks, there remains significant room for 
improvement in terms of managing the GridFTP server’s 
underlying resources, such as the host CPU and memory, 
file systems and the data mover processes.  

GridFTP is a high-performance data transport 
protocol. In order to provide the fastest data transfer when 
using TCP-based data channels, GridFTP allows the client 
to set the TCP buffer size [17]. This value directly affects 
the amount of memory a given transfer session will attempt 
to acquire. A greedy client could overprovision itself and 
monopolize a precious resource, negatively impacting both 
the performance and the stability of the entire system. 

Further, when simultaneous GridFTP transfer sessions 
compete for system memory, such competition can result in 
thrashing and other situations that cause suboptimal 
performance. Often, if a transfer session is stalled until 
more resources are available, the overall throughput is 
higher than when resources are split among too many 
simultaneous transfer sessions. In extreme cases the 
available memory can be entirely exhausted. Many systems 
attempt to recover from this situation by running the OOM 
(out-of-memory) handler. This will kill a non-determinate 
process, causing unknown effects on the system. Further, 
the system can be so heavily overloaded that system 
administrators cannot even SSH into the machine and thus 
cannot manually free resources. 

GridFTP can be run as a striped server [4] where there 
are several data movers and a control node. The data 
movers run in tandem to transfer files faster by tying 
together many NICs. The control node is the client contact 
point where transfer requests are made. There is a 
limitation that the list of possible data movers must be 
statically configured. Unfortunately, data movers tend to 
come and go. Sometimes data movers fail, and sometimes 
more data movers need to be added to the pool. Not only 
are data movers and control processes separate processes, 
but for the sake of security each GridFTP user connection 
to the GridFTP server is sandboxed into a separate process. 
This approach results in many separate UNIX processes 
running in tandem. We note that although they are viewed 
as separate processes to the involved operating systems, 
they are all working together as part of the GridFTP server 



and the resources they acquire must be managed as such. 
We present here a framework that enables the 

GridFTP service to share state across client connections 
and thus manage its resources efficiently so as to avoid 
overwhelming host resources, prevent client starvation, and 
enable dynamic addition or removal of data movers. The 
framework includes Globus Fork (GFork), a user-
configurable super-server daemon similar to xinetd [18] 
that enables sharing of state across client connections for a 
service, and user-defined master programs that coordinate 
resource sharing. Using a simple memory management 
algorithm, we demonstrate how this framework can 
effectively manage the memory usage for GridFTP client 
requests to prevent system meltdown. Further, we illustrate 
how this framework can be used to dynamically add or 
remove GridFTP resources 

The rest of the paper is as follows. In Section II, we 
provide the motivation for developing this framework. We 
present the framework in Section III. In Section IV, we 
evaluate a simple memory management scheme for 
GridFTP using this framework. In Section V, we showcase 
how this framework can be used to change the GridFTP 
resources based on demand. We summarize our work and 
discuss future work in Section VI. 

II. MOTIVATION 
Open Science Grid [19] participants reported that their 

single biggest problem with running GridFTP servers is 
that they can overwhelm the transfer host and/or the 
underlying storage system. To access the server, a user 
must be authenticated, have appropriate read and write 
permissions, and respect the total connection limit; but 
beyond these requirements, there is no management or 
control. A user can hold a connection open indefinitely and 
move an unlimited number of files (barring disk space or 
system quota constraints). A more flexible management 
clearly is needed to limit the length of time a user can hold 
a connection, address prioritization and responses to 
overburdened services, and prevent starvation.  

Sites with one or more 10 Gbs links are becoming 
commonplace in scientific environments. It can take 
substantial resources at the end points to fully utilize such a 
connection, either because the end hosts have only a 1 Gbs 
NIC or because multiple hosts are needed to get the 
required data rate from the storage subsystem. If dedicated 
transfer resources are used, a major investment is required. 
The ability to dynamically provision transfer resources will 
be of significant benefit to any large installation that wishes 
to provision for normal load and then dynamically allocate 
additional resources for peak loads. 

For example, the striped GridFTP services in 
TeraGrid’s [20] current production operations typically do 
not include enough server nodes to fill TeraGrid’s 10 Gb/s 
WAN links. It isn’t clear that adding additional dedicated 
server nodes would be justified by demand. On the other 

hand, it seems likely that some transfer requests would 
benefit significantly from additional server nodes. Hence, it 
would be good if there were a way for additional nodes to 
be available on demand to satisfy these requests. 

