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A DEFLATED VERSION OF THE BLOCK CONJUGATE GRADIENT
ALGORITHM WITH AN APPLICATION TO GAUSSIAN PROCESS

MAXIMUM LIKELIHOOD ESTIMATION

JIE CHEN∗

Abstract. Many statistical applications require the solution of a symmetric positive definite
covariance matrix, sometimes with a large number of right-hand sides of a statistical independence
nature. With preconditioning, the preconditioned matrix has almost all the eigenvalues clustered
within a narrow range, except for a few extreme eigenvalues deviating from the range rapidly. We
derive a deflated version of the block conjugate gradient algorithm to handle the extreme eigenvalues
and the multiple right-hand sides. With an appropriate deflation, the rate of convergence depends
on the spread of the clustered eigenvalues but not the extreme ones. Numerical experiments in a
Gaussian process maximum likelihood estimation application demonstrate the effectiveness of the
proposed solver, pointing to the potential of solving very large scale, real-life data analysis problems.
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1. Introduction. The preconditioned conjugate gradient (preconditioned CG,
or PCG) algorithm is an extensively studied, widely used, and successful algorithm for
solving symmetric positive definite systems. In many situations, however, variants of
the algorithm are proposed to enhance its robustness and to handle practical situations
such as ill conditioning and multiple right-hand sides. This paper considers a common
case in statistical analysis of spatial/temporal data, where a large symmetric positive
definite covariance matrix must be solved [24]. Depending on the covariance model,
often the covariance matrix becomes increasingly ill-conditioned as the size increases.
We consider in particular a Gaussian process maximum likelihood estimation problem,
where in addition to the ill-conditioning, a challenge comes from a large number of
independent right-hand sides, say, 100 independent random vectors [1].

The technique of maximum likelihood is used for fitting a covariance model to a
Gaussian process/random field, and the algorithm developed in [1] is able to solve the
problem to a large scale (1 million sampling sites). However, the successful examples
in [1] rely largely on the regular grid structure of the sampling sites, which, when
translated to the matrix language, means that the covariance matrix is multilevel
Toeplitz. In this paper we consider a general case where the sampling sites are not
regularly spaced. In other words, the Toeplitz structure of the matrix is destroyed,
and thus the idea of using a circulant preconditioner to yield a superlinear convergence
of the CG algorithm [3] is not applicable.

When multiple right-hand sides must be solved, two major variants of the Krylov
subspace methods have been studied: block methods [13] and seed methods [4, 14, 16,
26]. (For nonsymmetric matrices and the GMRES algorithm, see also [21, 22] for the
block variants and [20] for the seed variants.) The block methods extend the idea of
repeatedly applying the matrix A ∈ Rn×n to vectors to generate a subspace, and apply
the matrix to block vectors instead. The block methods project the matrix to the
generated subspace and solve the projected system to obtain approximate solutions.
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In exact arithmetic, the iteration terminates in at most dn/se steps where s is the
block size. Similar to the single-vector version of PCG, in the block versions the A-
norm of the error vectors has (at least) a linear rate of decrease which is governed by
λn/λs, where for all j the λj ’s are the eigenvalues of the preconditioned system, sorted
nondecreasingly. As s increases, the convergence rate improves. The fast convergence
in part stems from the fact that a richer subspace (of dimension s) is available for
searching decent directions in each iteration. In fact, the block methods are often
considered a robust improvement of PCG in the case of only one right-hand side, since
block iterations tend to better accommodate the clustering of the small eigenvalues.
The block iterations are sometimes necessary to yield an acceptable convergence rate
if an effective preconditioner is not available.

The seed methods run the CG iteration on a single right-hand side (the seed
system) and recycle the generated Krylov subspace by projecting the other systems
to this subspace. When the seed system is solved, one also obtains crude approximate
solutions for the rest of the systems, one of which is then chosen to be the seed system,
and the CG iteration is restarted. The seed methods are most effective when the crude
approximate solutions yield residual vectors that have relatively large components on
the eigenvectors of A corresponding to the smallest eigenvalues. In this case, using the
crude approximate solution as a new initial guess for the new seed system makes the
iterations converge quickly. In some applications, the right-hand sides are related in
some manner (for example, they are time-dependent or parameter-dependent), which
makes it possible that the crude approximate solution is not too far from the actual
solution since the preceding seed system has been solved. Based on the idea of using
block iterations to improve the convergence over the single-vector iterations, the seed
methods can also be used in a block fashion, where the right-hand sides are divided
into equal-sized groups and the single seed system becomes a block seed system.

A popular argument that favors the seed methods over the block methods is the
linear dependence issue of the block vectors during iterations, which is triggered by
the convergence of some system(s) or by other factors. Commonly used remedies
include reducing the block size (variable block PCG, [12]), removing the converged
system(s) [13], or separating the block into subblocks and performing a restart. We
note that the variable block PCG method is intended for the solution of only one right-
hand side. However, a practical use of the seed methods may require the block seed
version, which in any case will need to face the linear dependence issue. Therefore,
in this paper we focus on the block methods for solving multiple right-hand sides.

Deflation [8, 18, 23, 11] is another idea to accelerate the convergence of a Krylov
subspace method. A typical deflation technique is to inject to the Krylov subspace a
few eigenvectors corresponding to the eigenvalues that hamper convergence (usually
the smallest ones). When accurate eigenvectors are expensive to compute, an ap-
proximate eigen-subspace is used instead. With a single right-hand side, approximate
eigenvectors can be obtained during the course of CG iterations. In fact, deflation is
more favorable for multiple right-hand sides, which are solved sequentially. In such a
case, the approximate eigenvectors can be refined every time a system is solved, and
the approximate subspace is used immediately for deflation when solving the next
system. Deflation can be considered a method that explicitly modifies the spectrum
of the original matrix and reduces the condition number. A limitation of the tech-
nique is the memory requirement to store all (or part of) the iterates for the purpose
of computing the deflation vectors.

In this paper we consider a combination of deflation and block iterations to ac-
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celerate the convergence of PCG. Since multiple right-hand sides are solved simulta-
neously, the extra storage cost of deflation is relatively low when amortized over each
right-hand side. For the maximum likelihood estimation application aforementioned,
an effective preconditioner has been discovered to yield a “clustered” spectrum: the
majority of the spectrum is well conditioned, but the eigenvalues in the two extremes
deviate from the majority rapidly. In such a case, deflation is particularly favor-
able since the two ends of the spectrum can be computed relatively easily, and one
then readily obtains a large reduction in the condition number of the matrix. In the
next section we summarize the key computational components of the application and
show an example of the spectrum of the preconditioned matrix, which motivates the
combined use of deflation and block iterations.

