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Abstract—We present an approach to estimate adjoint sensitivi- where ¢(¢) is the regional cost of the power grid at time
ties of economic metrics of relevance in the power grid withespect w(+) is a wind power function at different grid buses(t) is
to physical weather variables using numerical weather preittion the wind speed field, anki(¢) are cost coefficients representing

models. We demonstrate that this capability can significary id . f a function of wind power
enhance planning and operations. We illustrate the method sing power grid economic performance as p

a large-scale computational study where we compute sensities SUPP!Y- _ _ _
of the regional generation cost in the state of Illinois withrespect Using this economic cost function, we can calculate the
to wind speed and temperature fields inside and outside the ate. following sensitivity

. . o . ov(t)
Index Terms—adjoint analysis, sensitivity, numerical weather S( ) = —, (2)
prediction, WRF, power grid, planning, sensor. OW(t)
whereW (t) are the 3-D weather spatial fields at timyavhich
|. INTRODUCTION include temperature, wind directions, solar radiatiom s on.

Weather forecasts are essential in estimating electricfyp can be seen, different weather variables such as teruperat
demand and renewable power generatiah [2]. Weather can influence wind speed; hence, the sensitivity structuret
forecasts can be obtained by using data-based models (£Bgvious. Computing sensitivity information is challengifnom
autoregressive (AR), artificial neural networks (ANN), Gau & computational point of view because of the complexity of
sian process (GP) models), physics-based numerical weatN¥/P models.
prediction (NWP) models, or a combination of both. In pre- The paper is structured as follows. In Sectlbnve describe
vious work [’] we showed that NWP models are superior ithe basic capabilities of the NWP model WRF. In Sectibrwe
producing weather forecasts and uncertainty informatinoes Provide a brief mathematical presentation of ASA. In Setctio
they can capture complex physical spatio-temporal phenamdV We discuss how to construct economic cost functions from
over wide geographical regions that cannot be captured g§mplex optimization problems such as economic dispatch an
using data-based models in isolation. In addition, we psepo Optimal power flow using optimization sensitivity capafigs.
computational strategies to make NWP models practical fit SectionV we illustrate the developments using a large-scale
power grid planning and operations. study. The paper closes with conclusions and directions for

In this work, we demonstrate that NWP models can also prisiture research.
vide valuable information about the effect of physical vireait
variables on power grid economic performance. In particula Il. NUMERICAL WEATHER PREDICTION
we present an adjoint sensitivity analysis (ASA) methodAAS In this section, we describe the procedures used to forecast
is used to determine the sensitivity of a model state or patam ambient conditions using the Weather Research and Forecast
(e.g., future 3D wind speed field) with respect to input ftaténg (WRF) model. The WRF model3] is a state-of-the-art
(e.g., current fields of ambient conditions). In the contekt numerical weather prediction system designed to serve for
wind power generation, we show how ASA can be used hwth operational forecasting and atmospheric researchkE WR
determine simulation domain size and resolution, to idgntiis the result of a multiagency and university effort to bugld
power grid variables and locations that should be monitoréighly parallelizable code that can run across scales nangi
more closely, and to determine suitable locations for sendeom large-eddy to global simulations. WRF has a compre-
and wind farm placement. Furthermore, we discuss how adjoitensive description of the atmospheric physics that iresud
analysis can provide information to guide the developmént cloud parameterization, land-surface models, atmosphezan

low-complexity, data-based AR/GP/ANN models. coupling, and broad radiation models. The terrain resofutan
As an example of the power grid operation, consider the as fine as 30 seconds of a degree (less tHam?).
following economic cost function: To initialize the NWP simulations, we use reanalyzed fields,
U(t) = et) + A(6)Tw(w(?)) L that is, simulated atmospheric states reconciled with rvbse

tions (i.e., using data assimilation), because the entimoa
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that covers the North American continent (160W-20W; 10N~ollowing [7], one can extend5) for all time indices

80N) with a resolution of 10 minutes of a degree, 29 pressureaq,(xm) OW(ztV) dxtv 9t 9yto
levels (1000-100 hPa, excluding the surface), every thoegsh F T W S W P W
from 1979 until present. For more details, please refer5jo [ i i
Oxtr oM Oxto o
x =0z ie{l...M}.
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Oztr—1 Oz ( ), 655‘;0

