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Exascale supercomputers will have millions or even hundreds of millions of processing cores and the potential for nearly
billion-way parallelism. Exascale compute and data storage architectures will be critically dependent on the interconnec-
tion network. The most popular interconnection network forcurrent and future supercomputer systems is the torus (e.g.,
k-ary,n-cube). This paper focuses on the modeling and simulation ofultra-large-scale torus networks using Rensselaer’s
Optimistic Simulator System (ROSS). We compare real communication delays between our model and the actual torus
network from Blue Gene/L using 2,048 processors. Our performance experiments demonstrate the ability to simulate
million-node to billion-node torus networks.a The torus network model for a 16-million-node configurationshows a high
degree of strong scaling when going from 1,024 cores to 32,768 cores on Blue Gene/L, with a peak event-rate of nearly
5 billion events per second. We also demonstrate the performance of our torus network model configured with 1 billion
nodes on both Blue Gene/L and Blue Gene/P systems. The observed best event rate at 128K cores is 12.36 billion per
second on Blue Gene/P. processors.
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aIn this paper, we use “node” to denote a logical node in our simulation model. In contrast, “processor” and “cores” are used to
denote the actual simulation platform except for the Blue Gene/L introduction subsection.

1 Introduction

We are moving closer to the era of exascale (i.e., 1018

FLOPs) supercomputing. As machines grow larger and
larger, the internal communication between millions of cores
is one of the key factors that will determine future compu-
tation and storage performance for massively parallel appli-
cations. Torus networks have been widely employed as the
underlying network topology for many supercomputing sys-
tems, such as the Blue Gene [2] and Cray XT [6] families.
A torus is chosen because it yields low latency for nearest
neighbor processors and scalable bisection bandwidth and
provides an easy physical wiring plan for upgrading a sys-
tem with additional nodes without having to update the en-
tire core torus network [2].
As part of the exascale co-design process, there is signif-
icant interest in understanding how parallel systems soft-
ware like MPI/MPI-IO and the associated supercomputing
applications will scale on future architectures. To this end,
researchers have turned to massively parallel discrete-event
simulation. For example, Perumalla’sµπ system will allow
MPI programs to be transparently executed on top of the
MPI modeling layer and simulate the MPI messages. Here,
each MPI task is realized as a thread in the underlyingµsilk
simulator. Thus,µπ captures the true direct execution be-
havior across millions of MPI tasks that are part of a whole
supercomputing application. In particular,µπ has executed
on 216,000 Cray XT5 cores an MPI job that contained over
27 million tasks. This is the largest direct execution simula-
tion of any parallel program we are aware of to date. Sim-
ilar systems, such as BigSim [29], have not achieved such
a high level of scaling. To the best of our knowledge, how-
ever, neither of these systems performs packet-level simula-

tions of the underlying network at scale. Instead the focus of
their research is application computation performance with
the network abstracted away.
The focus of our research is to create a “good”-fidelity, flex-
ible, large-scale torus network model for understanding the
performance implications of different exascale storage ar-
chitectures that unlike today’s current supercomputer sys-
tems, could be more closely woven into the compute-side ar-
chitecture (i.e., bring storage closer to computation in order
to improve performance and fault tolerance). Consequently,
we need the ability to model an exascale compute network
as part of our exascale storage co-design research. One use
case scenario of the torus network model is determining the
speed by which failure information is distributed through-
out the storage system across different failure detection algo-
rithms, such as a gossip algorithm [11]. In this case, we need
a good model of network congestion, but a cycle-accurate
network simulation is too costly to process at the network
scale we are investigating, especially for longer running I/O
workloads that span many massively parallel jobs and can
last 12 to 24 hours, if not days [17].
The central contribution of this paper is that we present
the capability to execute extremely large-scale torus net-
work models at a “good” level of fidelity using both Blue
Gene/L and Blue Gene/P supercomputers. We want to de-
termine how big a torus network model can be executed us-
ing relatively modest supercomputing hardware (i.e., Top
500 rank as of June 2011 is less than 100 and dropping
fast). We observe that the 70 teraFLOPs Blue Gene/L re-
source used here will be a very small slice of the upcoming
“Mira” (nearly 800,000 cores) and “Sequoia” (1.6 million
cores) Blue Gene/Q systems [9, 13], which will be available
in late 2011/early 2012. These systems will provide a to-
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Figure 1: 3-ary 3-cube torus.

