
Cumulus: An Open Source Storage Cloud for Science
John Bresnahan

Mathematics and CS Division
Argonne National Laboratory

bresnahan@mcs.anl.gov

David LaBissoniere
Computation Institute
University of Chicago

labisso@uchicago.edu

Tim Freeman
Computation Institute
University of Chicago

freeman@mcs.anl.gov

Kate Keahey
Mathematics and CS Division
Argonne National Laboratory

Computation Institute
University of Chicago

keahey@mcs.anl.gov

ABSTRACT
Amazon’s S3 protocol has emerged as the de facto interface for
storage in the commercial data cloud. However, it is closed source
and unavailable to the numerous science data centers all over the
country. Just as Amazon’s Simple Storage Service (S3) provides
reliable data cloud access to commercial users, scientific data
centers must provide their users with a similar level of service.
Ideally scientific data centers could allow the use of the same
clients and protocols that have proven effective to Amazon’s
users. But how well does the S3 REST interface compare with the
data cloud transfer services used in today’s computational
centers? Does it have the features needed to support the scientific
community? If not, can it be extended to include these features
without loss of compatibility? Can it scale and distribute resources
equally when presented with common scientific the usage
patterns?

We address these questions by presenting Cumulus, an open
source implementation of the Amazon S3 REST API. It is
packaged with the Nimbus IaaS toolkit and provides scalable and
reliable access to scientific data. Its performance compares
favorably with that of GridFTP and SCP, and we have added
features necessary to support the econometrics important to the
scientific community.

Keywords
Storage Cloud, Private Cloud, Infrastructure as a Service (IaaS),
Data Transfer, Amazon’s Simple Storage Service (S3)

1. INTRODUCTION
Storage clouds represent a fusion between data transfer and

storage; two actions that up to now were usually considered and
optimized separately. The emergence of storage clouds as a useful
model raises several questions. To what extent can the existing
scientific storage systems be adapted to fit this model? Are
existing file/storage management tools suitable for cloud
computing? Can we build a storage cloud using a combination of
existing tools? How will such a combination need to be adapted to
satisfy the expectations of scientific users? What are the
performance characteristics of such adaptations, and how can they
be improved? Answering these questions provides a path to better
leverage the existing knowledge and experience in building
storage clouds.

Outsourcing compute and storage infrastructure has many
potential benefits. It can provide access to more sophisticated
resources than the outsourcing institution can afford to own and
operate, it supports more flexible use of such resources, it creates
the potential for leveraging economies of scale via consolidation,
and it eliminates the overhead of system acquisition and
operation. Many outsourcing models have been tried, from multi-
institutional sharing to grid computing and commercial hosting

services. Recently, cloud computing [1] emerged as a new
outsourcing paradigm that quickly became successful in many
commercial venues. Infrastructure as a Service (IaaS) is the most
flexible of the mechanisms collectively known as cloud
computing; it offers scientists access to computational and storage
resources on a on-demand, pay-as-you-go basis.

Storage outsourcing is of particular importance to scientific
research, where volumes of data produced by one community can
reach the scale of terabytes per day [2, 3]. Sharing and processing
of such data require careful planning and trade-off considerations
that could be greatly facilitated by storage on-demand services
such as those provided by Amazon Simple Storage Service (S3)
[4] or Rackspace [5]. For this reason, the study of such services
from the perspective of scientific needs attracted early attention
[6, 7]. The commercially offered services are closed, however,
and thus can be only partially studied. Deep evaluation of the
potential of cloud computing as an outsourcing model requires the
ability to experiment with the paradigm.

In this paper, we present Cumulus—a storage cloud system
that adapts existing storage implementations to provide efficient
upload/download interfaces compatible with S3, the de facto
industry standard. While this compatibility enables users to easily
move between academic and commercial clouds, Cumulus also
conforms to scientific community expectations by providing such
features as quota support, fair sharing among clients, and an easy-
to-use, easy-to-install approach for maintenance. The most
important feature of Cumulus is its well-articulated back-end
extensibility module. It allows storage providers to configure
Cumulus with existing systems such as GPFS [8], PVFS [9], and
HDFS [10], in order to provide the desired reliability, availability
or performance trade-offs. Cumulus is part of the open source
Nimbus toolkit [11, 12], where this “use what you have” approach
has also been successfully used to provide a compute cloud
service that can be used with batch schedulers [13].