Alternatively, by transposing, the adjoint process evsliiee
Consider a numerical mode\ that evolves an initial state sensitivity in reverse order:
x¢, to a given final timety (e.g., 24 hours ahead):

U (z)\ " [0z r [ Ox'~ T row(atr)\"
¢ = M (tk_l,:vk_l,p) , 2% =x(to,p), k€ {l...N}, Oxto — \ Ozto Oxtr—1 oxtr '

) Ifthe following equations are satisfied]|

IIl. ADJOINT SENSITIVITY ANALYSIS

; " T T
where_p are mc_)del parameters. For m;tanﬂ_et,may_repr(_esent kot dxte b OM T
the discretization operator of a partial differential etipra Opte—1 Oz k=147
Sensitivity analysis reveals how a model solution is a#dct . T
b : : ; oW (xt)
y small perturbations in the model variables and parameteryty — —— , ke{l...N},
[6]. We write the sensitivity of the solution: with respect Quty
to parameterp; as S;(t) = 65—15? or scaled to be unitless, One can show that the adjoint variables or influence funstion

Si(t) = 6;}5:) ;Ei) [7]. Just as the model state® is evolved A= [8] represent the gradients of the cost function with

through M, the sensitivityS; is evolved by the gradient (a|sorespe(t:t toTperturbations in the state at earlier timés =
known as tangent linear) model (8%(;:) =V, ¥(z'V). Note that we evolve the adjoint
i = packwards in time, starting at the final time and
oM B OM Hrto variable A s g
SF = a—x(xt’“’lap)sk Lt a—p_(fft"’lap)’ = gp. °  taking steps with thedjoint model)/* = (%—/‘;‘)T back to the

initial time. As we did in Equation4), we can also consider the
wheret, € [to,tn]. We are interested in the effect that thecaled adjoint sensitivity, which can be physically interpreted
initial condition at locationi, p; = z1° := z;(to), has at some as the percentage change in the cost function when the iariab
targeted locations in the final system statey. Therefore, the xf’“ is changed:

sensitivity takes the form OU(v)  alt

A — i 6
g Oxtn gho @ ! ozl W(xty) ©)
i~ to ptn ~
Oz Henceforth, we will use\ to denote adjoint variables in order
and its evolution is described by to distinguish them from the Lagrange multipliers introddc
in the next section.
gk _ M (ate1)Sk=1, 80 = Oz' Large sensitivity values indicate areas of influence, that i
! ox TN oale locations where errors or perturbations in the currenese@ag.,

his | ful it . din the eff I due to limited sensors) will produce significant changesin t
This is useful if one is interested in the effect a small péid 64 sites and time as described through the cost fundtta
tion at a single source location would have on the futureestalis significant because one can, for instance, assess ti effe
at multiple locationsg?. Alternatively, one could consider theuncertainty of a particular Ioca’tion on futuré weather seld

inverse oradjoint procesg8] of observing some target state in We illustrate the ASA method on a real test case and employ
the state space at future times and inferring what statelsein the WRE model 1], described in Sedl, which will take the

initial conditions have a strong influence on that targetesta,, .o of M (see P] for implementation details). A simplified
[7]. We aim to find the regions in the initial state to whic

) , < RF model has been run through a source-to-source program
target points at later times are most sensitive. Therefd®, .04 Transformation of Algorithm in FORTRAN (TAF) to
sensitivities are computed in terms of a cost function, that automatically produce both gradients’] and adjoints of the

a function of the state at the final time, gradients /%) [9].
T
(2! (2'0)) € R, 8\1: = [ B\I:O 8?0 ] eRM, IV. POWER GRID OPTIMIZATION
dxto oz; oz