tal of 10 and 20 petaFLOPs of compute power, respectively,
and more than 200 teraFLOPs of per rack. Thus, in the near
future, parallel computations consisting of 32,000 MPI tasks
will be commonplace.
The remainder of the paper is organized as follows: Sec-
tion 2 presents the details of torus network developed for
massively parallel execution. Section 3 introduces our par-
allel simulator and simulation platform. Performance exper-
iment setup, results and analysis are presented in Section 4.
Related work is discussed in Section 5 with closing remarks
and a brief mention of future work in Section 6.

2 Torus Network Model

In this study, the simulation model consists of several mod-
els, including the network hardware, network routing model
and network traffic model which drives the simulation.

2.1 Torus Structure

A torus network topology is ak-ary n-cube, wherek is re-
ferred to as the radix andn as the dimension [3]. This grid
structure hasn dimensions, and each dimension hask nodes.
A 3-ary 3-cube torus network is shown in Figure 1. Each
of theN(N = kn) nodes can be identified by ann-digit radix
k address (a1,a2, . . . ,an). The ith digit of the address vec-
tor, ai, represents the node position in theith dimension.
Nodes with address (a1,a2, . . . ,an) and (b1,b2, . . . ,bn) are
connected if and only if there existsi, (1≤ i ≤ n), such that
ai = (bi ±1) modk anda j = b j for a≤ j ≤ n; i 6= j.
The distance between two nodes in the torus is measured
by the number of hops. A “hop” is the process of moving
data from one node to its direct neighbor. Different from a
k-ary n-cube mesh, whose maximum distance between any
Two nodes iskn, the actual maximum distance in the torus is

cut by half,kn/2. The maximum number of hops in a torus
network determines the maximum latency of the communi-
cations.
Blue Gene and Cray XT supercomputer families adopt a 3-
D torus. Typically, the 3-D torus network will fix the num-
ber of nodes in two dimensions so the system grows only in
the 3rd dimension as racks of new systems are added. This
configuration leads to a linear increase in the maximum la-
tency. However, one solution is to create a torus network
with a larger number of dimensions, as is the case with the
upcoming Blue Gene/Q, which will have a 5-D torus net-
work [9, 13].

2.2 Torus Routing

By design, a torus network will provide low latencies and
high bandwidth at a moderate construction cost. We observe
that a lot of research efforts have concentrated on the de-
sign and optimizations of switching fabric and routing algo-
rithms [20, 1, 24, 16] for torus networks.
As shown in Figure 1, if nodea needs to send a packet to
noded, it has to choose among many possible paths. One of
the possible paths is labeled in the graph. Routing in a torus
can be carried out by either a specific routing algorithm, such
as the deterministic e-cube algorithm, or a generic routingal-
gorithm, such as the well-known up/down routing algorithm
or the flexible routing algorithm [23]. In this paper, we use
the static deterministic routing instead of dynamic routing or
a mixture of static and dynamic which is used in Blue Gene
system. Static, deterministic routing resembles e-cube rout-
ing in many ways. The well-known e-cube algorithm routes
packets in decreasing dimension order to avoid deadlocks.
When applied to a torus, the e-cube algorithm requires two
virtual channels to remove any cyclic channel dependencies
introduced by the wrap around links [23, 26]. Additionally,
the use of bidirectional channels within a link between two
nodes allows packets to be routed through minimal paths.
To illustrate how the e-cube algorithm works in a torus, we
assume that each physical channel is split into two virtual
lanes (VL0 and VL1). A packet arriving at a nodenc and
destined to nodend, with coordinatesncn−1,ncn−2, . . . ,nc1,nc0

and ndn−1,ndn−2, . . . ,nd1,nd0, respectively, will be routed
through the physical channel belonging to the dimensioni,
wherei is the position of the most significant digit in which
addressesnc andnd differ. In each dimensioni, packets will
be routed through VL1 if theith digit of the destination ad-
dress is greater than theith digit of the current node address.
Otherwise, the packet will be routed through VL0.