2. Covariance matrices and preconditioners. Consider a stationary real-
valued random field Z(x), equipped with a covariance function φ(x) and a set of n
observation locations xi ∈ Rd, i = 1, . . . , n. This means that the covariance between
two observations Z(xi) and Z(xj) is computed as Cov{Z(xi), Z(xj)} = φ(xi − xj).
A typical problem in statistical analysis of data is the following: given a sample vector
y, where yi = Z(xi) is the observation for each i, recover the covariance function φ
that presumably generates the given observations. To make the problem tractable,
one usually assumes a covariance model, which gives a family of covariance functions
φ(x;θ) parameterized by a vector θ. Thus, the goal is to fit the data y by searching
for an optimal θ.

For the sake of simplicity, we assume that the random field is Gaussian with zero
mean, which means that it is completely characterized by the covariance matrix K(θ)
with entries

Kij = φ(xi − xj ;θ). (2.1)

Hence, one can apply the maximum likelihood approach to estimate the parameter θ
by finding the maximizer of the log-likelihood function [15]

L(θ) = −1

2
yTK−1y − 1

2
log(det(K))− n

2
log 2π.

A maximizer θ̂ is called a maximum likelihood (ML) estimator of θ. The optimization
is equivalent to solving (assuming there is a unique solution) the score equations

−yTK−1(∂`K)K−1y + tr[K−1(∂`K)] = 0, ∀ `, (2.2)

where the left-hand side is nothing but −2 ·∂`L. Because of the difficulty of evaluating
the trace of large (implicit) matrices, Anitescu et al. [1] exploited the Hutchinson
estimator of the trace [10] and proposed solving the sample average approximation
of (2.2) instead:

−yTK−1(∂`K)K−1y +
1

N

N∑
j=1

uT
j [K

−1(∂`K)]uj = 0, ∀ `, (2.3)

where the sample vectors uj ’s have independent Rademacher variables as entries. As

the number N of sample vectors tends to infinity, the solution θ̂N of (2.3) converges

to θ̂ in distribution [1, 19]:

(V N/N)−1/2(θ̂N − θ̂)
D→ standard normal,
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where V N is some positive definite matrix related to the left-hand side of (2.3).
Hence, the entry V N (`, `)/N is used to establish a confidence interval indicating the

confidence of using θ̂N` in approximating the ML estimator θ̂`. Practical approaches
(such as a Newton-type method) for solving (2.3) will need to repeatedly evaluate the
left-hand side, which in turn requires solving the covariance matrix K with multiple
right-hand sides (y and uj ’s).

A popularly used covariance model is the Matérn family [24]

φM (x; θ) =
1

2ν−1Γ(ν)

(√
2ν ‖x‖
θ

)ν

Kν

(√
2ν ‖x‖
θ

)
,

where Γ is the Gamma function and Kν is the modified Bessel function of the second
kind of order ν. The Matérn function has a Fourier transform

φM (x) =

∫
Rd

f(ω) exp(iωTx) dω, where f(ω) ∝
(
2ν

θ2
+ ‖ω‖2

)−(ν+d/2)

.

The function f(ω) is called the spectral density, and it is dimension d dependent.
The spectral density is a positive function, which ensures that the covariance matrix
K is positive definite. The parameter θ is called the scale parameter. To make the
covariance function anisotropic, we can use a set of scale parameters, each for one
dimension:

φ(x;θ) = φM (x; θ) with
‖x‖
θ

=

√
x2
1

θ21
+ · · ·+

x2
d

θ2d
. (2.4)

The covariance matrix K(θ) resulting from the Matérn model is ill-conditioned.
Stein et al. [25] showed that the condition number of K must grow faster than linearly
in n assuming the observation domain has a finite parameter.

A preconditioning technique for K was proposed in [25]. For the case d = 1 and
the case d > 1 but where the points xi form a regular grid, the preconditioner essen-
tially is a (possibly high-order) finite-difference filter. Ignoring boundary points, the
preconditioned matrix was shown to have a bounded condition number independent
of n. The order of the filter should match the exponent of ‖ω‖ in the spectral density
f . The technique for deriving such a preconditioner exploits the equivalence of Gaus-
sian measures between the spectral density of the Matérn functions and that of the
Brownian motions. However, the technique cannot be easily generalized to the case
of d > 1 and irregularly distributed points. For this general case, a preconditioner
based on the stiffness matrix (under the context of finite elements) is found to yield
a clustered spectrum. The construction of the preconditioner is as follows. First we
add a set of points surrounding {xi} to form an artificial boundary, and perform a
meshing on all the points. Based on the finite-element mesh, a stiffness matrix L is
constructed, with

Lij =

∫
∇vi · ∇vj , (2.5)

where vi(x) is the piecewise linear basis function with vi(xj) = δij and δij is the
Kronecker delta. We immediately see that L is positive definite generically. We need
to raise L to some power

τ = round(ν + d/2) (2.6)
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to flatten the spectrum of K. In other words, Lτ is used to precondition K. Figure 2.1
shows an example for d = 2 and ν = 2. The details of generating this example are
explained in §5. One sees that almost all the eigenvalues of LτK are located within
a narrow band between 10−2 and 10−1 (where the two red circles are located). The
rapid deviation of the largest eigenvalues from the band makes the computation of
the eigen-subspace associated with these eigenvalues inexpensive, and it is expected
that block iterations can effectively handle the other end of the spectrum.
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(a) K with ν = 2, d = 2
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(b) LτK with τ = 3

Fig. 2.1. Sorted eigenvalues. The details of generating K are given in §5.

3. The algorithm. To make notation clear, we will use boldface lower-case
letters such as b to denote a vector and the usual upper-case letters such as B to
denote a block vector. With a block size s, we write B = [b(1), . . . , b(s)] ∈ Rn×s, using
superscripts with parentheses to denote each vector in the block. We are interested
in solving the symmetric positive definite system

AX = B

using a symmetric positive definite preconditioner M ; that is, we solve the equivalent
system MAX = MB. We first review the standard form of the block PCG algorithm
discussed by O’Leary [13] and a version of the deflated PCG algorithm proposed
in [18].

3.1. Block PCG. With an initial guess X0 and initial iterates R0 = B −AX0,
Z0 = MR0 and P0 = Z0γ0, the block PCG algorithm runs the following iteration
until convergence:

Xj+1 = Xj + Pjαj

Rj+1 = Rj −APjαj

Zj+1 = MRj+1

Pj+1 = (Zj+1 + Pjβj)γj+1,

where

αj = (PT
j APj)

−1γT
j (Z

T
j Rj)

βj = γ−1
j (ZT

j Rj)
−1(ZT

j+1Rj+1).
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The vectors x
(i)
j (columns of Xj) are approximate solution vectors, and r

(i)
j = b(i) −

Ax
(i)
j are the corresponding residual vectors. The s × s matrices αj and βj are

so defined to ensure that the block search directions Pj are A-conjugate; that is,
PT
i APj = 0 for all i 6= j. The s × s matrices γj are arbitrary as long as they are

nonsingular; they come from the freedom of expressing the search subspace range(Pj)
by using an arbitrary basis. Practical uses of the γj ’s can, for example, orthogonalize
the columns of Pj to improve numerical stability.