We first describe Cumulus architecture and implementation.
We next evaluate Cumulus from the perspective of
upload/download efficiency and compare it with representative
tools used in the scientific community. We then demonstrate how
Cumulus scales over multiple storage servers, and we evaluate the
efficiency of such scaling in the context of the GPFS storage
system used on many scientific clusters.

2. CUMULUS DESIGN
Cumulus provides two functions. First, it allows users to

accumulate and manage data: upload data to the cloud, monitor its
status, and download it from the storage cloud as needed. Second,
since this data can in particular represent VM images, Cumulus
also provides an image store for Nimbus compute clouds. Users
can use client tools—provided either by Amazon for interaction
with S3 or by other third-party tool providers—to access those
functions. Since Cumulus is integrated with the Nimbus
workspace service, the users can also access Cumulus functions

through the Nimbus cloud-client features to upload and download
images.

Figure 1: Cumulus architecture

The architecture of Cumulus, shown in Figure 1, is simple
and modular, with particular care taken to provide extensibility
options at various design levels. The Cumulus Interfaces layer
exposes the interface to the service and contains modules
interpreting and authorizing client commands. The current
implementation supports only Amazon’s S3 REST protocol, the
de facto commercial standard storage cloud interface. Thus, many
client libraries and tools, including s3cmd [30], boto [31], and
jets3t [32], can be leveraged by Cumulus users. Simply put, the S3
interface allows clients to write, read, and delete objects
(equivalent of files) or organize them into buckets (equivalent of
directories). Furthermore, Cumulus interfaces support
simultaneous upload to a single object without the risk of data
corruption; and, like S3, it supports the notion of eventual
consistency [14].

Authentication mechanisms, based on request signature by
symmetric key, are provided to ensure that data is kept secure.
When a request is made to the service, the authorization database
is checked to verify that the user is known and is allowed to
perform the requested action on the specified bucket and object.
Object permissions are set with an access control list (ACL),
which allows a group of users to share data with a rich set of
controls according to the S3 protocol [4]. For example, a user can
grant read access to one user and write access to another without
having to worry about defining user groups. The authorization
module handles this functionality without exposing the remainder
of the body of code to these details. This allows for different
authorization implementations to be created and enabled.

The Cumulus Redirection module is used to handle
scalability. This portion of Cumulus keeps track of the workload
of the service and decides to either accept a new client connection
or redirect that client to a replicated server.

The Cumulus Service Implementation encompasses a set of
modules that implement the functionality needed to convert an
API request into an action on the storage system and record all
important events along the way. When a user requests that a
bucket be created, this component logs the request, checks that the

request is allowed against quota and ACL restrictions, and then
invokes the appropriate method on the Storage API. Cumulus
configuration files are interpreted and respected in this module.
Along with this component is a set of command-line tools that
allow a user easily to create new users, alter and delete existing
users, and manage the users storage quotas.

The Cumulus Storage API is a modular system that allows
administrators to choose what backend storage system they wish
to use. It abstracts the details of sourcing and sinking data from
the rest of Cumulus via the various Implementations—Cumulus
plug-in modules. Similarly, these plug-ins need not be concerned
with the details of security, HTTP, or S3. This design allows for
fairly easy creation of a storage module and thus integration with
most storage system, whether they are simple like local file
systems or sophisticated like HDFS. This modular approach to
storage system is a key design feature of Cumulus.

Creating a storage module involves the implementation of
two abstract classes. The first is a file management class with
interface operations for actions such as the creation or deletion of
a bucket or the uploading, downloading, or deleting of an object.
The second class is responsible for streaming the data to the
storage object. This class behaves similarly to an open file. The
creation of a storage module is expected to be a moderately easy
task involving about two to three hundred lines of python code.

