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ABSTRACT 
Amazon’s S3 protocol has emerged as the de facto interface for 
storage in the commercial data cloud. However, it is closed source 
and unavailable to the numerous science data centers all over the 
country. Just as Amazon’s Simple Storage Service (S3) provides 
reliable data cloud access to commercial users, scientific data 
centers must provide their users with a similar level of service. 
Ideally scientific data centers could allow the use of the same 
clients and protocols that have proven effective to Amazon’s 
users. But how well does the S3 REST interface compare with the 
data cloud transfer services used in today’s computational 
centers? Does it have the features needed to support the scientific 
community? If not, can it be extended to include these features 
without loss of compatibility? Can it scale and distribute resources 
equally when presented with common scientific the usage 
patterns? 

We address these questions by presenting Cumulus, an open 
source implementation of the Amazon S3 REST API. It is 
packaged with the Nimbus IaaS toolkit and provides scalable and 
reliable access to scientific data. Its performance compares 
favorably with that of GridFTP and SCP, and we have added 
features necessary to support the econometrics important to the 
scientific community. 
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1. INTRODUCTION 
Storage clouds represent a fusion between data transfer and 

storage; two actions that up to now were usually considered and 
optimized separately. The emergence of storage clouds as a useful 
model raises several questions. To what extent can the existing 
scientific storage systems be adapted to fit this model? Are 
existing file/storage management tools suitable for cloud 
computing? Can we build a storage cloud using a combination of 
existing tools? How will such a combination need to be adapted to 
satisfy the expectations of scientific users? What are the 
performance characteristics of such adaptations, and how can they 
be improved? Answering these questions provides a path to better 
leverage the existing knowledge and experience in building 
storage clouds.  

Outsourcing compute and storage infrastructure has many 
potential benefits. It can provide access to more sophisticated 
resources than the outsourcing institution can afford to own and 
operate, it supports more flexible use of such resources, it creates 
the potential for leveraging economies of scale via consolidation, 
and it eliminates the overhead of system acquisition and 
operation. Many outsourcing models have been tried, from multi-
institutional sharing to grid computing and commercial hosting 

services. Recently, cloud computing [1] emerged as a new 
outsourcing paradigm that quickly became successful in many 
commercial venues. Infrastructure as a Service (IaaS) is the most 
flexible of the mechanisms collectively known as cloud 
computing; it offers scientists access to computational and storage 
resources on a on-demand, pay-as-you-go basis.  

Storage outsourcing is of particular importance to scientific 
research, where volumes of data produced by one community can 
reach the scale of terabytes per day [2, 3]. Sharing and processing 
of such data require careful planning and trade-off considerations 
that could be greatly facilitated by storage on-demand services 
such as those provided by Amazon Simple Storage Service (S3) 
[4] or Rackspace [5]. For this reason, the study of such services 
from the perspective of scientific needs attracted early attention 
[6, 7]. The commercially offered services are closed, however, 
and thus can be only partially studied. Deep evaluation of the 
potential of cloud computing as an outsourcing model requires the 
ability to experiment with the paradigm.  

In this paper, we present Cumulus—a storage cloud system 
that adapts existing storage implementations to provide efficient 
upload/download interfaces compatible with S3, the de facto 
industry standard. While this compatibility enables users to easily 
move between academic and commercial clouds, Cumulus also 
conforms to scientific community expectations by providing such 
features as quota support, fair sharing among clients, and an easy-
to-use, easy-to-install approach for maintenance. The most 
important feature of Cumulus is its well-articulated back-end 
extensibility module. It allows storage providers to configure 
Cumulus with existing systems such as GPFS [8], PVFS [9], and 
HDFS [10], in order to provide the desired reliability, availability 
or performance trade-offs. Cumulus is part of the open source 
Nimbus toolkit [11, 12], where this “use what you have” approach 
has also been successfully used to provide a compute cloud 
service that can be used with batch schedulers [13].  

We first describe Cumulus architecture and implementation. 
We next evaluate Cumulus from the perspective of 
upload/download efficiency and compare it with representative 
tools used in the scientific community. We then demonstrate how 
Cumulus scales over multiple storage servers, and we evaluate the 
efficiency of such scaling in the context of the GPFS storage 
system used on many scientific clusters.  