III. GFORK 
GFork is a user-configurable super-server daemon 

similar to xinetd in that it listens on a TCP port. When 
clients connect to a port, GFork runs an administrator-
defined program that services that client connection, just as 
xinetd does. 

Xinetd is a time-tested service container that 
sandboxes client connections securely into user-level local 
processes. This greatly limits the security risks of a service 
and the damage potential of bugs. A drawback to xinetd, 
however, is that there is no way to maintain or share long-
term information. Every time a client connects, a new 
process is created; and every time that client disconnects, 
the process is destroyed. All of the information regarding 
the specific interactions with a given client is lost with 
these transient processes. A further disadvantage is that 
there is no way for these service instances to share service-
specific information with each other while they are running. 

Sometimes it is useful for a service to maintain long-
term service-specific state or for a service to share state 
across client connections. GFork is designed to address this 
situation. As shown in Figure 1, GFork runs a long-term 
master program and forms communication links via UNIX 
pipes between this process and all client connection child 
processes. This configuration allows long-term state to be 
maintained in memory and allows for communication 
between all nodes. 

 

 

 
 

Figure 1: GFork architecture 
 
Associated with a GFork instance is a master process. 

When GFork starts, it runs a user-defined master program 
and opens up bidirectional pipes to it. The master program 
runs for the lifetime of the GFork daemon. The master is 
free to do whatever it wants; it is a user-defined program. 
Some master programs listen on alternative TCP 



connections to have state remotely injected. Others monitor 
system resources, such as memory, in order to best share 
resources. As clients connect to the TCP listener, child 
processes are forked that then service the client connection. 
Bidirectional pipes are opened up to the child processes as 
well. These pipes allow for communication between the 
master program and all child processes. The master 
program and the child programs have their own protocol for 
information exchange over these links. GFork is just a 
framework for safely and quickly creating these links. 

IV. MEMORY MANAGEMENT 
In order to move data at high speeds, network 

bandwidth must be consumed, and along with it so must 
disk and system bus bandwidth and, most important, main 
memory. To use TCP most efficiently, GridFTP allows the 
client to set the TCP buffer size [17]. The TCP buffer size 
directly affects the amount of memory a given transfer 
session will attempt to acquire. 

Because the client controls the amount of potential 
memory that its session will require and because of a 
common memory-provisioning model known as optimistic 
provisioning, it is possible that under heavy loads a 
GridFTP server can consume all the system’s memory 
resources. Optimistic memory allocation means that the 
kernel is willing to allocate more virtual memory than there 
is physical memory, based on the assumption that a 
program may not need to use all the memory it asks for. 
When all of the physical memory is used, the kernel’s 
attempt to map more virtual memory to physical memory 
will cause it to enter an “out-of-memory” (OOM) 
condition. This will trigger the OOM handler, which kills 
processes on the system in order to reclaim resources. 
Unfortunately, it is difficult to control or determine which 
processes the OOM handler will kill; therefore it is difficult 
to automatically recover form an OOM exception in a non-
disruptive way. 

Even if the OOM handler is not tripped, 
overprovisioning memory for TCP buffers can cause 
suboptimal situations. If memory pages are swapped in and 
out too often, the system can thrash so heavily that an 
administrator cannot acquire a working terminal (either 
remotely via SSH or even on the console). In the worst case 
the only solution is a reboot. 

Further, not just the abuse of system memory and OS 
schedulers can cause problems: TCP itself can be put in a 
suboptimal state if too many connections are too aggressive 
with their window sizes. Instead of having all connections 
with smaller, yet fully open windows, the results are very 
large potential windows, but in a constant state of AIMD 
[21] due to packet loss. 

GFork can help avoid this situation through a master 
plug-in that manages memory across GridFTP sessions and 
makes sure the system is not overloaded. Our focus is on 
the impact of a memory-management GFork plug-in on the 

GridFTP throughput and resource usage. The plug-in 
controls the amount of memory a transfer session can use in 
order to avoid a critically low amount of memory and a 
misuse of other system resources.  

GridFTP uses memory in three main areas: 
1) Application  

In order to fork a new instance of GridFTP that 
will service the client connections, a certain 
amount of memory is required. This is static and 
independent of a client request.  

2) I/O Buffers  
This is the memory buffer to which data is read 
from the network/disk, and then from which data is 
written to the disk/network.  