Adjoint sensitivity analysis provides a powerful framewor
where M is the dimension of the initial state vector. By usindo assess the effect of weather conditions and uncertaimty o

the chain rule, one obtains infrastructures such as the power grid or natural gas n&swvor
In this section, we discuss how to use adjoint analysis in
t t t t ’
aqj("i i) = 8\1/(;f Y) 6:5:\’ = a\p(;f N)SZ?N i (5) conjunction with optimization sensitivity capabilities eval-
O’ Ozt~ dato Oty uate the effect of spatio-temporal weather patterns on tite g



economic performance over a given geographical regiors Thi.(n,w), A«(w,n). Theorem2 is a more general result that
information is vital in planning exercises such as transmiallows one to quantify the effect of parameter changes on
sion/generation expansion and sensor placement sincéeveathe entire solution vector and not only on the cost function.
drives electricity and natural gas markets (e.g., demamels &his approach can be used to handle nonlinear cost functions
strongly correlated to ambient temperature) and sinceheeatdirectly to compute the sensitivity functio#i() in (1). Some
patterns are becoming more relevant as the share of wind apdimization solvers provide sensitivity matrices. Exdesp

solar generation is increasing. include CPLEX, Gurobi, and IPOPTLY], [14].
Consider the optimization problem As an example of the above concepts, consider the following
) economic dispatch problen 4]:
min f(z,7) (7a)
z L+T
C(Zv 77) = w, ()‘) (7b) min Z Z Cj - Gk,j (9a)
wherez € R are the decision variableg, € R, w € R k=t jeg
are parameters, andl € R™ are Lagrange multipliers. The — StGri1j =Grj +AGk;, k€T, j€G (9b)
objective functionf : R"= x R"» — R and constraint functions Z Peij+ Z Gri= Z Dy.i
c: R x R — R™ are differentiable. The optimization (iJ)EL; = ieD;
problem and the following results can be easily extended _
to include inequality constraints. The optimization peshl - Z WiiskeT.jeB () (90)
can represent different problems, such as economic dispatc en;
optimal power flow, and transmission/generation expansion Prij =bij(0ki = Ok;j), k€T, (i,7) € L (9d)
which are parameterized in quantities such as demands 0<G; <G, keT,jeG (9e)
and renewable supplyn(w), which are in turn affected by IAGL,| <™ keT,jeg (9f)
weather conditions. The following are well-known resulfs o Do < P e T (i) €L 9
optimization sensitivity. |Piigl < P k€T, (1) € (99)
Ok | <07 keT,jeB (9h)
Theorem 1:Consider that a solution:,(n, wo), A«(10, wo) G =qgiven j € G. (9i)

of problem {7) satisfies the linear independence constraint

qualification [L0]. Then, the multipliersh. (1o, wo) are unique, 1he objective of this problem is to minimize the regional
and generation cost for given demand and renewable supplyslevel

\ _or Here, G, £, and B are the sets of generators, lines, and
+(10, wo) = Ow (2+(10, o) 70). nodes/buses (intersections of lines) in the geographécabn,
Consequently, up to first order, we have that respectivelyD; andW; are the sets of demand and renewable
supply nodes connected to bjygespectively. The time horizon
F(Z*(no,w),mo) & f(z* (10, wo), M0) + Au(no,wo)” (w —wo). is given by the sef := {¢,...,¢ + T} starting at the time,
(8) whereT is the horizon length. Variablesy, ; are the generator
supply levels for time instant and bus;. Following a similar

We can use this linear function to estimate the effecon : ey .
notation, P, ; are the transmission line power flows, ; are

the cost function as described in Equatid (Theoreml is a
basic result of practical significance since Lagrange ipligtis the voltage angleslV; are the renewable supply flows, and

are used to establish market prices (e.g., locational nnargka-i are the demand levels that are fiygatametersConstraint

prices). Most optimization solvers provide informationoab (99 1S Kirchhoff's law, which holds at each time and bus

Lagrange multipliers since these are computed as part of ‘which balances flow across the network. Thegrange
solution procedure. We also have the following result. multipliers of Kirchhoff's law, obtained in the solution of
Theorem 2:Consider that a base solutionthe optimization problem, are the locational marginal @sic
2« (Mo, wo), Ax(no,wp) Of problem {) satisfies the linear (LMPs) Ay, ; fpr each time instant an_d r_10de_. In Figutewe
independence constraint qualification and the strong sbcoffresent a typical LMP f|_eld for the III|n0|_s grid averaged ove
order conditions{1]. Then, the base solution is locally unique,"]ln entire year of operation. Note t_hqt prices are hgtermgmle .
and the following sensitivity matrices exist: across the network because of limited transmission capacit

(e.g., transmission congestion). Regions with extreméi h

az* BA* . . . . . .
6_(2*(770’%)’770)’ 92 (10, wo), 770) or Iow_(e_ven negat_we) prices normally_ |nd|(_:ate |nsuff|¢|e_n

n on transmission capacity towards that region (i.e., therestexi
0z OAs locational scarcity).