Let the block-span of a set of matrices {Yj ∈ Rn×s} be defined as

block-span{Y1, . . . , Yt} :=


t∑

j=1

Yjξj

∣∣∣∣∣∣ ξj ∈ Rs×s

 .

Then each apprximate solution Xj ∈ X0 +KM
j , where KM

j is the Krylov subspace

KM
j (A,R0) := block-span{MR0, . . . , (MA)j−1MR0}.

In fact, Xj is the minimizer of the error tr[(X−X∗)
TA(X−X∗)] over allX ∈ X0+KM

j ,

where X∗ = A−1B is the exact solution. This minimization property leads to an error
bound

‖x(i)
j − x

(i)
∗ ‖A ≤

(√
κ− 1√
κ+ 1

)j

D(i) (3.1)

for all approximate solution vectors indexed by i, where κ = λn(MA)/λs(MA) and
D(i) is some constant independent of j.

The block PCG algorithm is equivalent to the block Lanczos iteration (three-term
recursion):

R̂j+1τ̂j+1 = [M1/2AM1/2]R̂j − R̂j σ̂j − R̂j−1τ̂
T
j ,

where

R̂j = [M1/2Rj ](R
T
j MRj)

−1/2

τ̂j = −(RT
j MRj)

1/2α−1
j−1(P

T
j−1APj−1)

−1α−T
j−1(R

T
j−1MRj−1)

1/2

σ̂j = (RT
j MRj)

1/2[α−1
j−1(P

T
j−1APj−1)

−1α−T
j−1 + α−1

j (PT
j APj)

−1α−T
j ](RT

j MRj)
1/2.

From this viewpoint, it is not surprising to see that the Krylov subspaceKM
j is spanned

by the initial block vector R0. The M -orthogonality of the block residual vectors Rj

is obvious.

3.2. Deflated PCG. The deflated PCG algorithm discussed in [18] for solving
a single right-hand side system

Ax = b

uses a subspace range(W ) for deflation. Let an initial vector x0 be such that the
residual vector r0 = b− Ax0 ⊥ W . (To ensure this, one can, for an arbitrary vector
x−1, let x0 = x−1 + W (WTAW )−1WTr−1, where r−1 = b − Ax−1.) Compute
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z0 = Mr0 and p0 = z0 − W (WTAW )−1WTAz0, and iterate the following until
convergence:

xj+1 = xj + αjpj

rj+1 = rj − αjApj

zj+1 = Mrj+1

pj+1 = zj+1 + βjpj −W (WTAW )−1WTAzj+1,

where the scalar coefficients

αj = 〈rj , zj〉 / 〈Apj ,pj〉
βj = 〈rj+1, zj+1〉 / 〈rj , zj〉 .

Compared with the standard PCG algorithm, the above iteration uses a different
search direction pj for updating the approximate solution. In addition to the A-
orthogonality of the pj ’s and the M -orthogonality of the residual vectors rj ’s inherent
from the standard PCG algorithm, each residual vector is also orthogonal to W . The
deflated PCG algorithm is equivalent to the three-term Lanczos iteration

τ̂j+1r̂j+1 = [M1/2CM1/2]r̂j − σ̂j r̂j − τ̂j r̂j−1

with r̂j = [M1/2rj ]/(r
T
j Mrj)

1/2, τ̂j = −β1/2
j−1/αj−1, and σ̂j = βj−1/αj−1 + 1/αj .

Here, the matrix

C := A−AW (WTAW )−1WTA (3.2)

caused by deflation is positive semi-definite and is singular (since CW = 0). It is
not hard to show that the spread of the spectrum of C is always no wider than that
of A if the zero eigenvalues are not counted. As a special case, when the columns
of W are eigenvectors of A, then almost all the eigenvalues of C are the same as
those of A, except for those associated with the eigenvectors that are the columns
of W ; these eigenvalues are deflated to zero. Hence, the deflated PCG algorithm
can be considered explicitly modifying the spectrum of A in order to accelerate the
convergence. A standard convergence result is

‖xj − x∗‖A ≤ 2

(√
κC − 1
√
κC + 1

)j

‖x0 − x∗‖A,

where κC is the condition number of C.1 Here we generalize the concept of condition
number for a singular matrix by defining it to be the ratio between the largest and
the smallest nonzero singular value.

3.3. Deflated block PCG. A natural generalization of the block PCG algo-
rithm by incorporating deflation is to modify the block search direction Pj and to
ensure that the initial block residual vector R0 is orthogonal to W . The modification
is straightforward, and we directly give the algorithm in Algorithm 1 in details.

The theory of this algorithm is parallel to that of the single-vector deflated PCG
algorithm. It is easy to show by induction that for each j,

1This bound is given in [8, 18] for the case of no preconditioning. It is straightforward to show
a similar bound for the preconditioned case.
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Algorithm 1 Deflated Block Preconditioned Conjugate Gradient

Input: Matrix A, preconditioner M , right-hand sides B, deflation matrix W , initial
solution X−1

1: R−1 = B −AX−1

2: X0 = X−1 +W (WTAW )−1WTR−1

3: R0 = B −AX0

4: Z0 = MR0

5: P0 = (Z0 −W (WTAW )−1WTAZ0)γ0
6: for j = 0, 1, . . . until convergence do
7: αj = (PT

j APj)
−1γT

j (Z
T
j Rj)

8: Xj+1 = Xj + Pjαj

9: Rj+1 = Rj −APjαj

10: Zj+1 = MRj+1

11: βj = γ−1
j (ZT

j Rj)
−1(ZT

j+1Rj+1)

12: Pj+1 = (Zj+1 + Pjβj −W (WTAW )−1WTAZj+1)γj+1

13: end for

1. Rj and APj are both orthogonal to W , that is, WTRj = 0 and WTAPj = 0,
and

2. the Rj ’s are M -orthogonal and the Pj ’s are A-orthogonal, that is, R
T
i MRj =

0 and PT
i APj = 0 for all i 6= j.