In order to achieve Amazon levels or availability, vast
amounts of hardware expenses need to be incurred. Some users
may need such levels, but others have more modest requirements.
Some storage clouds have the resources simply for a single node;
for these, a local disk is all that is needed to back their system,
without having to deal with complicated setups. Other storage
clouds have a cluster of nodes to back their storage system; such
setups typically have shared or parallel file systems like GPFS [8],
PVFS [9], or NFS [16] and can use them to back their Cumulus
storage cloud. More sophisticated clouds may have highly
available data stores like HDFS [10], Sector [17], or Cassandra
[18] to back their systems. Our goal is to enable all those different
types of storage to be used in the creation of clouds.

3. IMPLEMENTATION
Cumulus is implemented in the python programming

language as a REST service. Twisted Web [19] is used to handle
the marshaling of the HTTP and HTTPS protocols The Cumulus
service implementation handles interpreting the REST API and
converting it to the Cumulus API. The Cumulus API is a set of
python objects that are responsible for handling specific user
requests.

The Cumulus default authorization module is implemented
with the database sqlite [20]. Because sqlite is often limited to a
local file system (the details here depend on the use of a shared
file system that safely supports locking), this module cannot be
used in a replicated configuration. However, a slightly modified
version of this module exists that uses postgres [21]; this allows
Cumulus to be configured as a replicated and scalable service. An
additional light-weight module has been created that uses simple
text files for managing access to security information.

The Cumulus package released by the Nimbus project
includes the POSIX data storage module. Because of the success
of FUSE [22], this module is powerful and allows for immediate
integration with HDFS, SECTOR, and many other file systems.
Additionally we have a BlobSeer [33] module that is a research
extension.

Many Cumulus servers can be configured to run on separate
machines all accessing a shared data store such as GPFS. This
replicated pool of Cumulus servers can then be used to handle a

higher client load. The replication module decides whether a
redirection is needed and, if so, to which replicated server the
client will be redirected. The current release of Cumulus has two
redirection modules (both used in our experiments): random and
round robin. In both modules a list of all replicated servers is
stored in a file (the contents of this file can change without
needing to restart the Cumulus servers). Each service is given this
file and an integer known as the redirection point. The modules
keep track of the total number of current client connections. If that
number exceeds the redirection point, a new host is chosen from
the list.

The modules differ in how they choose a new host. The
random module selects a new host from the list at random. The
round-robin module iterates through the list, selecting a new host
every time and starting over at the beginning once the list is
exhausted. Both algorithms include the current host in their
redirection candidates. If the current host is selected, the request is
handled without redirection.

4. EXPERIMENTS
To assess the viability of Cumulus as a storage cloud for

science, we ran a set of experiments on the FutureGrid’s Hotel
resource [23]. The compute nodes used in the study were 8-core 4
Xeon 2.40 GHz processors equipped with 24 GB of RAM and 1
Gbps network interfaces (including the c1.uc.futuregrid.org and
c2.uc.futuregrid.org nodes we refer to below), connected via a
Juniper EX4200 network switch. At the time the fair sharing and
performance experiments were run, the nodes were configured to
use just 512 MB of memory in order to create resource contention
conditions. For the remaining experiments we used the full 24 GB
of RAM.

In our experiments we refer to the “client node”
(c1.uc.futuregrid.org) host and the “service node”
(c2.uc.futuregrid). In our scalability study we had a total of 20
nodes at our disposal for the experiment. In this case all nodes
were identically configured as those described above with the
exception that they had the full 24 GB of RAM.

4.1 Performance
To evaluate the performance of Cumulus, we ran a series of

experiments comparing it with the two most commonly used data
transfer services in the scientific community: GridFTP [24] and
SCP. GridFTP has set the standard for data transfer performance,
and SCP is the ubiquitous transfer service that users turn to when
they want a simple and immediate solution.

Our experiments compared the throughput obtained by all
three tools in uploading and downloading a file. We used the
following standard command-line interface tools to perform the
transfer with their respective service: for GridFTP we used
globus-url-copy; for SCP, the scp command; for Cumulus, the
s3cmd. The speed of the file system was measured by using
Bonnie++ [25]. The throughput was calculated by dividing the file
size by the time each command took to complete.