2.3 Torus Traffic

Markovian models have been a popular approach to under-
standing interconnection network performance [3]. For the
purpose of this performance study, we capture the time inde-
pendent nature of the packet stream and simply let it follow
the Poisson process with a mean arrival rate ofλ. In our



model, each node continuously generates a Poisson stream
of packets, and each generated packet randomly chooses a
destination node, which follows a uniform distribution. This
yields a pathological traffic pattern with little to no local-
ity and consequently presents a model that is challenging to
obtain good parallel performance.
According to Little’s Law, if the average service time is
fixed, the packet arrival rate determines the number of pack-
ets alive in the system at a steady state. For the torus net-
work model considered here, each node has an infinite queue
subject to the memory limitations of the parallel computer
system executing the discrete-event model such that a high
packet arrival rate can saturate the system.
Based on the above discussions, we have the following as-
sumptions for our torus model:

1. Each node will participate in generating, processing,
and relaying packets throughout the entire simulation
with no failures.

2. The connection between any nodes in each direction is
in good condition throughout the entire simulation with
no failures.

3. Routing between nodes is static and deterministic.
Note: our model is deadlock-free torus given the above
two assumptions.

4. Bandwidth is constant on each connection between the
nodes for a given message size.

5. Each node continuously generates a packet stream with
an exponential interarrival time. The destination node
is selected at random.

2.4 Model Configuration

In Figure 2, the torus network flow chart illustrates the
event driven approach on a per node basis. At the initial
state, each node, modeled as a logical process (LP), will
schedule apacket_generate_event shown below in Al-
gorithm 1. When processed, thepacket_generate_event
will then schedule thepacket_send_event immediately
and anotherpacket_generate_event with an exponential
time delay. This event generation delay forms the Pois-
son packets stream on each node. Prior to scheduling the
packet_send_event, the destination node ID is placed into
a packet header for routing at each hop within the torus
network. Also, the packet generation time is stored in the
header, enabling the model to capture the end-to-end la-
tency. We note that the current model assumes that the
“application-level” message is the same size as a packet.
For real network workloads, such as the storage system, this
would not be the case. Instead, a single application-level
message could span multiple packets. This feature will be
added at a later time when the torus model is integrated with
other proposed exascale storage architecture model compo-
nents. Because of the flexibility of our model, each node
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Figure 2: Discrete-event torus network model.

can generate different packet streams and destinations in the
torus model. We observe that the torus model is a submodel
that can be part of a greater application’s communication
model that is able to generate a traffic model in response to
higher-level computation such as a file system in a proposed
exascale storage architecture.

Algorithm 1 packetgenerateevent.

1: generate a random time delayTD (exponential distri-
bution);

2: schedule next packetgenerateevent afterTD on cur-
rent node;

3: select random destination (uniform distribution) for
current packet;

4: record packet destination in packet header;
5: record packet generating time in packet header;
6: schedule a packetsendevent on current node with de-

lay TD;

In the packet_send_event shown in Algorithm 2, the
packet header is parsed, and the next-hop node/LP is cho-
sen. In the torus network, the next-hop node is one of the
direct neighbors among the various dimensions supported in
the torus based on the previously described e-cube routing
algorithm. Next, thepacket_arrive_event is scheduled
to the target neighboring node with a properly computed
time delay. The time delay includes the link delay for virtual
channel setup and transmission time for the packet based on
the bandwidth capacity of the link. We note that the packet
size on Blue Gene/L is usually a multiple of 32 bytes, with a
maximum size of 256 bytes [7] including the header. In our
model, the packet size is initially set as 256 bytes. Packet
size and bandwidth of the link determine the transmission
delay.



Algorithm 2 packetsendevent.