2. CUMULUS DESIGN 
Cumulus provides two functions. First, it allows users to 

accumulate and manage data: upload data to the cloud, monitor its 
status, and download it from the storage cloud as needed. Second, 
since this data can in particular represent VM images, Cumulus 
also provides an image store for Nimbus compute clouds. Users 
can use client tools—provided either by Amazon for interaction 
with S3 or by other third-party tool providers—to access those 
functions. Since Cumulus is integrated with the Nimbus 
workspace service, the users can also access Cumulus functions 



through the Nimbus cloud-client features to upload and download 
images.  

 
Figure 1: Cumulus architecture 

The architecture of Cumulus, shown in Figure 1, is simple 
and modular, with particular care taken to provide extensibility 
options at various design levels. The Cumulus Interfaces layer 
exposes the interface to the service and contains modules 
interpreting and authorizing client commands. The current 
implementation supports only Amazon’s S3 REST protocol, the 
de facto commercial standard storage cloud interface. Thus, many 
client libraries and tools, including s3cmd [30], boto [31], and 
jets3t [32], can be leveraged by Cumulus users. Simply put, the S3 
interface allows clients to write, read, and delete objects 
(equivalent of files) or organize them into buckets (equivalent of 
directories). Furthermore, Cumulus interfaces support 
simultaneous upload to a single object without the risk of data 
corruption; and, like S3, it supports the notion of eventual 
consistency [14]. 

Authentication mechanisms, based on request signature by 
symmetric key, are provided to ensure that data is kept secure. 
When a request is made to the service, the authorization database 
is checked to verify that the user is known and is allowed to 
perform the requested action on the specified bucket and object. 
Object permissions are set with an access control list (ACL), 
which allows a group of users to share data with a rich set of 
controls according to the S3 protocol [4]. For example, a user can 
grant read access to one user and write access to another without 
having to worry about defining user groups. The authorization 
module handles this functionality without exposing the remainder 
of the body of code to these details. This allows for different 
authorization implementations to be created and enabled. 

The Cumulus Redirection module is used to handle 
scalability. This portion of Cumulus keeps track of the workload 
of the service and decides to either accept a new client connection 
or redirect that client to a replicated server. 

The Cumulus Service Implementation encompasses a set of 
modules that implement the functionality needed to convert an 
API request into an action on the storage system and record all 
important events along the way. When a user requests that a 
bucket be created, this component logs the request, checks that the 

request is allowed against quota and ACL restrictions, and then 
invokes the appropriate method on the Storage API.  Cumulus 
configuration files are interpreted and respected in this module. 
Along with this component is a set of command-line tools that 
allow a user easily to create new users, alter and delete existing 
users, and manage the users storage quotas. 

The Cumulus Storage API is a modular system that allows 
administrators to choose what backend storage system they wish 
to use. It abstracts the details of sourcing and sinking data from 
the rest of Cumulus via the various Implementations—Cumulus 
plug-in modules. Similarly, these plug-ins need not be concerned 
with the details of security, HTTP, or S3. This design allows for 
fairly easy creation of a storage module and thus integration with 
most storage system, whether they are simple like local file 
systems or sophisticated like HDFS. This modular approach to 
storage system is a key design feature of Cumulus.  

Creating a storage module involves the implementation of 
two abstract classes. The first is a file management class with 
interface operations for actions such as the creation or deletion of 
a bucket or the uploading, downloading, or deleting of an object. 
The second class is responsible for streaming the data to the 
storage object. This class behaves similarly to an open file. The 
creation of a storage module is expected to be a moderately easy 
task involving about two to three hundred lines of python code. 

In order to achieve Amazon levels or availability, vast 
amounts of hardware expenses need to be incurred. Some users 
may need such levels, but others have more modest requirements. 
Some storage clouds have the resources simply for a single node; 
for these, a local disk is all that is needed to back their system, 
without having to deal with complicated setups. Other storage 
clouds have a cluster of nodes to back their storage system; such 
setups typically have shared or parallel file systems like GPFS [8], 
PVFS [9], or NFS [16] and can use them to back their Cumulus 
storage cloud. More sophisticated clouds may have highly 
available data stores like HDFS [10], Sector [17], or Cassandra 
[18] to back their systems. Our goal is to enable all those different 
types of storage to be used in the creation of clouds.  