Typically, data transfer services perform best on files of a
significant size, because small files have a low payload-to-
overhead ratio. The optimal file size for any given transfer service
varies slightly depending on details of the protocol and
implementation. Hence, we chose to show the results starting with
a small file and gradually increasing the file size, allowing us to
see the relative trends. Specifically, in our experiments we
measured the time all three services took to both upload and
download a range of file sizes from 2 MB to 2 GB , doubling the
file size for each new measurement. We took 10 measurements

for each file size; our results display the mean of 10 trials (with
standard deviation less than 1 for most measurements).

Figure 2: Comparison of upload throughput

Figure 3: Comparison of download throughput

The results in Figures 2 and 3 show that the performance of
Cumulus is on a par with the most common and best-performing
data transfer services in use today. GridFTP and Cumulus display
similar performance characteristics; in fact, Cumulus slightly
outperforms GridFTP for file sizes larger than 512 MB. The spike
in GridFTP performance just before the 512 MB file size (visible
particularly in Figure 2) is an artifact of GridFTP memory
buffering techniques. We plan to investigate whether applying
similar buffering strategies would be useful in Cumulus without
breaking its storage semantics.

4.2 Fair Sharing
The fair sharing experiment evaluates to what extent we meet

our goal to equally ration resources to clients. In the study we
operated a single Cumulus service instance and had 32 clients
simultaneously upload or download a single 512 MB file; we
measured the upload and download time for each client. As
before, the Cumulus service was located on the service node. All
of the clients were run on the client node. Recall that each
machine has only 512 MB of RAM; this limitation introduces
resource contention conditions.

Figure 4: Comparison of upload and download times for

multiple clients
The results of the study are shown in Figure 4. Each data

point on the graph is the achieved throughput of one of the clients;
the solid lines show the average throughput of all clients. We see
that the achieved bandwidth is stable for downloads: the largest
deviation from the mean is 0.40. The upload case is more variable,
with a maximum deviation from the mean of 1.18 mbps. The
standard deviation is for downloads is 0.18 and for uploads is
0.45. The higher variance of the upload case is due to kernel
caching. In the upload case, all 32 clients opened the same file on
the same host. Inevitably, some clients read portions of the file
before others. The kernel has the ability to cache portions of the
file that early readers read in memory, allowing later readers to
gain performance benefits when reading. Fair sharing as visible to
the client will thus rely not only on the mechanisms implemented
in Cumulus but also on how the service is used.

To evaluate how much overhead is introduced when many
simultaneous clients are consuming resources, we looked at the
total bandwidth consumed by all clients in the fairness study, and
we compared it with the bandwidth consumed by a single client in
the performance study. In the download case, the throughput is
310 mbps for a single client and 210 mbps is the sum total for 32
clients (i.e., overhead of roughly 30%). In the upload case,
however, the throughput for a single client is 269 mbps and for 32
clients is 264 mbps. In this case, the efficiency is likely helped by
the caching effect explained above.

4.3 Scalability
To meet the needs of large-scale storage clouds, Cumulus

must be able to scale horizontally across many nodes. By
leveraging the S3 protocol’s redirect feature, Cumulus can be
configured to run as a set of replicated hosts. In our experiments,
replicated instances of Cumulus were configured in two ways.
The first used the parallel file system GPFS, which allows many
hosts to mount the same file system and thus have the exact same
view of the data store. Hence, Cumulus servers can be placed on
all nodes that have the GPFS file system mounted and be fully
replicated Cumulus servers. Because GPFS is a file system
commonly found on scientific data clusters, configuring Cumulus
in this way is representative of real-world scenarios.

We note, however, that GPFS is a shared resource. How
fairly it shares data streams with competing clients depends on its
implementation details. Further, GPFS uses a network that is also
a shared resource. Because of all these variables, it is important
that we study Cumulus in a less dependent configuration. In our
second configuration, therefore, we have 8 Cumulus servers
associated with local disk partitions. To present the same view of

the data store to all clients, we copied a single data set to all of the
nodes. Thus, every server became a read-only mirror of the entire
dataset. While this is a less realistic configuration, it provides a
baseline for our study.