3) Kernel Memory  
This is the main culprit. When the client requests a 
TCP buffer size of x MB, the operating system (for 
example, Linux) that does optimistic allocation 
accepts the request (up to a sysctl.conf configured 
maximum) but does not reserve any memory. This 
approach leads to problems because the operating 
system can overprovision itself. The TCP flow 
control algorithms believe they have the requested 
amount of memory to work with, but the operating 
system may be writing checks that it cannot cash.  

A typical approach for memory management on the 
GridFTP server nodes is to limit the number of clients that 
are allowed to form a TCP connection. When a TCP 
connection is formed, inetd or xinetd executes a GridFTP 
server process. A GridFTP transfer session requires 2 MB 
of memory to be at all useful. Therefore, the recommended 
limit on the number of allowed connections is |RAM| / 2 
MB, up to a maximum of 100 simultaneous connections. 

Limiting the number of simultaneous transfer sessions 
is basic and doesn’t allow for optimal memory usage. It is 
simply the first phase to prevent obvious system overloads. 
GFork allows for better memory and connection 
management. The GFork memory management plug-in 
keeps track of the number of session transfers. When a new 
session begins, the plug-in sends it a message allowing it to 
use a certain amount of memory (the amount is determined 
by an algorithm described below). That amount is 
subtracted from a count representing the total available 
memory. When the session ends, the given memory is 
added back to the total. 

A transfer session uses two I/O buffers for every TCP 
stream that it has. The size of the I/O buffer is the same as 
the size of the requested TCP buffer size. For this reason 
we limit the maximum size of any transfer session to one-
third the amount of memory that the plug-in gives it.  

If the plug-in has less than 2 MB of available memory, 
no new transfer sessions are allowed to be created. This 
limitation is different from the original connection 
limitation in that it is based on the amount of used memory, 
not a static value based on total system memory. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Memory usage and throughput characteristics on 
a 128 MB machine for varying number of concurrent clients 
each using a single TCP stream – with no memory limiting 

Figure 2: Memory usage and throughput characteristics on 
a 128 MB machine for varying number of concurrent clients 

each using a single TCP stream – with memory limiting 

Figure 4: Memory usage and throughput characteristics on 
a 128 MB machine for varying number of concurrent clients 
each using 2 parallel TCP streams – with memory limiting 

Figure 5: Memory usage and throughput characteristics on a 
128MB machine for varying number of concurrent clients 

each using 2 parallel TCP streams – with no memory limiting 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Memory usage and throughput characteristics on 
a 64 MB machine for varying number of concurrent clients 
each using a single TCP stream – with no memory limiting 

Figure 6: Memory usage and throughput characteristics on 
a 64 MB machine for varying number of concurrent clients 

each using a single TCP stream – with memory limiting 

Figure 9: Memory usage and throughput characteristics on a 
64 MB machine for varying number of concurrent clients 

each using 2 parallel TCP streams – with no memory limiting 

Figure 8: Memory usage and throughput characteristics on 
a 64 MB machine for varying number of concurrent clients 
each using 2 parallel TCP streams – with memory limiting 



A. Memory Management Algorithm 

We evenly divide 90% of the memory to the first 10% 
of the allowed connections. Thus, on a system with 2 GB of 
RAM, which allows 100 simultaneous connections for the 
first 10 connections, will have 180 MB with which they can 
work. After the first 10% of the connections are formed, 
each future connection receives half of what is available, 
down to a threshold where no future connections are 
allowed. Each of the first 10 connections gets 9% of the 
total available memory. The 11th connection gets 5%, the 
12th connection 2.5%, the 13th 1.25%, and so forth until 
the memory allocated remains greater than or equal to 2 
MB. Let us say there are 13 simultaneous connections to 
start with. Then the first 4 of these 13 connections finish, 
and a new connection (14th connection) request arrives. The 
memory management plug-in does not change the 
allocation for the connections that are already active. Now, 
since there are only 9 active connections, the new 
connection request will get 9%, but the three connections 
that arrived just before this connection will have less 
memory. The allocation is not totally fair; but since it 
ensures that each connection gets enough memory (2 MB) 
to make some progress, any one connection does not get 
penalized too much. 

 
B. Experimental Results 

To measure the effectiveness of the memory limiting 
system, we needed an environment with very low memory 
and configurable amounts of memory. We achieved this 
with a Xen virtual machine (VM) [22]. In all our 
experiments, clients were run on a 2 GHz processor with 
512 MB of RAM, and the server was run in a Xen VM with 
either 64 MB or 128 MB of RAM (depending on the 
experiment) with a 2 GHz AMD 64 bit processor. The 
machines were connected to each other via a 1 Gb/s 
network with Iperf [23] measured maximum speeds of 600 
Mb/s. 