1: compute link delay and transmission delayTD;
2: if (link available)
3: schedule apacket_arrival_event on next-

hop node afterTD;
4: else
5: acquire link nextavailabletime;
6: schedule apacket_arrival_event on next-

hop node at nextavailabletime;

7: update link nextavailabletime;

The packet_arrive_event shown in Algorithm 3 pro-
cesses the arriving packet on the current node. Whenever a
packet arrives at a node and cannot be immediately routed
to the next hop node, it is placed in an incoming buffer
along that dimension. In this model, each torus node has
two buffers for each dimension. Here, one buffer is used
for the + direction and the other for the− direction for
each dimension of the torus. The queuing delay depends
largely on the number of packets waiting in the buffer. Cur-
rently, the waiting queue simply follows a first-come-first-
serve policy. Thepacket_arrive_event will then sched-
ule apacket_process_event for the next available time on
the current node.

Algorithm 3 packetarrival event.

1: if (processing unit available)
2: schedule a packetprocessevent on the current

node with delayTD;
3: else
4: acquire processing unit nextavailabletime;
5: schedule apacket_process_event on current

node at nextavailabletime;
6: update processing unit nextavailabletime;

To simplify the switching fabric, we use a constant process-
ing time for each packet. This processing time corresponds
to the time used for parsing the packet header and acquir-
ing next-hop information. Thepacket_process_event,
shown in Algorithm 4, invokes the routing routine and deter-
mines to which neighboring node the packet will be routed.
The next-hop information is packed into the packet header so
thatpacket_send_event can efficiently parse it. The hop-
ping corresponds to an activation ofpacket_send_event
with a processing time delay. If the destination node is
the current node, the arriving packet will no longer activate
events. Its life cycle has ended and we begin to collect the
statistics such as the latency and trace. Packet processing
event is illustrated in Algorithm 4.

Algorithm 4 packetprocessevent.

1: if (packet arrived)
2: collect statistics;
3: else

4: analyze packet header and acquire destination
node;

5: call routing routine and compute next hop node;
6: compute packet processing timeTP;
7: schedule apacket_send_event afterTP on cur-

rent node;

3 Blue Gene, ROSS and Reverse
Computation

Rensselaer’s Optimistic Simulation System (ROSS) is
geared for running large scale, parallel, discrete-event sim-
ulation models using Jefferson’s Time Warp event schedul-
ing mechanism [15]. Here, the parallel simulator consists of
a collection of logical processes, each modeling a node in
the torus network. LPs communicate by exchanging times-
tamped event messages. In this study, this event message is
modeled as a packet. Like most existing parallel and dis-
tributed simulation protocols, we assume LPs may not share
state variables that are modified during the simulation. The
synchronization mechanism must ensure that each LP pro-
cesses events in timestamp order to prevent events in the
simulated future from affecting those in the past. The Time
Warp [15] mechanism uses a detection-and-recovery proto-
col to synchronize the computation. For the recovery, we
employ reverse computation, which is described below.

3.1 Blue Gene

The philosophy of the Blue Gene series is that more power-
ful processors are not the answer to winning the massively
parallel scaling war. Instead, the Blue Gene architecture bal-
ances the computing power of the processor against the data
delivery speed of the network. This philosophy led designers
to create smaller, lower-power compute nodes comprising
two 32-bit IBM PowerPCs running at only 700 MHz with
a peak memory per node of 1 GB for Blue Gene/L. A Blue
Gene/L rack is composed of 1,024 dual-processor “node”
cards and is divided into 32 drawers of 32 nodes per drawer.
Additionally, specialized I/O nodes perform all file I/O. Nor-
mally there is one I/O node for every 32 compute nodes.
The Blue Gene/L system used in this performance study is
a 16-rack, 32,768-processor system located at Rensselaer’s
Computational Center for Nanotechnology Innovations.
The IBM Blue Gene/P (BG/P) system is the second in
a series of supercomputers designed by IBM to provide
extreme-scale performance along with high reliability and
best-inclass power consumption. Each rack of BG/P has
1,024 quad-core nodes, with a total of 2 terabytes of memory
and a peak performance of 13.9 teraFLOPs. In this study, we
also used Intrepid, the Argonne Leadership Computing Fa-
cility BG/P system. Intrepid has 40 such racks; in aggregate,
the system has 80 terabytes of memory, a peak performance
of 557.06 teraFLOPs, and 163,840 compute cores.