4.3.1 Increasing Replication Factor
In the first scalability evaluation, we ran an experiment in

which 80 clients, run on 8 machines (10 clients on each),
downloaded a 512 MB file at the same time. In this experiment all
previously described machines, both clients and servers, were
configured with 24 GB of RAM. We steadily increased the
number of replicated servers from 1 to 8, and we used the same
method described previously to measure the throughput that each
client achieved. Redirects were handled with the round-robin
algorithm. The mean of 10 trials was recorded; Figure 5 shows the
results.

Figure 5: Server replication

The solid horizontal line is an extension of the single-server
case and is intended to be a baseline showing what the results
would be if a single server was used. The solid green line
indicates what the performance would be if the single-server case
scaled linearly as new resources joined the pool. The other two
lines show the measured performance of the experiment when
storing to a local disk and to GPFS. In both cases throughput
steadily increases as more servers are added. There is a linear
increase for the first four replicated Cumulus services, but after
that point each additional server has less effect. Ideally, we would
see a linear increase in performance, so that eight servers were 8
times faster than one server. In practice, this is not the case. One
reason is that the HTTP redirect incurs some overhead. A new
connection must be formed to a new Cumulus service at a time of
heavy network contention. The set of clients that were not
redirected at this point are streaming data, and the set of clients
that were redirected are competing with these data flows when
trying to form connections. Another reason is that as each server
is added, the overall bandwidth that the network must be able to
switch is increased by 1 Gbps. We conjecture that as this overall
availability is consumed, stress in lower layers of the network
stack is introduced.

Figure 6: Individual client measurements for server

replication
Figure 6 shows a scatter graph of the achieved throughput of

each client when eight replicated servers are used at once. The
median of all performance is indicated on the graph with the solid
line at 96 Mbps. We see that 80% of the clients are +/- 27 mbps of
the median; a few clients achieve much higher throughput, but
none suffer very poor transfer rates. All the individual
experiments show a consistent pattern: the high-achieving cases
occur when a client contacts a server and is not redirected, so it
can start transferring immediately. Not only do these clients avoid
the penalty of redirection, but for a brief period (before the other
clients are able to connect to their redirected hosts, authenticate,
and begin transferring) they enjoy a noncongested network.

Figure 7: Increasing client load for local disk

Figure 8: Increasing client load for GPFS

4.3.2 Increasing Client Load
The graphs in Figures 7 and 8 show the scalability study

from another angle. Here we have a static number of eight
replicated servers, and we vary the number of clients
simultaneously requesting a transfer from 8 to 80. We again use
eight client machines, and in each data point we add another client
to every machine, increasing the total by 8 for each data point.
The achieved throughput is plotted against the number of clients.
We show the two redirection algorithms and the two file systems.
As more and more clients are added, the available network
bandwidth is divided, giving each client a smaller slice. Thus the
throughput trails off under the heavier load. However, the
replicated service consistently outperforms the single service by a
significant factor. As mentioned above, we would ideally see a
consistent factor of 8. However, as the bar graphs in Figures 9 and
10 show, in the best case we see a factor of roughly 6.5 and in the
worst case a factor of 4. While the redirection overhead does
explain some portion of this discrepancy, it cannot account for all
the discrepancy.

4.3.3 Effects of the File System and Redirection
Algorithm

When studying Figures 7 and 8, we see that with one
exception all the data points have fairly similar lines. The
exception is the first data point for the round-robin line on the
local disk graph (Figure 7), which is greater than 250 mbps
higher. The reason is that the case in question provides ideal
conditions. There are eight servers and eight clients. Since we are
using a local disk, no network contention is introduced by the
storage system. The round-robin algorithm has each client
redirected to a new host, thus providing equal distribution, with
one client associated with one server. The client has the full
resources of a single Cumulus service and can move at NIC
speeds. Further, all the requests start at once, and all request the
same size file, so they all end at roughly the same time.

The Random algorithm does not show such favorable results
because it cannot guarantee that each server gets a new host. Nor
do we see these ideal results when using the GPFS file system
because GPFS itself is a shared resource and it uses the same
network that Cumulus is using for transfers. Because it is a shared
resource, all transfers must use it at the same time and therefore

cannot perform as fast as they can in the local disk case.