3. IMPLEMENTATION 
Cumulus is implemented in the python programming 

language as a REST service. Twisted Web [19] is used to handle 
the marshaling of the HTTP and HTTPS protocols The Cumulus 
service implementation handles interpreting the REST API and 
converting it to the Cumulus API. The Cumulus API is a set of 
python objects that are responsible for handling specific user 
requests.  

The Cumulus default authorization module is implemented 
with the database sqlite [20]. Because sqlite is often limited to a 
local file system (the details here depend on the use of a shared 
file system that safely supports locking), this module cannot be 
used in a replicated configuration. However, a slightly modified 
version of this module exists that uses postgres [21]; this allows 
Cumulus to be configured as a replicated and scalable service. An 
additional light-weight module has been created that uses simple 
text files for managing access to security information.  

The Cumulus package released by the Nimbus project 
includes the POSIX data storage module. Because of the success 
of FUSE [22], this module is powerful and allows for immediate 
integration with HDFS, SECTOR, and many other file systems. 
Additionally we have a BlobSeer [33] module that is a research 
extension. 

Many Cumulus servers can be configured to run on separate 
machines all accessing a shared data store such as GPFS. This 
replicated pool of Cumulus servers can then be used to handle a 



higher client load. The replication module decides whether a 
redirection is needed and, if so, to which replicated server the 
client will be redirected. The current release of Cumulus has two 
redirection modules (both used in our experiments): random and 
round robin. In both modules a list of all replicated servers is 
stored in a file (the contents of this file can change without 
needing to restart the Cumulus servers). Each service is given this 
file and an integer known as the redirection point. The modules 
keep track of the total number of current client connections. If that 
number exceeds the redirection point, a new host is chosen from 
the list.  

The modules differ in how they choose a new host. The 
random module selects a new host from the list at random. The 
round-robin module iterates through the list, selecting a new host 
every time and starting over at the beginning once the list is 
exhausted. Both algorithms include the current host in their 
redirection candidates. If the current host is selected, the request is 
handled without redirection. 

4. EXPERIMENTS 
To assess the viability of Cumulus as a storage cloud for 

science, we ran a set of experiments on the FutureGrid’s Hotel 
resource [23]. The compute nodes used in the study were 8-core 4 
Xeon 2.40 GHz processors equipped with 24 GB of RAM and 1 
Gbps network interfaces (including the c1.uc.futuregrid.org and 
c2.uc.futuregrid.org nodes we refer to below), connected via a 
Juniper EX4200 network switch. At the time the fair sharing and 
performance experiments were run, the nodes were configured to 
use just 512 MB of memory in order to create resource contention 
conditions. For the remaining experiments we used the full 24 GB 
of RAM.  

In our experiments we refer to the “client node” 
(c1.uc.futuregrid.org) host and the “service node” 
(c2.uc.futuregrid). In our scalability study we had a total of 20 
nodes at our disposal for the experiment. In this case all nodes 
were identically configured as those described above with the 
exception that they had the full 24 GB of RAM. 

4.1 Performance 
To evaluate the performance of Cumulus, we ran a series of 

experiments comparing it with the two most commonly used data 
transfer services in the scientific community: GridFTP [24] and 
SCP. GridFTP has set the standard for data transfer performance, 
and SCP is the ubiquitous transfer service that users turn to when 
they want a simple and immediate solution. 

Our experiments compared the throughput obtained by all 
three tools in uploading and downloading a file. We used the 
following standard command-line interface tools to perform the 
transfer with their respective service: for GridFTP we used 
globus-url-copy; for SCP, the scp command; for Cumulus, the 
s3cmd. The speed of the file system was measured by using 
Bonnie++ [25]. The throughput was calculated by dividing the file 
size by the time each command took to complete. 