3.2 ROSS Implementation

The ROSS API [10, 5, 14, 27] is kept simple and lean. De-
veloped in ANSI C, the API is based on a LP model. Ser-
vices are provided to allocate and schedule messages be-
tween LPs. A random number generator library is provided
based on a combined linear congruential generator (CLCG).
Each LP by default is given a single seed set. All memory is
directly managed by the simulation engine. Fossil collection
is driven by the availability of free event memory, and its
frequency is controlled with tuning parameters. The event-
list priority queue can be configured to be either a Calendar
Queue [8] or Splay Tree [25]. For this study, the Splay Tree
is used in all performance experiments.

3.3 Reverse Computation

Reverse computation [10] is used to undo incorrect event
computations. Shown in Figure 3 is the reverse handler code
for all torus model event types.

As can be seen from the reverse code handler, thepacket_
generate_event, packet_arrive_event, and packet_
send_event routines all have straightforward state reversal
operations without any control flow changes. Thepacket_
process_event needs to know whether this event reached
its final destination node so the corresponding LP state vari-
ables and random numbers are correctly undone.

4 Simulation Results

The performance study examines the impact of proces-
sor/core count on four primary metrics: committed event-
rate, percentage of remote events, efficiency and secondary
rollbacks. Efficiency is defined as one minus the ratio of
rolled back events divided by the number of total commit-
ted events. This is a more restrictive form of event effi-
ciency used in [5] and a better predictor of event rate and
overall speedup. These metrics, taken together provide a
more comprehensive performance picture of how the torus
network model is affecting overall parallel simulator perfor-
mance. Specifically, we are using the committed event-rate
and not the packet rate so we can observe how different torus
configurations effect simulator performance since the packet
rate can be affected by changes in the torus configuration.

Using these performance metrics, we focused the strong
scaling study on a 16-million-node torus and then the 1-
billion-node torus performance experiments. Our scaling
study is based on the Blue Gene/L architecture using up to
32,768 cores; the validation study used an SMP system with
12 cores (Intel Xeon x5650, 2.67 GHz) to save supercom-
puter usage, where each core supports two threads of execu-
tion (24 threads total). We begin with our validation study.

void
rc_event_handler(nodes_state * s, tw_bf * bf,

nodes_message * msg, tw_lp * lp)
{
int index =

floor(N_COLLECT_POINTS*(tw_now(lp)/g_tw_ts_end));
switch(msg->type)

{
case GENERATE:

N_generated_storage[index]--;
s->packet_counter--;
tw_rand_reverse_unif(lp->rng);
tw_rand_reverse_unif(lp->rng);
break;

case ARRIVAL:
s->next_available_time =

msg->saved_available_time;
tw_rand_reverse_unif(lp->rng);
msg->my_N_hop--;
s->N_wait_to_be_processed--;
msg->queueing_times -= s->N_wait_to_be_processed;
s->node_queue_length[msg->source_direction]

[msg->source_dim]--;
msg->my_N_queue -=

s->node_queue_length[msg->source_direction]
[msg->source_dim];

break;
case SEND:

s->source_dim = msg->saved_source_dim;
s->direction = msg->saved_direction;
s->next_link_available_time[s->direction]

[s->source_dim]=
msg->saved_link_available_time[s->direction]

[s->source_dim];
tw_rand_reverse_unif(lp->rng);
break;

case PROCESS:
if ( bf->c3 == 0 )

{
N_finished--;
N_finished_storage[index]--;
total_time -= tw_now(lp) -

msg->travel_start_time;
total_hops -= msg->my_N_hop;
total_queue_length -=

msg->my_N_queue;
queueing_times_sum -=

msg->queueing_times;
}

s->node_queue_length
[msg->source_direction]
[msg->source_dim]++;

s->N_wait_to_be_processed++;
break;

}
}

Figure 3: Reverse code event handler for torus metwork
model.