Let the Krylov subspace

KM
j (C,R0) := block-span{MR0, . . . , (MC)j−1MR0},

where recall that C is defined in (3.2). By induction, one obtains that MRj ∈ KM
j+1

and APj ∈ CKM
j+1. Thus, the Krylov subspace KM

j is equal to

block-span{MR0, . . . ,MRj−1},

and by the M -orthogonality of the Rj ’s, we have Rj ⊥ KM
j . For any Y ∈ KM

j ,

RT
j Y = 0 implies that RT

j A
−1CY = 0 by the fact that Rj is orthogonal to W . Then

we have Rj ⊥ A−1CKM
j . Using this property, one obtains that Xj minimizes the

solution error over the subspace X0 +A−1CKM
j in each step j.

Theorem 3.1. The j-th approximate solution Xj minimizes the error

ej(X) := tr[(X −X∗)
TA(X −X∗)] (3.3)

over the subspace X0 +A−1CKM
j (C,R0).

Proof. Write X = X0+A−1CMRξ for any ξ ∈ Rjs×s, where R = [R0, . . . , Rj−1].
Then

ej = tr(ξTRTMCMRξ −RT
0 A

−1CMRξ − ξTRTMCA−1R0 +RT
0 A

−1R0)

by noting that CA−1C = C. A sufficient condition for ej to be minimized is that
there exists ξ such that

RTMCMRξ = RTMCA−1R0. (3.4)

On the other hand, it is obvious that Xj ∈ X0 + A−1CKM
j . Therefore we write

Xj = X0 +A−1CMRζ for some ζ. Then from the orthogonality

A−1CKM
j ⊥ Rj = R0 − CMRζ,
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we have RTMCMRζ = RTMCA−1R0. Therefore, ξ = ζ satisfies (3.4), and thus Xj

minimizes ej .
Note that the iteration given in Algorithm 1 is equivalent to the block Lanczos

iteration (three-term recursion):

R̂j+1τ̂j+1 = [M1/2CM1/2]R̂j − R̂j σ̂j − R̂j−1τ̂
T
j ,

where

R̂j = [M1/2Rj ](R
T
j MRj)

−1/2

τ̂j = −(RT
j MRj)

1/2α−1
j−1(P

T
j−1APj−1)

−1α−T
j−1(R

T
j−1MRj−1)

1/2

σ̂j = (RT
j MRj)

1/2[α−1
j−1(P

T
j−1APj−1)

−1α−T
j−1 + α−1

j (PT
j APj)

−1α−T
j ](RT

j MRj)
1/2.

The only difference from the nondeflation iteration is that C is repeatedly applied to
the block vectors instead of A when generating the Krylov subspace. Hence it will
not be surprising that the convergence of the iteration depends on the spectrum of C
rather than that of A.

3.4. Convergence. The minimization property presented in Theorem 3.1 is
used to exploit the convergence of Xj to X∗. Considering preconditioning, we will
often refer to the following notation:

Ã = M1/2AM1/2, C̃ = M1/2CM1/2, R̃j = M1/2Rj .

In particular, inherent from the property of C, the matrix C̃ is singular. If we assume
that the deflation matrix W has t < n columns and has full rank, then the bottom
t eigenvalues of C̃ are zero. Denote by λj(·) the jth eigenvalue of a matrix, sorted

nondecreasingly. It is not hard to show that λn(C̃) ≤ λn(Ã) by using the definition
of C and that λt+1(C̃) ≥ λ1(Ã) based on the Courant-Fischer minimax theorem. In
other words, the spread of the spectrum of C̃ (ignoring zero-eigenvalues) is always no
wider than that of Ã.

We start by noting that for any X ∈ X0 + A−1CKM
j , we can write x(i) for each

i as

x(i) = x
(i)
0 +A−1C

s∑
k=1

j−1∑
l=0

σ
(i,k)
l (MC)lMr

(k)
0

by using some set of scalar coefficients {σ(i,k)
l }. Then

x(i) − x
(i)
∗ = A−1

(
s∑

k=1

j−1∑
l=0

σ
(i,k)
l (CM)l+1r

(k)
0 − r

(i)
0

)

= M1/2Ã−1

(
s∑

k=1

j−1∑
l=0

σ
(i,k)
l C̃l+1r̃

(k)
0 − r̃

(i)
0

)
.

Therefore, we can write

x(i) − x
(i)
∗ = −M1/2Ã−1

(
s∑

k=1

p
(i,k)
j (C̃)r̃

(k)
0

)
,
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where for each i and k, p
(i,k)
j is some polynomial of degree not exceeding j satisfying

the constraint

p
(i,k)
j (0) = δik. (3.5)

Indeed, since the error ej(X) =
∑s

i=1 ‖x(i) − x
(i)
∗ ‖A (see (3.3)) is minimized by Xj ,

the p
(i,k)
j ’s corresponding to x(i) = x

(i)
j are optimal polynomials that minimize the

error

‖x(i) − x
(i)
∗ ‖A =

∥∥∥∥ s∑
k=1

p
(i,k)
j (C̃)r̃

(k)
0

∥∥∥∥
Ã−1

(3.6)

for each i. With the freedom of choosing s polynomials and the fact that C̃ has t
zero-eigenvalues, we obtain the following result, which implies a decreasing rate of

‖x(i)
j − x

(i)
∗ ‖A independent of the bottom t+ s− 1 eigenvalues of C̃.

Theorem 3.2. Denote by λj, j = 1, . . . , n the eigenvalues of C̃ = M1/2CM1/2,
sorted nondecreasingly. Then for each i,

‖x(i)
j − x

(i)
∗ ‖A ≤ c · min

p∈Pj p(0)=1
max

t+s≤j≤n
|p(λj)| · ‖x(i)

0 − x
(i)
∗ ‖A,

where Pj is the space of polynomials of degree not exceeding j and c =
√
1 + a2 is

some constant depending on i but independent of j. Here, a is the largest singular of

Λ
−1/2
2 F2F

−1
1 Λ

1/2
1 , where Λ1 = diag(λt+1, . . . , λt+s−1), Λ2 = diag(λt+s, . . . , λn), and

F1 and F2 are given by (3.8) in the course of proving the theorem.
Proof. Define the error vector

d(i) := x(i) − x
(i)
∗ and d̃(i) = M−1/2d(i).