Typically, data transfer services perform best on files of a 
significant size, because small files have a low payload-to-
overhead ratio. The optimal file size for any given transfer service 
varies slightly depending on details of the protocol and 
implementation. Hence, we chose to show the results starting with 
a small file and gradually increasing the file size, allowing us to 
see the relative trends.  Specifically, in our experiments we 
measured the time all three services took to both upload and 
download a range of file sizes from 2 MB to 2 GB , doubling the 
file size for each new measurement. We took 10 measurements 

for each file size; our results display the mean of 10 trials (with 
standard deviation less than 1 for most measurements). 

 
Figure 2: Comparison of upload throughput 

 
Figure 3: Comparison of download throughput 

The results in Figures 2 and 3 show that the performance of 
Cumulus is on a par with the most common and best-performing 
data transfer services in use today. GridFTP and Cumulus display 
similar performance characteristics; in fact, Cumulus slightly 
outperforms GridFTP for file sizes larger than 512 MB. The spike 
in GridFTP performance just before the 512 MB file size (visible 
particularly in Figure 2) is an artifact of GridFTP memory 
buffering techniques. We plan to investigate whether applying 
similar buffering strategies would be useful in Cumulus without 
breaking its storage semantics. 

4.2 Fair Sharing 
The fair sharing experiment evaluates to what extent we meet 

our goal to equally ration resources to clients. In the study we 
operated a single Cumulus service instance and had 32 clients 
simultaneously upload or download a single 512 MB file; we 
measured the upload and download time for each client. As 
before, the Cumulus service was located on the service node. All 
of the clients were run on the client node. Recall that each 
machine has only 512 MB of RAM; this limitation introduces 
resource contention conditions. 



 
Figure 4: Comparison of upload and download times for 

multiple clients 
The results of the study are shown in Figure 4. Each data 

point on the graph is the achieved throughput of one of the clients; 
the solid lines show the average throughput of all clients. We see 
that the achieved bandwidth is stable for downloads: the largest 
deviation from the mean is 0.40. The upload case is more variable, 
with a maximum deviation from the mean of 1.18 mbps. The 
standard deviation is for downloads is 0.18 and for uploads is 
0.45. The higher variance of the upload case is due to kernel 
caching. In the upload case, all 32 clients opened the same file on 
the same host. Inevitably, some clients read portions of the file 
before others. The kernel has the ability to cache portions of the 
file that early readers read in memory, allowing later readers to 
gain performance benefits when reading. Fair sharing as visible to 
the client will thus rely not only on the mechanisms implemented 
in Cumulus but also on how the service is used. 

To evaluate how much overhead is introduced when many 
simultaneous clients are consuming resources, we looked at the 
total bandwidth consumed by all clients in the fairness study, and 
we compared it with the bandwidth consumed by a single client in 
the performance study. In the download case, the throughput is 
310 mbps for a single client and 210 mbps is the sum total for 32 
clients (i.e., overhead of roughly 30%). In the upload case, 
however, the throughput for a single client is 269 mbps and for 32 
clients is 264 mbps. In this case, the efficiency is likely helped by 
the caching effect explained above. 

4.3 Scalability 
To meet the needs of large-scale storage clouds, Cumulus 

must be able to scale horizontally across many nodes. By 
leveraging the S3 protocol’s redirect feature, Cumulus can be 
configured to run as a set of replicated hosts. In our experiments, 
replicated instances of Cumulus were configured in two ways. 
The first used the parallel file system GPFS, which allows many 
hosts to mount the same file system and thus have the exact same 
view of the data store. Hence, Cumulus servers can be placed on 
all nodes that have the GPFS file system mounted and be fully 
replicated Cumulus servers. Because GPFS is a file system 
commonly found on scientific data clusters, configuring Cumulus 
in this way is representative of real-world scenarios. 

We note, however, that GPFS is a shared resource. How 
fairly it shares data streams with competing clients depends on its 
implementation details. Further, GPFS uses a network that is also 
a shared resource. Because of all these variables, it is important 
that we study Cumulus in a less dependent configuration. In our 
second configuration, therefore, we have 8 Cumulus servers 
associated with local disk partitions. To present the same view of 

the data store to all clients, we copied a single data set to all of the 
nodes. Thus, every server became a read-only mirror of the entire 
dataset. While this is a less realistic configuration, it provides a 
baseline for our study. 