4.1 Validation study

In this paper, there are two parts to the validation study.
First, the torus network model agrees with Little’s law un-
der a variety of torus configurations and packets arrival
rates. Second, we compared MPISend()/MPIRecv() la-
tency times of the actual Blue Gene/L network using 2K pro-
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cessors (1,024 node torus, 1x32x32) and experimental runs
of our torus network model for the same torus configuration.
Starting from 256K nodes, we built three different torus
networks 8-ary 6-cube, 64-ary 3-cube and 512-ary 2-cube
for the Little law validation. The maximum distance de-
creases with an increase in the number of dimensions. The
maximum distances for the above three network topologies
are 24, 96, and 512, respectively. As we probe the satura-
tion points of different torus network, the latency curves are
shown in Figures 5, 6, and 7. The latency is measured in
microseconds and the packet arrival rate is measured to that
of per nanosecond. These curves have a similar shape as the
predicted latency curve shown in Figure 4, indicating that
the queuing behavior of the model is operating as expected.
For each of the torus configurations, we captured the aver-
age and maximum latency for all packets generated during
the entire simulation. The total number of packets alive dur-
ing steady state was also recorded. Under a small packet
arrival rate, the system arrives at a steady state quickly. The
torus network is far from saturation under this light load, as
there is little packet queuing on each node. The latency does
not increase while the packet arrival rate increases initially.
Also, average latency is in proportion with the maximum
distance in different torus configurations. As the packet ar-
rival rate continues to increase, the total number of packets
alive in the system increases as well. The queuing effect
leads to a dramatic increase in the maximum latency. For
each configuration, there is a saturation point for a certain
packet arrival rate.
For the 16-million-node torus, we varied the configuration
from an 8-ary 8-cube to a 16-ary 6-cube and finally to a 64-
ary 4-cube. The Little’s Law results are shown in Table 1.
For the 1-billion-node torus the Little’s law results are shown
in Table 2, we varied the network configuration from 8-ary
10-cube to 32-ary 6-cube and finally 64-ary 5-cube. The
experiment quickly reaches steady state with a light load of
0.5-2 pkt/ns. We note that for both scenarios the computed
latencies via Little’s law and the simulated latencies are in
close agreement. Little’s law latency is computed by using
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Figure 5: 512-ary 2-cube torus latency.
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Figure 6: 64-ary 3-cube torus latency.
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Figure 7: 8-ary 6-cube torus latency.
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Figure 8: Simulated and observed torus network latency.

the number of packets waiting in the torus network and the
packet arrival rate. These network models are operating in
the light load zone of the latency curve shown in Figure 4.
To further validate the torus model, we conducted
MPI Send()/MPIRecv() tests on Blue Gene/L and com-
pared them to the simulation using our model as shown in
Figure 8. Specifically, we measure communications times
using an MPI “ping-pong” program and compare these la-
tency measures with those predicted by our torus network
model, since MPISend()/MPIRecv() communication oper-
ations traverse over the Blue Gene’s 3-D torus network. For
this comparison, we configured the torus message size to be
250 bytes, which ensures use of the eager protocol being
employed on the Blue Gene’s real torus network and deter-
ministically routes messages. We also varied the distances
between the two communicating nodes in the torus from 2
to 8 hops. We observe the torus network model delays are
matched to that of the Blue Gene/L machine with the 2-hop
case and yielding more error than the 8-hop case. We believe
the difference lies in some routing optimizations being made
by the Blue Gene network enabling it to exceed the network
performance of what our model predicts. Further investiga-
tion is required to more fully understand this phenomenon.
We note that because the model does perform congestion
queuing correctly, we believe it will be sufficient for pre-
dicting storage architecture performance. For example, the
time to commit data to RAM disk, SSD, or disk ranges from
hundreds of microseconds to milliseconds vs the torus net-
work model error of 2 microseconds for a 2-hop torus net-
work message. So, the current network model latency error
is negligible for the exascale storage modeling purpose.

4.2 Million-Node Torus Scaling Study

For the scaling study, we configured two torus models with
16 million nodes. The first torus was configured as an 8-ary
8-cube and the second was a 16-ary 6-cube. The packet ar-
rival rate on each node was 10 pkt/ms. To reach a steady
state, we set the simulation time to 100 ms. In fact, we
observed the system reaching a steady state in less than 10
ms. On Blue Gene/L, the strong scaling experiments start
by using 1,024 cores and run up to 32K cores. The com-
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Figure 9: Event-Rate Scalability: The event-rate is shown as
a function of the number of Blue Gene/L processors.