8_w(z*(770’w0)’n0)’ Ow (24 (10, o), 10). The price)\ ; indicates the sensitivity of the regional gen-

Furthermore, there exist nonempty neighborhoods aroued @fation cost to changes in demand or renewable supply levels

base solution in which the solution (1, w), A, (w,n) is unique. at timek and node;j. This information can be used with the
Following the same idea used in8)( we can use following scenarios,

the sensitivity matrices to compute first-order estimatés o « By focusing at the network nodes € B with existing
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under time-averaged conditions in Illinois grid. 1,900 buses, 2,538 transmission lines, 870 load nodes, and
261 generators. Our data consists of detailed specificafam
the network topology, ramp and generation limits, fuel spst
renewable supply, one can assess the effect of variatiergl transmission lines. We analyze the effect of the initial
of renewable supply (e.g., wind) on the regional generati@onditions of wind speed on the regional generation cost. To
cost under existing conditions. In particular, adjointlanado so, we have extracted locational marginal prices from an
ysis permits one to assess the effect of the current staionomic dispatch formulation for the system reported.if.[

of Weatl;]ler variables, lsuchdads Wlnddsp%ec:], on t.he fluture.rhe key to using analysis methods from weather forecasts
renewable power supply and demand and the regiona Cc?ﬁt'conjunction with problems such as grid integration and

This assessment is important since most of the uncertair&%nning is to find the appropriate link between the two
in weather forecasts is associated with the uncertainwﬁ%meworks On the one hand we have access to a numerical

the current state. . . . eather prediction model that deals with physical quaediti
- By con'S|der|ng the hypothetical case n which all networguch as wind speed and temperature; on the other hand we have
nodes; € B can be U.SEd to supply wind power, one caly optimization problem that deals with economic metricd an
assess optimal locations for future renewable generatig;isions This study takes advantage of the relation letwe
and the_effect of renewable supply patterns on the regio% d speed and the regional energy cost. The intermediate
generation cost. guantity between these two variables is wind power, which

- By examining the weather conditions around the ge an be estimated directly from wind speed and the technical
graphical network, one can assess the effect of the prs‘f)'eciﬁcations of wind turbines

vailing weather conditions at a particular location (not _ ]
necessarily inside the network) on the regional cost. SinceThe wind power function or curve represents the power
weather fronts evolve slowly over large geographical ré.)_utput_of awind tur.b|ne as afu_nct|0n of Wlnd speed. The power
gions, grid operators can use this information in advancg!rve is characterized by a sigmoid prof!le, since the twrbin
In addition, one can mitigate weather uncertainty by dé&loes not produce any power when there is low wind, saturates
ploying meteorological stations at locations of maximurdt @ certain value once the wind speed exceeds a certain
sensitivity. Moreover, regions of high sensitivity to wieat threshold, and has a fast-growing activation area betv_\rmet

can indicate transmission congestion and can thus pinpdiffp extremes. For our tests, we constructed the followinggo

regions of high potential for transmission expansion. ~curve starting from the hyperbolic tangent function, sdaied

If sensitivity matrices are available, the analysis can ke eSh'ﬂed to mimic real-life behavior:

tended to compute effects of particular variables of irgereor
instance, one can assess the effect of variations of rehewab
supply directly on the locational marginal prices ;. This
information can be used to expand transmission capacitioand

deploy meteorological stations to homogenize the pricessac . . . . .
thepngtwork ¢ ¢ P The graph of this function is shown in Fi®2. One can

also determine this power function from historical data and
regression models. We estimate the sensitivity of the time-
dependent cost functiow, with respect to initial wind speed
In this section, we illustrate the adjoint sensitivity chjlides w(t) = +U? + V2, whereU andV are the W-E and S-N wind
using the lllinois power grid system. The system compriseemponents, respectively. After definingQf, the sensitivity

w(w(t)) = 10(1 + tanh(0.7w(t) — 4)). (20)