Figure 9: Round-robin and Random comparison (local disk)

Figure 10: Round-robin and Random comparison (GPFS)

The Random algorithm with GPFS provides a much more
realistic indicator for what could be expected in a live Cumulus
storage cloud deployment. When comparing GPFS against local
disk, we note that only marginal differences exist between the two
for the Random algorithm. Local disk does significantly
outperform GPFS with the round-robin algorithm, but this is an
unlikely event to occur in a real deployment and should be
considered a best-case scenario.

5. RELATED WORK
The Amazon Web Services S3 is a hosted storage cloud

service. Unlike Cumulus, S3 is closed source, and the software is
not available for private clouds of any size. Thus, one cannot
extend S3 and experiment with its capabilities, as we can do with
Cumulus.

The Eucalyptus project [26] has an S3 compatible service
similar to Cumulus called Walrus. However, the project is open
core, which means that many of its features are not available for
extension and experimentation. For example, although the
enterprise edition does have support for quotas, the open source
version does not. Walrus also does not provide support for
replicated service like that of Cumulus shown in the scalability
study. In contrast, Cumulus is fully open source and specifically
designed with a “use what you have” approach in mind.

Open Stack [27] has a storage cloud component called Swift.
At the time of this study no implementation of Swift was
available. Swift focuses on providing an integrated storage cloud
solution for very large-scale generic clouds, and its architecture
has complexity suitable to the task. Cumulus targets mid-size
clouds and focuses on the “use what you have” approach

leveraging the existing systems developed specifically in the
context of scientific data. Additionally, since Swift does not
provide an S3-compliant interface, users cannot leverage the
debugged and documented tools available for S3 and therefore
cannot fall back to an outsourced storage cloud in times of heavy
load or redundancy needs that surpass their hardware budget.

OpenNebula [28] provides an image store facility for
uploading and downloading VM images. However, it provides
operations only for reading and writing VM images and their
associated metadata. It does not provide a general-purpose storage
cloud as Cumulus does. Further, it does not have an S3-
compatible interface.

GridFTP [29] is a high-speed data transfer service. Its focus
is more on network transfer speeds on underutilized high-speed
networks and less on the storage of data. It allows for parallel
TCP streams to be used, significantly increasing performance but
potentially at the expense of fair sharing. We hope to leverage
lessons learned and techniques used in GridFTP to increase the
performance of Cumulus while still maintaining important
semantics associated with a storage cloud.

6. CONCLUSIONS AND FUTURE WORK
We have presented the design of Cumulus, an extensible,

open source storage cloud implementation designed to adapt
existing storage mechanisms for cloud usage. Cumulus
implements the AWS S3 interface to provide compatibility with
the de facto industry standard. In order to support scientific
projects, however, Cumulus also provides support for additional
features such as quotas—a widely used mechanism to ensure
controlled resource usage in the scientific community. The
customizable back-end allows providers to leverage existing
scientific domain storage systems and thereby choose what trade-
offs—in terms of complexity, reliability, and availability—their
storage cloud should have, ranging from a trivially easy
installation to highly available, reliable service based on HDFS.

We present an evaluation of various aspects of the Cumulus
implementation. We found that the transfer rate of both uploads
and downloads is on a par with technologies commonly used in
science. In our fairness study we found that Cumulus distributes
resources to simultaneous clients in a way consistent with our
service level agreement. Further, our scalability study shows that
Cumulus can take advantage of multiple storage servers to
optimize uploads and downloads and can scale to withstand high
levels of client loads.

Our experiments highlight the potential for further study.
Fundamentally, the concept of a storage cloud is a fusion between
data transfer and storage management: two issues that up to now
were usually considered (and optimized) separately. We plan to
further examining to what extent techniques used in systems such
as GridFTP can be usefully applied to storage clouds and how the
current storage systems can be adapted to receive them.

ACKNOWLEDGEMENTS
This material is based on work supported in part by the

National Science Foundation under Grant No. 0910812 to Indiana
University for "FutureGrid: An Experimental, High-Performance
Grid Test-bed." Partners in the FutureGrid project include U.
Chicago, U. Florida, San Diego Supercomputer Center - UC San
Diego, U. Southern California, U. Texas at Austin, U. Tennessee
at Knoxville, U. of Virginia, Purdue I., and T-U. Dresden. This
work also was supported in part by the Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.