4.3.1 Increasing Replication Factor 
In the first scalability evaluation, we ran an experiment in 

which 80 clients, run on 8 machines (10 clients on each), 
downloaded a 512 MB file at the same time. In this experiment all 
previously described machines, both clients and servers, were 
configured with 24 GB of RAM. We steadily increased the 
number of replicated servers from 1 to 8, and we used the same 
method described previously to measure the throughput that each 
client achieved. Redirects were handled with the round-robin 
algorithm. The mean of 10 trials was recorded; Figure 5 shows the 
results.  

 
Figure 5: Server replication 

The solid horizontal line is an extension of the single-server 
case and is intended to be a baseline showing what the results 
would be if a single server was used. The solid green line 
indicates what the performance would be if the single-server case 
scaled linearly as new resources joined the pool. The other two 
lines show the measured performance of the experiment when 
storing to a local disk and to GPFS. In both cases throughput 
steadily increases as more servers are added. There is a linear 
increase for the first four replicated Cumulus services, but after 
that point each additional server has less effect. Ideally, we would 
see a linear increase in performance, so that eight servers were 8 
times faster than one server. In practice, this is not the case. One 
reason is that the HTTP redirect incurs some overhead. A new 
connection must be formed to a new Cumulus service at a time of 
heavy network contention. The set of clients that were not 
redirected at this point are streaming data, and the set of clients 
that were redirected are competing with these data flows when 
trying to form connections. Another reason is that as each server 
is added, the overall bandwidth that the network must be able to 
switch is increased by 1 Gbps. We conjecture that as this overall 
availability is consumed, stress in lower layers of the network 
stack is introduced. 



 
Figure 6: Individual client measurements for server 

replication 
Figure 6 shows a scatter graph of the achieved throughput of 

each client when eight replicated servers are used at once. The 
median of all performance is indicated on the graph with the solid 
line at 96 Mbps. We see that 80% of the clients are +/- 27 mbps of 
the median; a few clients achieve much higher throughput, but 
none suffer very poor transfer rates. All the individual 
experiments show a consistent pattern: the high-achieving cases 
occur when a client contacts a server and is not redirected, so it 
can start transferring immediately. Not only do these clients avoid 
the penalty of redirection, but for a brief period (before the other 
clients are able to connect to their redirected hosts, authenticate, 
and begin transferring) they enjoy a noncongested network. 

  
Figure 7: Increasing client load for local disk  

 
 

 
Figure 8: Increasing client load for GPFS 

4.3.2 Increasing Client Load 
The graphs in Figures 7 and 8 show the scalability study 

from another angle. Here we have a static number of eight 
replicated servers, and we vary the number of clients 
simultaneously requesting a transfer from 8 to 80. We again use 
eight client machines, and in each data point we add another client 
to every machine, increasing the total by 8 for each data point. 
The achieved throughput is plotted against the number of clients. 
We show the two redirection algorithms and the two file systems. 
As more and more clients are added, the available network 
bandwidth is divided, giving each client a smaller slice. Thus the 
throughput trails off under the heavier load. However, the 
replicated service consistently outperforms the single service by a 
significant factor. As mentioned above, we would ideally see a 
consistent factor of 8. However, as the bar graphs in Figures 9 and 
10 show, in the best case we see a factor of roughly 6.5 and in the 
worst case a factor of 4. While the redirection overhead does 
explain some portion of this discrepancy, it cannot account for all 
the discrepancy.  

 

4.3.3 Effects of the File System and Redirection 
Algorithm 

When studying Figures 7 and 8, we see that with one 
exception all the data points have fairly similar lines. The 
exception is the first data point for the round-robin line on the 
local disk graph (Figure 7), which is greater than 250 mbps 
higher. The reason is that the case in question provides ideal 
conditions. There are eight servers and eight clients. Since we are 
using a local disk, no network contention is introduced by the 
storage system. The round-robin algorithm has each client 
redirected to a new host, thus providing equal distribution, with 
one client associated with one server. The client has the full 
resources of a single Cumulus service and can move at NIC 
speeds. Further, all the requests start at once, and all request the 
same size file, so they all end at roughly the same time.  