V. LARGE-SCALE NUMERICAL STUDY



variables K) are computed as grid point, while the time step was set at 150 seconds. Rgnnin

PN v o the experiment took less than 1 hour using these parameters.
t t . .
NN+ A5 (11) We observed no clear benefits in the accuracy of our results
R (0.7 asech(4 — 0.7w(t))?) a when reducing the time step size to 30 seconds.
— A+ A — : ,
w(t) 1908 w(w(t))

ke Hi‘»ﬂ 35 A ,,k 35

3
2.5
2
1.5

»

wherek = N,...,1, a ={U,V}. I
The first term represents the base cost, the second term £«

the partial derivative of the cost function to either onefodé t  f:

wind components at a certain time, and the third term is uset _j S : W2 ;

for scaling. The scaled version is useful because it allos's u ™ ™ -wowew = ™ T

to compare sensitivities in model states with differenttaini (a) wind, 6h (b) wind, 12h

of measure, for instance, wind speed and temperature. Tt

constantl 908 corresponds to the number of locations used N . "2 L 25
our study; for this experiment we used all the buses for whict -
we had available data. The remaining constants are pareof tr:
pOWer curve expression. £ oas 2% .

The computational part of the experiment that uses WRF f oo
is divided in two stages. The first stage performs a weathe ., & " 100 iy

forecast for the time period of interest, in our case 24 hdtrs Conos T ey
is possible to use shorter or longer forecast windows, laiath (c) wind, 6h (d) wind, 12h
curacy of the results tends to degrade after simulating ay3.d

This is due to the high nonlinearity of the processes gowgrni A AT Y A
the atmosphere, which gives rise to a chaotic behavior, &ds we. |
as due to uncertainties in initial conditions. The forecastiel N7 71,
is configured to save the values of the variables of interes” =" 7 P
(wind speed components) at each point in time of interest ::ms":{'oa"’:gs e _803 ” KLt
This process is called checkpointing, and in our experisent " ongiude W
it takes place at every hour. In the second stage, we use the (€) temperature, 6h (f) temperature, 12h

checkpointed values to compute the initial state of the iatljo Fig. 3: Regional cost sensitivity with respect to the wind

model (corresponding to the final time of the forecast) amd th speed (a-d) and potential temperature (e-f), 6 and 12 hours
intermediate adjoint forcing variables, using formuld)( We before the final time (June 11th, 2000 - 12:00)

then run the adjoint model.

One simplifying assumption was made regarding the loca-
tions where the adjoint variables are initialized and fdice We employed WRF with real data and performed simulations
Since we are interested in wind power, one would usually lo@ four scenarios. Two scenarios take place in June 2000, one
interested in studying sensitivities of the locations espond- on the 10th of the month and another on the 14th, both starting
ing to the wind farms that currently produce energy. Sinag 12:00 CST. The other two scenarios take place in October
current wind adoption levels are low, we used the locatio2900, the 18th and 20th respectively, from 06:00 CST. While
of the nodes. Consequently, this represents a planningagoenJune is associated with a high demand of electricity, Octobe
in which we seek to assess the effect of wind power injectiorss characterized by lower demands. We present two scenarios
at different nodes. from each month in order to account for social factors such as

The adjoint model is initialized with potential perturlmats energy demands during weekends (June 10) and business days
at the locations of interest and propagates them backwatdsne 14, October 18, October 20). This aprroach, along with
in time. After each one hour of simulation, another set dhe different meteorological conditions of each scendeads
perturbations is forced into the adjoint model based on the different regional cost sensitivities.
computations performed during forecast, and the adjoirdeho In Fig. 3.a and3.b we show the evolution of the vertically
continues to propagate the updated field farther back in thhe integrated sensitivities with respect to wind, 6 and 12 bkour
the end of the adjoint model run, the adjoint variables iatlic in retrospect from the final forecast time. In other words,
areas to which the cost functional is sensitive. the sensitivity at the final timel(l) is propagated backwards

For our tests, a serial version of WRF and its adjoint we® and 12 hours and gives a measure of the influence of
compiled without shared- or distributed-memory paralali the initial condition on the final target state 6 and 12 hours
capabilities. The compute server used for running the nsodahead. The larger the value, the more sensitive is the fimal-t
operates on an 8-core Intel Xeon CPU clocked at 2.66 Gtarget solution to the current state. The high sensitivétyions
with 32 GB of RAM. The space discretization of the simulatiofllustrated in this study indicate areas with high impacttbe
domain was set at 25 kilometers (approx. 15 miles) for eaéliture wind speed conditions. The integrated vertical praif
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the sensitivities at 6 hours and 12 hours in retrospect, @s s&rom a generation point of view, the vertical sensitivitpfies
from the south, are illustrated in Fi§.c and3.d, respectively. indicate that the highest wind power generation is expected
This information can be interpreted in the following ways: above 50 meters, as is the current practice.