In parallel, we use the notation d
(i)
j and d̃

(i)
j when x(i) = x

(i)
j , for all j. Continuing

the above discussion, if we let UT C̃U = Λ = diag(λ1, . . . , λn) be a diagonalization of
C̃ where U is unitary, then for any i

s∑
k=1

p
(i,k)
j (C̃)r̃

(k)
0 =

s∑
k=1

p
(i,k)
j (C̃)C̃d̃

(k)
0 =

s∑
k=1

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 . (3.7)

To simplify notation, we let p
(i,i)
j ≡ p, a polynomial equal to 1 at the origin. In

order to satisfy (3.5), we choose the rest of p
(i,k)
j ’s for k 6= i to be p

(i,k)
j = τk(1 − p),

where the scalars τk’s are determined as follows. Let

(−p(Λ))−1(I − p(Λ))ΛUT
[
· · · d̃(k)

0 · · ·︸ ︷︷ ︸
k 6=i

]
=

 0
F1

F2

 and ΛUT d̃
(i)
0 =

 0
f1

f2

 ,

(3.8)
where the matrix with the underbrace labeled “k 6= i” contains as columns all the

vectors d̃
(k)
0 except for k = i. The matrices F1, F2 and vectors f1, f1 have sizes

(s− 1)× (s− 1), (n− t− s+1)× (s− 1), (s− 1)× 1, (n− t− s+1)× 1, respectively.
The zeros above F1 and f1 are caused by the fact that λ1, . . . , λt = 0. Then we solve
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F1τ = f1 for the τk’s. Since k = i is absent, one has to be cautious that the labeling

of the τk’s is in accordance with the stacking of the columns d̃
(k)
0 . Then for each k 6= i,

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 = U(I − p(Λ))ΛUT d̃

(k)
0 τk

= U(−p(Λ))(−p(Λ))−1(I − p(Λ))ΛUT d̃
(k)
0 τk,

and thus

∑
k 6=i

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 = U

−I 0 0
0 −p(Λ1) 0
0 0 −p(Λ2)

 0
f1

F2F
−1
1 f1


= U

−I 0 0
0 −p(Λ1) 0
0 −p(Λ2)F2F

−1
1 0

 0
f1

f2

 .

Therefore,

s∑
k=1

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 = U

0 0 0
0 0 0
0 −p(Λ2)F2F

−1
1 p(Λ2)

ΛUT d̃
(i)
0 . (3.9)

On the other hand, note that C̃ = C̃Ã−1C̃. Since UT C̃U = diag(0,Λ1,Λ2),
UT Ã−1U must have the following structure:

UT Ã−1U =

∗ ∗ ∗
∗ Λ−1

1 0
∗ 0 Λ−1

2

 ,

where ∗ means some matrices that are out of our interest. Then combining (3.6),
(3.7) and (3.9) and using the above matrix structure, through direct calculations we
have

‖d(i)‖2A = d̃
(i)
0

T
UΛ1/2DΛ1/2UT d̃

(i)
0 ≤ ‖D‖ · ‖Λ1/2UT d̃

(i)
0 ‖2 = ‖D‖ · ‖d(i)

0 ‖2A, (3.10)

where the matrix

D =

0 0 0
0 ETE ETP
0 PE P 2

 with E = Λ
−1/2
2 PF2F

−1
1 Λ

1/2
1 , P = p(Λ2).

We now proceed to derive a bound for ‖D‖.
Let the eigenvector corresponding to the largest eigenvalue ofD be z = [z0; z1;z2]

(where the semicolon is the Matlab notation); clearly z0 = 0. We have

‖D‖ = ‖Ez1 + Pz2‖2

‖z1‖2 + ‖z2‖2
≤ ‖P‖2

(
√
‖ETP−TP−1E‖‖z1‖+ ‖z2‖)2

‖z1‖2 + ‖z2‖2

≤ ‖P‖2 (a‖z1‖+ ‖z2‖)
2

‖z1‖2 + ‖z2‖2
,

where a > 0 has been defined in the theorem. Further, note that the function

f(z) =
(a+ z)2

1 + z2
(z ≥ 0)
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achieves the maximum 1 + a2 when z = 1/a. This maximum is larger than 1, which
can be achieved by letting z1 = 0. Therefore, we conclude that

(a‖z1‖+ ‖z2‖)2

‖z1‖2 + ‖z2‖2
≤ 1 + a2

and thus ‖D‖ ≤ ‖P‖2 (1 + a2). By choosing the optimal polynomial p to bound ‖P‖
and following (3.10), the proof of the theorem is complete.

Using Chebyshev polynomials, we can estimate the minimax of |p(λj)|, which
gives a bound that is an analog to probably the most well-known convergence result of
the standard PCG algorithm. See Corollary 3.3. In the nondeflation case, this bound
is slightly different from that presented in [13] (see also (3.1)); however, the implied
rates of convergence therein are the same. The rate, which is based on λn/λt+s, may
be too pessimistic when λn � λt+s. Thus, we also give a second bound, which is
a useful estimate when the eigenvalues, except for a few largest ones, are clustered.
See Corollary 3.4. This bound can be used to explain the superlinear convergence
sometimes observed in practice.

Corollary 3.3. Using the notation in Theorem 3.2, we have

‖x(i)
j − x

(i)
∗ ‖A ≤ 2c

(√
κ− 1√
κ+ 1

)j

‖x(i)
0 − x

(i)
∗ ‖A,

where κ = λn/λt+s.
Proof. It is well known [17] that the minimum

min
p∈Pj , p(0)=1

max
λ∈[λt+s,λn]

|p(λ)|

is reached by

p(λ) =
Tj

(
1 + 2 λ−λn

λn−λt+s

)
Tj

(
1 + 2 −λn

λn−λt+s

)
where Tj is the Chebyshev polynomial of the first kind of degree j. By applying

|Tj(t)| ≤ 1 for |t| ≤ 1, |Tj(t)| ≥
1

2

(
t+
√
t2 − 1

)j
for |t| ≥ 1,

the absolute value of the above minimal polynomial is bounded by

2

(1 + 2
−λn

λn − λt+s

)
+

√(
1 + 2

−λn

λn − λt+s

)2

− 1

−j

= 2

(√
λn −

√
λt+s√

λn +
√
λt+s

)j

.

Corollary 3.4. Using the notation in Theorem 3.2, we have

‖x(i)
j − x

(i)
∗ ‖A ≤ c

(
κj − 1

κj + 1

)
‖x(i)

0 − x
(i)
∗ ‖A,

where κj = λn−j+1/λt+s.
Proof. Consider the degree-j polynomial

p(λ) =
2

(λt+s + λn−j+1)λn−j+2 · · ·λn

(
λt+s + λn−j+1

2
− λ

)
(λn−j+2−λ) · · · (λn−λ).
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Since λt+s, . . . , λn−j+1 ≤ λn−j+2, . . . , λn, it is obvious that

max
t+s≤i≤n

|p(λi)| ≤
λn−j+1 − λt+s

λn−j+1 + λt+s
.