In the experiments we ran an increasing number of 
simultaneous clients requesting transfers of 256 MB files 
(/dev/zero to /dev/null). To limit the number of variables in 
the system, we did transfers from /dev/zero to /dev/null. 
This approach allowed us to focus the experiments on 
system memory and network transfer by removing the disk 
I/O variable. We measured available memory throughout 
the lifespan of all transfers with free.  

Figures 2–9 show the results. The x-axis is increasing 
time throughout the lifespan of the experiments. The green 
line shows the amount of free RAM according to the y-axis 
on the right side of the graph. The blue line shows similar 
values for free swap. The red points show when each 
transfer completed and the throughput it achieved. 
Collective throughput of all the transfers is shown in the 
title of each graph. In some cases where memory was not 
limited, we received OOM exceptions. In these cases we 

display no results, but the fact that they occur in the non-
limiting cases shows that our resource management scheme 
is successful in preventing meltdown. 

Even though the total amount of memory used with 
the memory-limiting plug-in is sometimes more than what 
is used in the standard server (without any memory 
limiting), the memory use is well under control and it never 
runs into an OOM situation. Moreover, the total throughput 
obtained is significantly higher with increasing number of 
clients. A server with no memory limiting starts to eat up 
the swap space early on. Also, as the number of clients 
increases, the total throughput goes down much faster. 
Without any control on the use of memory for each transfer 
session, some transfers may take a significantly long time 
to finish. As Figure 3 shows, in the case of 64 simultaneous 
clients, one transfer finishes at the tail end of the x-axis, 
whereas all other transfers finish much earlier. When there 
are many simultaneous clients, each client may get a 
limited amount of memory, and thus all the clients take 
longer to finish. A similar situation happens with 16 
simultaneous clients on a 64 MB machine (see Figure 7). 
These problems do not occur when the memory-limiting 
plug-in is in place.  

V. DYNAMIC PROVISIONING OF GRIDFTP DATA 
MOVERS 

GridFTP offers a powerful enhancement called striped 
servers. In this mode a GridFTP server is set up with a 
single control node and one or more data mover nodes. All 
of the data movers work in concert to transfer a single file 
and thereby achieve high throughput rates. When the 
frontend is run out of xinetd, the list of possible data 
movers must be statically configured.  

Figure 10: Dynamic data mover registration 
 
The GFork framework allows for dynamic addition 

and removal of data mover nodes. Figure 10 illustrates the 
interaction between the control and data mover nodes. Both 
the control node and the data mover node have a GFork 
master plug-in. The GFork master program on the control 
node listens on a user-configurable port for data mover 
registrations. The GFork master program on the data 
movers should be configured with the control node’s 
registration contact point. Data movers can then connect to 
the control node to notify their existence. By default, a 
registration is good for 10 minutes, but a data mover is free 



to refresh its registration. The GFork master program on the 
control node can be configured with a list of authorized 
distinguished names (DNs) [24]. In order to register, the 
backend must authenticate and provide its DN. The 
provided DN is checked against the list of authorized DNs, 
and the registration is allowed only if the data mover’s DN 
is in the authorized DN list. The master program can be 
configured to have no registration security at all.  

The control node master plugin configuration allows 
the administrator to specify the number of data movers to 
use for each transfer session. When the control node gets a 
transfer request it picks the specified number of data 
movers from the list of available data movers in a round-
robin fashion to service the transfer request. If the load on 
the existing data movers goes above a certain threshold, 
administrators can easily add more data movers to handle 
the demand without any disruption to the service. Similarly, 
they can shut down data movers when the demand is less.  

VI. SUMMARY AND FUTURE WORK 
We have developed a resource management 

framework for GridFTP. The framework was motivated by 
the need to manage the GridFTP resources effectively and 
rotect from any unintentional or intentional misuse. To this 
end, we created a simple memory management plug-in and 
showed the effectiveness of this framework in preventing 
system meltdown. To facilitate dynamic addition and 
removal of GridFTP data movers, we implemented secure 
registration capabilities using this framework.  

In future, we intend to add more sophisticated 
resource management capabilities to provide better than 
best-effort data movement capabilities in GridFTP. GFork 
in the present form runs only one service per instance; it 
takes a single configuration file and handles a single 
service. Thus, it differs from xinetd, which runs many 
services per instance, all associated with many different 
ports. We plan to enhance GFork to handle many services 
in the way that xinetd does.  