70%

75%

80%

85%

90%

95%

100%

E
ff

ic
ie

n
cy

8-ary 8-cube

16-ary 6-cube

60%

65%

70%

75%

80%

85%

90%

95%

100%

1024 2048 4096 8192 16384 32768

E
ff

ic
ie

n
cy

Number of Processors

8-ary 8-cube

16-ary 6-cube

Figure 10: Event Efficiency: Model efficiency is shown as a
function of the number of Blue Gene/L processors.

mitted event-rate is shown in Figure 9. We observe a near-
linear speedup using 1,024 cores as the base case, with a
peak event-rate of 4.78 G/s on 32K cores. The torus model
creates a difficult scenario for parallel event scheduling be-
cause each packet randomly selects its destination, leading
to a high number of remote/off-processor scheduled events.
As shown in Figures 10, 11, and 12, with an increase in the
number of processors, the event efficiency decreases, and
the remote event-rates and secondary rollback event rates
increase. At 32K cores, the event efficiency actually drops
below 90% for both configurations. We also observe that
the efficiency drops significantly as we decrease the system
packet arrival rate. This phenomenon is attributed to a reduc-
tion in the available work per unit of simulation time, which
increases the likelihood of incurring a rollback.

The best event efficiency is achieved at near the saturation
point of the torus network model. We speculate on the max-
imum latency curve shown in Figure 4 based on our exper-
imental findings. The shaded area corresponds to the near
saturation of the system or heavy load, while the dotted area
represents a light load. For the two torus configurations,
the 8-ary 8-cube has larger bisection bandwidth and there-
fore smaller latency. The 16-ary 6-cube torus tends to be
more saturated under the same packet arrival rate and yields
a higher event efficiency and committed event-rate.



Table 1: 16-million-node torus: simulation VS. theory.
Torus

Configuration
No.Packets

Waiting
Packet

Arrival Rate
Simulated
Latency

Computed
Latency

88 168,201 4 42,022 40,700
210,240 5 42,043 42,048

166 2,531,687 40 63,260 63,292
3,166,931 50 63,306 63,339

644 5,095,405 30 169,908 169,847
6,805,740 40 169,571 170,144

Table 2: 1-billion-node torus: simulation VS. theory.
torus configuration No.Packets Waiting Packet Arrival RateSimulated Latency Computed Latency

810 105,505 2 52,688 52,753
326 64,109 0.5 126,710 128,218
645 107,135 0.5 209,686 2,142,709
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Figure 11: Remote events: The percentage of remote/off-
processor events is shown as a function of the number of
Blue Gene/L processors.
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Figure 12: Secondary rollback rate: The percentage of sec-
ondary rollbacks is shown as a function of the number of
Blue Gene/L processors.

Table 3: Strong scaling performance of 1-billion-node
model at configuration 326 w ith packet arrival rate of
200pkt/nson Blue Gene/L.

Number of Processors
4,096 8,192 16,384

Number of packets (G) 40 40 40
Efficiency 97.05% 96.00% 81.90%
Event-rate (M/s) 639 1,066 1,681
Remote event percentage 11.72% 12.41% 13.79%
Secondary rollback rate 0.0286% 0.0347% 0.220%
Number of event (G) 5,644 5,644 5,644

Table 4: Strong scaling performance of 1-billion-node
model at configuration 326 with packet arrival rate of
400pkt/nson Blue Gene/L.