« From a numerical point of view, high-sensitivity regions In Fig. 3.e and3.f we show the sensitivities with respect to

indicate regions that need to be resolved accurately ambient temperature. This illustrates the effect ofpera-

the NWP models and observed by Transmission SystdH{€ fields on the cost function. Positive and negative \salue

Provider (TSP) methods. In other words, resolution shoujgdicate locations in the temperature field that, if pereatb
be increased in these regions. (or forecast incorrectly), increase or decrease the cdsis T

« From an uncertainty quantification point of view, high-is important_since it indicates that pther physical vaeabl
sensitivity regions indicate locations where forecasprr €N affect wind speed and thus regional cost. Consequently,
have the largest impacts on the system. This informatiGA"® should be taken to mitigate uncertainty and forecasieth

can be used to determine optimal locations for meteord@iables accurately. . -
logical stations to mitigate this uncertainty. The two scenarios from June (see Figsand 4) exhibit

From a generation expansion point of view, regions of higqqfferent dynamics, indicating a complex relationshipvietn

sensitivity indicate locations where wind farms shoul/¢ather variables and the grid conditions. A similar cosicin
be installed. In addition, these regions identify locasion®@" be drawn for the sensitivities computed in October (see

for natural gas generators to provide necessary rampinyS: © and6).

capacity. We note that adjoint sensitivity information can . . . N - s .
augment traditional resource maps used for wind farm s Sy : =
planning since it is equally important to install wind 3.,
generators in regions with high wind speeds but also With§35
low uncertainty in neighboring regions.

« From a transmission expansion point of view, regions of )
high sensitivity that match regions of high price indicate (a) wind, 6h (b) wind, 12h
nodes at which transmission congestion limits wind adop-
tion.

« From a operational point of view, regions of high sensi-
tivity indicate locations that will affect market clearing
tasks such as unit commitment and economic dispatcl «
due to higher sensitivity to uncertainty. Thus, if sendigiv. =~
information can be provided in advance to the I1SOs, they o -
can prepare to face high uncertainties of wind power — - -0 es oo™ 2 iy
variation by allocating reserves or by committing peaking (c) wind, 6h (d) wind, 12h
units.
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Fig. 4: Regional cost sensitivity with respect to wind spegd

The se_nsitivity to Wind_ illustrated in Fig§_—6 demonstrate and 12 hours before the final time (June 15, 2000 - 12:00)
that on different days, different meteorological sourcé#sca

the target area. This analysis points to the dynamic size of

the domain necessary for such a simulation to efficiently

achieve accurate forecasts. We highlight the variabilitthese VI. CONCLUSIONS

directions under different seasonal conditions. We oles#rat We have presented a framework for adjoint sensitivity of

the highest sensitivity is consistently observed in theteres numerical weather prediction models. We have found that

part of the state as indicated by the wind directions. Intialdi adjoint analysis provides valuable information that caah iai

we note that regions of high sensitivity are not necessarifanning and operation tasks for the power grid. We discuss

inside the network region of interest since wind fronts moveow to use optimization sensitivity capabilities to map gibgl

across large geographical regions. weather variables to power grid economic metrics. Pasdicul
We also note the variability in the vertical column, aapplications of the framework include wind farm and meteoro

consequence of the fact that wind components are not twogical sensor placement and generation/transmissicarsign

dimensional but three-dimensional fields. The cost fumctiglanning. A numerical case study has been provided toifitest

at our target sites is influenced in a different manner by tliee developments.

evolution of wind at different height layers. We notice tiia¢

highest sensitivity is observed in the first layers, coroesting ACKNOWLEDGMENTS
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