ACKNOWLEDGMENT  
This work was supported by the Office of Advanced 

Scientific Computing Research, Office of Science, U.S. 
Department of Energy, under Contract DE-AC02-
06CH11357. 

REFERENCES 
[1] Allcock, W. GridFTP: Protocol Extensions to FTP for the 

Grid. Global Grid ForumGFD-R-P.020, 2003. 
[2] Postel, J. and Reynolds, J. File Transfer Protocol. Internet 

Engineering Task Force, RFC 959, 1985. 
[3] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, "A Security 

Architecture for Computational Grids," in 5th ACM 
Conference on Computer and Communications Security 
Conference, 1998, pp. 83-92. 

[4] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. 
Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped 

GridFTP Framework and Server,” SC’05, ACM Press, 
2005 

[5] R. Kettimuthu, M. Link, J. Bresnahan, W. Allcock, 
“Globus Data Storage Interface (DSI) - Enabling Easy 
Access to Grid Datasets,” 1st DIALOGUE Workshop: 
Applications-Driven Issues in Data Grids, Aug. 2005. 

[6] Watson, R.W. and Coyne, R.A. The Parallel I/O 
Architecture of the High-Performance Storage System 
(HPSS). IEEE MSS Symposium, 1995. 

[7] Baru, C., Moore, R., Rajasekar, A. and Wan, M., The 
SDSC Storage Resource Broker. 8th Annual IBM Centers 
for Advanced Studies Conference, Toronto, Canada, 1998. 

[8] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, 
"PVFS: A Parallel File System For Linux Clusters", 
Proceedings of the 4th Annual Linux Showcase and 
Conference, Atlanta, GA, October 2000 

[9] General Parallel File System (GPFS), 2004. www- 
1.ibm.com/servers/eserver/clusters/software/gpfs.html. 

[10] POSIX 1003.1e draft specification "http://www.suse.de/ 
~agruen/acl/posix/posix_1003.1e-990310.pdf" 

[11] Allcock, W., Bresnahan, J., Kettimuthu, R. and Link, J., 
The Globus eXtensible Input/Output System (XIO): A 
Protocol-Independent I/O System for the Grid. Joint 
Workshop on High-Performance Grid Computing and 
High-Level Parallel Programming Models held in 
conjunction with International Parallel and Distributed 
Processing Symposium, 2005. 

[12] Gu, Y. and Grossman, R.L., UDT: An Application Level 
Transport Protocol for Grid Computing. Second 
International Workshop on Protocols for Fast Long- 
Distance Networks, 2003. 

[13] Jin, C., Wei, D.X. and Low, S.H., FAST TCP: motivation, 
architecture, algorithms, performance. IEEE Infocom, 
2004. 

[14] He, E., Leigh, J., Yu, O. and DeFanti, T.A., Reliable 
Blast UDP: Predictable High Performance Bulk Data 
Transfer. IEEE Cluster Computing, 2002. 

[15] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. 
Foster, "GridFTP Pipelining," in Teragrid 2007 Conference 
Madison, WI, 2007. 

[16] R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P. Bremer, 
 J. Bresnahan, A. Cherry, L. Childers, E. Dart, I. Foster, K. 
 Harms, J. Hick, J. Lee, M. Link, J. Long, K. Miller, V. 
 Natarajan, V. Pascucci, K. Raffenetti, D. Ressman, D. 
 Williams, L. Wilson, L. Winkler, "Lessons learned from 
 moving Earth System Grid data sets over a 20 Gbps wide-
 area network", 19th ACM International Symposium on 
 High Performance Distributed Computing (HPDC), 2010 
 Transactions on Computer Systems, 6 (1). 51-81. 
 1988. 
[17] TCP-tuning 

http://www.psc.edu/networking/projects/tcptune/ 
[18] http://www.xinetd.org/ 
[19] Open Science Grid http://www.opensciencegrid.org/ 
[20] Catlett, C. The TeraGrid: A Primer, 2002. 

www.teragrid.org. 
[21] Allman, M., Paxson, V. and Stevens, W. TCP Congestion 

Control. IETF, RFC-2581, 1999. 
[22]  http://www.xen.org/ 
[23] http://sourceforge.net/projects/iperf/ 
[24] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. 

Thompson, "Internet X.509 Public Key Infrastructure (PKI) 
Proxy Certificate Profile," IETF, RFC 3820, 2004 

 



 
 
 

 
 

 
 
 