3.5. Deflation matrix W . In the ideal case, the extreme eigenvalues of Ã =
M1/2AM1/2 (or equivalently those of MA) are deflated to reduce the condition num-
ber. This step amounts to using the corresponding eigenvectors of MA as the columns
of W . If the smallest t1 eigenvalues and the largest t2 eigenvalues of Ã are deflated
(where t1 + t2 = t), then the condition number as in Corollary 3.3

κ =
λn(C̃)

λt+s(C̃)
=

λn−t2(Ã)

λs+t1(Ã)
.

In reality, although the PCG iterations yield all the information sufficient to com-
pute eigenvectors (since they are equivalent to the Lanczos iterations), it is expensive
to actually compute them. Take the simple case of single-vector iteration, for exam-
ple. The high additional cost comes from storing all the basis vectors (essentially the
residual vectors) to compute eigen-subspaces. Computing accurate eigenvectors, if
actually done, is more often seen in the nonsymmetric case, for example, when the
GMRES algorithm is used for solving a nonsymmetric linear system [5]. In such a
case, the basis vectors must be stored anyway in order to continue the Arnoldi pro-
cess. Hence a practical version of the deflated GMRES algorithm is implemented by
using a reasonable restart length where a fixed number of basis vectors are collected
for computing eigenvectors in each restart cycle. On the other hand, in the deflated
PCG algorithm considered in [18, 8], the algorithm is suitable for the case of multiple
right-hand sides, where each system with one right-hand side is solved sequentially.
An approximate eigen-subspace is obtained after each solve, and it results from a
refinement of the previous one in solving the preceding system.

In the block algorithms, the storage of the iterates is already s times of that in the
single-vector version, since the iterates are block vectors of block size s. In most of the
cases it is unrealistic to store all the iterates required for computing an eigen-subspace.
On the other hand, the special structure of the spectrum of the matrix (extreme
eigenvalues deviate from the clustered part rapidly) makes it possible that a reasonable
number of single-vector iterations is sufficient to obtain the extreme eigenvectors.
Therefore, the strategy is to run a separate single-vector Lanczos algorithm to compute
the required deflation subspace W . The storage and time cost of this procedure is
not high when amortized on each right-hand side.

For the sake of completeness, we summarize in Algorithm 2 the standard Lanczos
algorithm for computing an eigen-subspace corresponding to the extreme eigenvalues
of the matrix MA. The efficiency of the algorithm is based on the low cost of multi-
plying a vector to A and to M , which is the same assumption as for Algorithm 1. In
m steps, the iterations yield the relation

AVm = UmTm + τm+1um+1e
T
m, Vm = MUm,

where Um = [u1, . . . ,um] is M -orthogonal, Vm = [v1, . . . ,vm] is M−1-orthogonal,
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and

Tm =


σ1 τ2

τ2 σ2
. . .

. . .
. . . τm
τm σm

 .

Denote by ST
mTmSm = diag(θ

(m)
1 , . . . , θ

(m)
m ) the spectral decomposition of Tm, where

Sm is unitary. Then the θ
(m)
j ’s converge to the (extreme) eigenvalues of MA, and

the columns of VmSm converge to the corresponding eigenvectors. We can let the
deflation matrix W be either Vm or the converged part of Vm.

Algorithm 2 Lanczos for MA

Input: S.P.D. Matrices A and M , initial vector u1 with unit M -norm, m steps
Output: Vm, Tm

1: τ1 = 0
2: v1 = Mu1

3: for j = 1, 2, . . . ,m do
4: σj = 〈Avj ,vj〉 // to improve stability, do σj = 〈Avj − τjuj−1,vj〉 instead
5: qj+1 = Avj − τjuj−1 − σjuj

6: Reorthogonalize qj+1 against {u1, . . . ,uj−1} using M -norm, if necessary

7: τj+1 = 〈Mqj+1, qj+1〉1/2
8: uj+1 = qj+1/τj+1

9: vj+1 = Mqj+1/τj+1

10: end for

4. Practical issues. In this section we discuss several practical issues to make
Algorithm 1 robust and cost effective. We begin with the reorthogonalization issue.

4.1. Reorthogonalization. In the standard PCG algorithm, it is well known
that in finite arithmetic the orthogonality of the residual vectors is quickly lost. How-
ever, the loss of orthogonality does not appear to be a serious problem in practice.
We also make no attempt to recover the orthogonality of the block residual vectors
in the proposed algorithm, partly because reorthogonalization is costly. However, the
loss of orthogonality between the block residual vectors Rj and the deflation subspace

W hampers convergence seriously. As we often observe, the residual norms ‖r(i)j ‖
and the error norms ‖x(i)

j − x
(i)
∗ ‖A bounce back before they drop under a desired

tolerance. Hence, it is imperative to reorthogonalize Rj against W . This process is
done by inserting the following

Rj+1 = Rj+1 −W (WTW )−1WTRj+1 (4.1)

immediately after line 9 of Algorithm 1 (and also a similar line with j = −1 immedi-
ately after line 3).

4.2. Rank deficiency of Pj. A well-known breakdown of block iterations is
the linear dependence of the columns within a block search direction Pj , which can
be triggered by many reasons in practice, including for example, the convergence of
some system(s) and the bad scaling of different right-hand sides. An obviously easy
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way to reduce the risk of breakdown is to normalize the right-hand sides so that the

initial residuals r
(1)
0 , . . . , r

(s)
0 do not vary too much in their norms. Especially when

the right-hand sides are statistically independent (e.g., independent random vectors),
and a zero initial guess is used, this is a good heuristic to ensure that the norms of

the residual vectors r
(i)
j among all i’s do not vary too much and that convergence is

more or less simultaneously attained.
Another way to improve numerical stability is to use γj+1 to orthogonalize the

columns of Pj+1 as in line 12 of Algorithm 1. Specifically, we compute a QR factor-
ization of Zj+1 + Pjβj −W (WTAW )−1WTAZj+1 and let Pj+1 be the Q factor and
γ−1
j+1 be the R factor.

If breakdown does happen, one can separate the right-hand sides in groups and
perform a restart with a smaller block size. The separation of the right-hand sides is
determined according to the linear dependence of the vectors in Pj+1. A natural idea
is, in the computation of line 12 (outlined above), to extract the first few columns of
the Q factor whose corresponding diagonal elements in the R factor do not vary too
much, and repeat the QR factorization on the rest of the columns until no columns
are left. We point out that in our application (see §5), breakdown never occurs.