The Random algorithm does not show such favorable results 
because it cannot guarantee that each server gets a new host. Nor 
do we see these ideal results when using the GPFS file system 
because GPFS itself is a shared resource and it uses the same 
network that Cumulus is using for transfers. Because it is a shared 
resource, all transfers must use it at the same time and therefore 



cannot perform as fast as they can in the local disk case. 

 
Figure 9: Round-robin and Random comparison (local disk) 

 
Figure 10: Round-robin and Random comparison (GPFS) 

The Random algorithm with GPFS provides a much more 
realistic indicator for what could be expected in a live Cumulus 
storage cloud deployment. When comparing GPFS against local 
disk, we note that only marginal differences exist between the two 
for the Random algorithm. Local disk does significantly 
outperform GPFS with the round-robin algorithm, but this is an 
unlikely event to occur in a real deployment and should be 
considered a best-case scenario. 

5. RELATED WORK 
The Amazon Web Services S3 is a hosted storage cloud 

service. Unlike Cumulus, S3 is closed source, and the software is 
not available for private clouds of any size. Thus, one cannot 
extend S3 and experiment with its capabilities, as we can do with 
Cumulus. 

The Eucalyptus project [26] has an S3 compatible service 
similar to Cumulus called Walrus. However, the project is open 
core, which means that many of its features are not available for 
extension and experimentation. For example, although the 
enterprise edition does have support for quotas, the open source 
version does not. Walrus also does not provide support for 
replicated service like that of Cumulus shown in the scalability 
study. In contrast, Cumulus is fully open source and specifically 
designed with a “use what you have” approach in mind.  

Open Stack [27] has a storage cloud component called Swift. 
At the time of this study no implementation of Swift was 
available. Swift focuses on providing an integrated storage cloud 
solution for very large-scale generic clouds, and its architecture 
has complexity suitable to the task. Cumulus targets mid-size 
clouds and focuses on the “use what you have” approach 

leveraging the existing systems developed specifically in the 
context of scientific data. Additionally, since Swift does not 
provide an S3-compliant interface, users cannot leverage the 
debugged and documented tools available for S3 and therefore 
cannot fall back to an outsourced storage cloud in times of heavy 
load or redundancy needs that surpass their hardware budget.  

OpenNebula [28] provides an image store facility for 
uploading and downloading VM images. However, it provides 
operations only for reading and writing VM images and their 
associated metadata. It does not provide a general-purpose storage 
cloud as Cumulus does. Further, it does not have an S3-
compatible interface. 

GridFTP [29] is a high-speed data transfer service. Its focus 
is more on network transfer speeds on underutilized high-speed 
networks and less on the storage of data. It allows for parallel 
TCP streams to be used, significantly increasing performance but 
potentially at the expense of fair sharing. We hope to leverage 
lessons learned and techniques used in GridFTP to increase the 
performance of Cumulus while still maintaining important 
semantics associated with a storage cloud. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented the design of Cumulus, an extensible, 

open source storage cloud implementation designed to adapt 
existing storage mechanisms for cloud usage. Cumulus 
implements the AWS S3 interface to provide compatibility with 
the de facto industry standard. In order to support scientific 
projects, however, Cumulus also provides support for additional 
features such as quotas—a widely used mechanism to ensure 
controlled resource usage in the scientific community. The 
customizable back-end allows providers to leverage existing 
scientific domain storage systems and thereby choose what trade-
offs—in terms of complexity, reliability, and availability—their 
storage cloud should have, ranging from a trivially easy 
installation to highly available, reliable service based on HDFS. 

We present an evaluation of various aspects of the Cumulus 
implementation. We found that the transfer rate of both uploads 
and downloads is on a par with technologies commonly used in 
science. In our fairness study we found that Cumulus distributes 
resources to simultaneous clients in a way consistent with our 
service level agreement. Further, our scalability study shows that 
Cumulus can take advantage of multiple storage servers to 
optimize uploads and downloads and can scale to withstand high 
levels of client loads.  

Our experiments highlight the potential for further study. 
Fundamentally, the concept of a storage cloud is a fusion between 
data transfer and storage management: two issues that up to now 
were usually considered (and optimized) separately. We plan to 
further examining to what extent techniques used in systems such 
as GridFTP can be usefully applied to storage clouds and how the 
current storage systems can be adapted to receive them.  
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