REFERENCES
1. Armbrust, M., et al. Above the Clouds: A Berkeley View of
Cloud Computing. Tech. report EUB/EECS-2009-28, University
of California at Berkeley. 2009.

2. Iamnitchi, A., S. Doraimani, and G. Garzoglio. Filecules in
High-Energy Physics: Characteristics and Impact on Resource
Management. In High Performance Distributed Computing
(HPDC). 2006.

3. Ball, N.M., and D. Schade, Astroinformatics in Canada. White
Paper, 2010.

4. Amazon Simple Storage Service (Amazon S3):
http://aws.amazon.com/s3/.
5. Rackspace: http://www.rackspace.com/.

6. Garfinkel, S., An Evaluation of Amazon’s Grid Computing
Services: EC2, S3, and SQS. 2007.

7. Palankar, M., A. Iamnitchi, M. Ripeanu, and S. Garfinkel.
Amazon S3 for Science Grids: A Viable Solution? In International
Workshop on Data-Aware Distributed Computing. Boston, MA.
2008.
8. Schmuck, F., and R. Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. In 1st USENIX Conference on File
and Storage Technologies (FAST ‘02). Berkeley, CA. 2002.
9.Carns, P. H., I. W. Ligon, R. Ross, and R. Thakur. PVFS: A
Parallel File System For Linux Clusters. In 4th Annual Linux
Showcase and Conference. Atlanta, GA. 2000.
10. Shvachko, K., H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In IEEE 26th Symposium on
Mass Storage Systems and Technologies. 2010.
11. The Nimbus Toolkit: www.nimbusproject.org.

12. Keahey, K., I. Foster, T. Freeman, and X. Zhang. Virtual
Workspaces: Achieving Quality of Service and Quality of Life in
the Grid. Scientific Programming 13 (4):265-275. 2005.

13. Freeman, T., and K. Keahey, Flying Low: Simple Leases with
Workspace Pilot. In EuroPar 2008, 2008.
14. Vogels, W., Eventually Consistent. ACM Queue, 2008. 6.
15. Open Cloud Computing Interface (OCCI): http://occi-wg.org/.

16. Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyon. Design and Implementation of the Sun Network Filesystem.
In Proceedings of the Summer USENIX Conference. June 1985.

17. Gu, Y., and R. Grossman. Sector and Sphere: the Design and
Implementation of a High Performance Data Cloud. In CCA.
2008.

18. Cassandra: http://cassandra.apache.org/.
19. Twisted Matrix Labs: http://twistedmatrix.com/trac/wiki.
20. SQLite Home page: http://sqlite.org/.
21. PostgreSQL: http://www.postgresql.org/.
22. FUSE: Filesystem in Userspace: http://fuse.sourceforge.net/.
23. FutureGrid: www.futuregrid.org.

24. Allcock, W., GridFTP: Protocol Extensions to FTP for the
Grid. In Global Grid Forum. 2003.

25. Bonnie Disk I/O Benchmark:
http://www.textuality.com/bonnie/.

26. Nurmi, D., R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov. The Eucalyptus Open-
Source Cloud-Computing System. In CCGrid. 2008.

27. OpenStack: The open source, open standards cloud:
http://openstack.org/.
28. The OpenNebula Project: http://www.opennebula.org/.

29. Allcock, W., J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, and I. Foster. The Globus Striped GridFTP
Framework and Server. In SC ‘05. 2005.
30. s3cmd : command line S3 client: http://s3tools.org/s3cmd.

31. boto: Python interface to Amazon Web Services:
http://code.google.com/p/boto/.

32. jets3t: An open source Java toolkit for Amazon S3 and
CloudFront: http://jets3t.s3.amazonaws.com/.

33. Bogdan Nicolae. High Throughput Data-Compression for
Cloud Storage. Pages 1-12 in Proceedings of the Third
International Conference on Data Management in Grid and Peer-
to-Peer Systems (Globe’10). Abdelkader Hameurlain, Franck
Morvan, and A. Min Tjoa (eds.). Springer-Verlag, Berlin. 2010.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