4.3. Computational costs. We now analyze the computational costs of the
solver, including those of computing the deflation subspace. We first comment on
the computation of the term W (WTAW )−1WTAZj+1 in line 12 of Algorithm 1. We
precompute AW and WT (AW ) and factorize WT (AW ) before the iteration begins.
Then, in each iteration, Zj+1 is first multiplied by (AW )T , then solved withWT (AW ),
and finally multiplied by W . Hence, the time cost of computing this term in one itera-
tion is O(nts+ t2s), where recall that t is the dimension of the deflation subspace and
s is the block size. This computation avoids the multiplication of A with Zj+1, and
hence in each iteration only one A-multiply (with Pjαj) is needed. The reorthogonal-
ization (see (4.1)) is done in a similar way. Further, in each iteration, a block vector
update such as Pjαj and a block vector inner product as such as ZT

j Rj both take

O(ns2) time, obtaining the s×s coefficient matrices αj and βj takes additional O(s3)
time, and performing a QR factorization to obtain γj+1 takes O(ns2) time. Let TA and
TM be the time cost of performing one matrix-vector multiplication with A and M ,
respectively. Then if the PCG iteration is run in k steps, ignoring the initial cost that
is irrelevant to k, the total cost of Algorithm 1 is O(ks(n(s+t)+(TA+TM )+t2+s2)),
including reorthogonalization.

The storage cost of Algorithm 1 is O(n(s + t) + s2 + t2), for storing the iterates
αj , βj , Xj , Rj , Zj , Pj and the matrices WTW , AW , WTAW . Here, hidden in the
big-O notation is a very small coefficient, say 4, depending on how the algorithm is
actually implemented.

We also need to consider the costs of obtaining W and AW . In Algorithm 2, we
choose to let W = Vm, and hence AW = AVm = [Av1, . . . , Avm] is simultaneously
available. The time cost of Algorithm 2 is O(m(n+ TA + TM )), and the storage cost
is O(mn), where m = t is equal to the dimension of the deflation subspace. Note
that in each iteration only one A-multiply (Avj) and one M -multiply (Mqj+1) are
actually needed. In practice, s and t are comparable, which means that the costs of
computing the deflation subspace are not asymptotically higher than the solver alone.

We remark that in our application, the matrix A is the covariance matrix, which
is full, whereas the preconditioner M is some integer power of the stiffness matrix,
which is sparse. Since the covariance matrix is defined based on a covariance kernel,
A is not explicitly stored and used. Rather, the tree code or the fast multipole
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method [9, 2, 7, 1] makes it possible to perform A-multiply in O(n logn) or O(n) time
using only O(n) memory.

5. Numerical results. We present in this section several numerical experiments
on the deflated block preconditioned CG solver with the matrix A = K, the covariance
matrix (2.1), and the preconditioner M = Lτ , where L is the stiffness matrix (2.5)
and τ is defined in (2.6). We illustrated the examples using a 2-dimensional irregular
grid (see Fig. 5.1 and references [6, 1]), which is deformed from a regular grid in the
physical region [−0.5, 0.5]× [−0.5, 0.5] by scaling the y-coordinates of the grid points
by a quadratic function, which is 1 in the middle of the range of x and 0.5 at the
extremes. A benefit of working with this example is that the extra layer of boundary
of the grid (needed when forming the stiffness matrix) is not arbitrary. The grid was
triangulated by the Matlab function delaunay; the triangulation result is shown in
Fig. 5.1.

Fig. 5.1. Points {xi} and the mesh.

The spectrum of the covariance matrix K with grid size 32× 32 and parameters
ν = 2, θ = 0.25 has been shown in Fig. 2.1 (see §2), together with that of the
preconditioned matrix LτK. The y-scales of the two plots in the figure are the same.
One sees that the condition number of the matrix is reduced by preconditioning and,
more importantly, the majority of the spectrum of the preconditioned matrix (the
part between the two red circles) lies within a narrow range. In fact, there are 50
and 100 eigenvalues to the left of the left circle and to the right of the right circle,
respectively. From the perspective of the solver, these eigenvalues are nonessential in
the rate of convergence if we take a block size s = 50 and deflation dimension t = 100.

We note that the stiffness matrix preconditioner is effective not only for the
particular grid in Fig. 5.1. In Fig. 5.2, we show the spectrum of the covariance matrix
and that of the preconditioned matrix, where the n = 1024 observation locations
{xi} are uniformly randomly distributed in a unit square. We added 128 points
surrounding with a distance 1/32 to the square as an extra layer of boundary in order
to form the stiffness matrix preconditioner. One sees that the preconditioner modifies
the spectrum of the matrix as effectively as in the deformed grid case.

All the experiments in this section were performed on a desktop machine with
the Matlab environment. In reality, in order to work with large covariance matrices,
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Fig. 5.2. Sorted eigenvalues. The points {xi} for generating K are uniformly randomly dis-
tributed in a unit square.

the matrix-vector multiplication is better implemented by using the tree code or
fast multipole expansion, since explicitly storing the full matrix is not possible when
the matrix size grows beyond a certain limit. However, implementing the tree code
requires substantial effort since the Taylor coefficients may not be easy to compute
except when ν is some nonnegative integer plus 0.5 (see [15, p. 85] for an equivalent
formula in this case without resorting to the Bessel functions, which enables fast
evaluations of the derivatives). Therefore, in the next two subsections, we explicitly
store the covariance matrix and perform the matrix-vector multiplication in the usual
manner; in §5.3, we use the tree code developed in [1].

5.1. Performance of the solver. We show the performance of the solver based
on the setting in the above discussion: grid as in Fig. 5.1, Matérn parameters ν = 2,
θ = 0.25, block size s = 50, and deflation dimension t = 100. To be clear, by “residual
norm” we mean the norm of the residual vector rj , and by “error A-norm” we mean
the A-norm of the error vector xj − x∗.

We first compare the convergence of the four CG variants (all with precondition-
ing): PCG, block PCG, deflated PCG, and deflated block PCG. Fig. 5.3 shows the
residual norms and error A-norms in the case of a 32× 32 grid. For block iterations,
only the result of the first system is shown; those of the other systems look simi-
lar. One sees the monotone decrease of the error A-norm in all the four variants, as
predicted by theory, with the deflated block PCG solver converging the fastest. In
practice, since the exact solution is unknown, most likely we resort to the residual
norm as an indication of convergence. The figure shows that this practice is viable.

We note that even when the matrix does not have a clustered spectrum, the
deflated block PCG solver is still the best among the four competitors. See the
convergence history shown in Fig. 5.4, when no preconditioner is applied. Without
preconditioning, the standard CG iterations barely converge, whereas block iterations
and deflation do encourage convergence. Of course, the combination of the two further
accelerates the convergence, which shows that the proposed solver is useful.

We next tested the scaling of the solver by varying the grid size. We fixed the
tolerance of the residual norm to be 10−6. Table 5.1 shows the number of iterations
needed to attain this desired accuracy for grid sizes varying from 20×20 to 128×128.
One sees that as the grid size becomes larger and larger, more iterations are needed,
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Fig. 5.3. Convergence history of the first system.
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Fig. 5.4. Convergence history of the first system (no preconditioning).

and the advantage of the proposed solver becomes more obvious. For the 128 × 128
grid (log2 n = 14), the number of iterations of block PCG is almost twice that of the
proposed solver, whereas that of deflated PCG is even larger. Clearly, in order to
work with a larger grid, say 1024×1024, the proposed solver will be the choice among
the three.

Table 5.1
Number of iterations.

Matrix size log2 n 9 10 11 12 13 14
block PCG 12 23 34 47 79 118

deflated PCG 24 30 35 44 82 168
deflated block PCG 9 18 25 33 41 61

5.2. The MLE problem: simulation input. With successful demonstration
of the linear solver, we show how it is used to solve the maximum likelihood estimation
problem presented in §2. We still used the parameter ν = 2, but the covariance
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function φ is anisotropic as in (2.4). The observation vector y was sampled2 from
the centered multivariate normal distribution with covariance matrix K(θ∗), where

θ∗ = [0.25; 0.2], so that the estimate θ̂N was computed and compared with the ground
truth θ∗. We let N = 100. The stochastic nonlinear equations (2.3) were solved
by using the Matlab command fsolve, which is based on the trust region dogleg
algorithm. In the inner linear solver we set the deflation dimension t = 200 and the
tolerance of the residual norm to 10−6.

To estimate how large a problem can be solved on a single desktop machine, and
to understand the scaling the algorithms, we varied the size of the grid from 32× 32
to 128 × 128. We started with an initial guess θ0 = [0.2; 0.25] for the smallest grid,
solved the problem, obtained the estimates, used the estimates as an initial guess for
the larger grid, and proceeded similarly until we solved the largest grid.

Table 5.2
Solution statistics (simulation input).

Grid size 32× 32 45× 45 64× 64 90× 90 128× 128

θ̂N (std.)
.248(.0056) .247(.0061) .255(.0077) .250(.0076) .251(.0092)
.202(.0035) .200(.0038) .200(.0036) .201(.0046) .200(.0065)

ave # CG iter. 10 20 30 40 53
# func. eval. 18 15 15 15 15

Table 5.2 summarizes the results of this process. We show in the table (1) the
estimated scale parameters together with the standard deviation indicating the con-
fidence of the sample average approximation technique in approximating the score
equations, (2) the average number of iterations in the inner linear solver per function
evaluation, and (3) the number of function evaluations in the outer nonlinear solver.

One sees that for all grids, the estimate θ̂N is close to the ground truth value θ∗, with
a tight confidence interval. The numbers of CG iterations increase as the grid size
increases, but the numbers of function evaluations more or less stay the same.
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Fig. 5.5. Wall-clock times of the MLE solution.

2Here we used the traditional sampling method by letting y = Gx, where G is the Cholesky
factor as in K = GGT and x is a random vector with each entry being an i.i.d. sample of the
standard normal distribution. A sampling technique when K is large was proposed in [6].
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We also show in Fig. 5.5(a) the wall-clock time against the size of the problem, in
a log-log scale. The plot looks linear, and the slope α of the fitted line indicates that
the total running time scales as O(nα). The plot can be used to estimate the running
time when running experiments on a larger grid, if sufficient memory is available that
meets the need of storing the entire matrix.

5.3. The MLE problem: function input. We consider a case when the ob-
servation y is a function g of the location x. We experimented with a g that produces
a fractal. Because of the self-similarity of a fractal, it was expected that as the grid of
observation locations became denser and denser, the scale parameters of the Matérn
covariance function would become smaller and smaller, in accordance with the fine
details exhibited in higher resolutions. The function g(x) is the one typically used
for visualizing the Mandelbrot set. By abuse of notation, let boldface letters such as
x represent a complex number, and let |x| be the modulus of x. Then, starting with
z0 = 0, we performed the iteration zj+1 ← z2

j + 4x and let g(x) be the fractional
(noninteger) part of exp(−|z20|).

We fitted the Matérn covariance function with order ν = 3/2 and used the tree
code developed in [1] to perform matrix-vector multiplications. We started with an
initial guess θ0 = [0.2; 0.2] and used the estimate from the smaller grid as an initial
guess for the larger grid. Other settings were the same as in the preceding subsection.

Table 5.3
Solution statistics (function input).

Grid size 32× 32 45× 45 64× 64 90× 90 128× 128

θ̂N (std.)
.172(.0036) .114(.0019) .109(.0011) .083(.0007) .061(.0004)
.178(.0027) .104(.0014) .101(.0009) .070(.0005) .059(.0003)

aev # CG iter. 10 14 21 35 63
# func. eval. 15 18 15 18 18

Table 5.3 summarizes the results of the fitting (see the preceding subsection for

how to read the table). As expected, the estimates θ̂N decrease as the grid size in-
creases. One also sees that the average number of CG iterations and the total number
of function evaluations are similar to the case in the preceding subsection. These
results indicate the usefulness of the proposed linear solver and show the practicality
of using the MLE technique in analyzing the input data modeled as a sample from a
Gaussian process with the Matérn covariance kernel.

We point out that it is crucial that the matrix-vector multiplication be performed
efficiently. Fig. 5.5(b) shows the scaling of the wall-clock time against the size of
the problem. Comparing the cases between §5.2 and §5.3, since the number of CG
iterations is similar, the two plots in Fig. 5.5 in some sense indicate that the multipli-
cation done in the tree code is less efficient than that done the straightforward way.
Nevertheless, this timing result does not compromise the validity of using approxima-
tion techniques (such as tree code/multipole expansions) for computing matrix-vector
products in large scale simulations, since direct multiplication cannot overcome the
memory barrier, and it is in theory asymptotically more time consuming.

6. Conclusion. We have derived a deflated version of the block preconditioned
conjugate gradient algorithm and discussed practical implementations. We also an-
alyzed its relation to Krylov subspaces and its convergence. The theoretical rate of
convergence is independent of the two ends of the spectrum, if the eigenvalues are
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properly deflated. The algorithm is favorable when the spectrum of the (precondi-
tioned) matrix is clustered, but it has been shown to be useful in other cases also. The
former case is true for some statistical data analysis applications where the matrix
is the covariance matrix and a proper preconditioner is employed. We showed the
effectiveness of the proposed solver in solving a Gaussian process maximum likelihood
estimation problem, where a large number of independent right-hand sides must be
solved. Numerical results show an encouraging convergence history of the solver as
the size of the problem increases. As future work, we plan to develop faster and more
cost-effective matrix-vector multiplications with respect to the covariance matrix in
order to handle very large scale problems.
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