Number of Processors
4,096 8,192 16,384

Number of packets (G) 80 80 80
Efficiency 97.33% 96.81% 96.42%
Event-rate (M/s) 638 1,241 1,966
Remote event percentage 11.72% 12.41% 13.79%
Secondary rollback rate 0.0268% 0.0312% 0.0245%
Number of event (G) 11,442 11,442 11,442

4.3 Billion-Node Torus Network Scaling
Study

As our model grows to 1 billion nodes, the simulation be-
comes more memory demanding. Consequently, the re-
quired base case (i.e., minimum number of processors that
are able to execute this model) begins at 4,096 processors on
Blue Gene/L with a total memory of 2TB and goes to 8,192
and 16,384 processors. The results are shown in Tables 3
and 4. On Intrepid, our scaling study runs to 131,072 cores
and the performance results are shown in Table 5.
In these studies, the total number of generated packets



is O(1011) , and the total number of events scheduled is
O(1013). This extreme-scale torus model can sustain a con-
tinuous packet stream of 1011 pkt/s. Compared with our
16-million-node torus model experiments, the efficiency ap-
pears lower at 16,384 processors for the 200 pkt/ns scenario.
This phenomenon is attributed to the 1-billion-node torus
model being underloaded with packets relative to the 16-
million-node torus model. Thus, in the absence of queu-
ing effects, events are scheduled more closely together in
simulated time in the 1-billion-node torus model, leading
to a higher rollback probability. The overall loss in event-
rate performance is attributed to the larger event population
leading to increases in queuing overheads as well as larger
cache-memory overheads because of the increased amount
of RAM required to execute the 1-billion-node torus model.
The strong scaling study on Blue Gene/P systems has shown
better performance compared to the results on Blue Gene/L.
We observed a sublinear strong-scaling performance from
4,096 cores to 131,072 cores. The peak event rate achieved
is 12.359 billion per second, which is the best performance
ever reported from ROSS. Note that the Blue Gene/P node is
quad-core instead of dual-core on Blue Gene/L and thus we
attribute the increased performance to better locality. One
obvious observation is that the secondary rollback rate is
much lower on Blue Gene/P than on Blue Gene/L.

5 Related Work

A large body of previous research focused on the modeling
and simulation of torus interconnection networks. Min and
Ould-Khaoua [19] proposed a torus network model based
on circuit switching. In this paper, the traffic generated on
each node followed an independent stochastic process with
a given arrival rate. We followed a similar traffic pattern, but
our model was based on packet switching. In circuit switch-
ing, a handshaking protocol between the source and desti-
nation node was used to initiate the communication opera-
tion. Instead of establishing a virtual channel first between
source and destination, we considered incoming and outgo-
ing buffers on each node. Min and Ould-Khaoua also inves-
tigated long-range dependence and traffic correlation and are
able to validate their model on a small-scale torus network.
Sancho et al. [23] focused on a comparison of routing algo-
rithms over torus networks. Their InfiniBand network model
was composed of a set of switches and hosts interconnected

by a single link. The model provided the e-cube, up/down,
and flexible torus routing algorithms. The authors demon-
strated that the flexible routing algorithm was the most ef-
fective on small-scale 3D and 2D torus networks. In our
model, we showed the effectiveness of static deterministic
routing algorithm up to 10 dimensions and extremely large-
scale torus network. In Sancho et al’s work, the traffic model
was simplified to switches. The packet latency was deter-
mined by changes in the switch traffic.

In the context of network simulation for supercomputer sys-
tems, Adiga et al’s use of the YAWNS protocol [2] to model
the Blue Gene/L torus network on a per cycle basis appeared
to be one of the most accurate models created to date. This
work focused on the design and implementation of the 3D
Blue Gene/L torus network. Details of the physical system
included variable packet size, packet header size, different
virtual channels and usage, per link bandwidth, and rout-
ing strategies. In contrast, we assumed a fixed packet size,
and, for simplicity, adopt static routing instead of a mixed
static/dynamic routing in our simulation. In their simula-
tion, hot region traffic and all-to-all traffic were studied on
torus networks with 4K nodes and 32K nodes. We noted
that our goals and intended use of this model were to under-
stand the trade-offs associated with different exascale stor-
age architectures and filesystems capabilities. To this end,
we believed a packet-level network model such as the one
discussed here was sufficient.

Guirguis et al. [12] examined dynamic routing over content-
addressable networks and demonstrate that routing could be
improved while recording fewer states of the neighbors. A
detailed analysis of the congestion behavior on Blue Gene/P
interconnection networks was provided by Balaji et al. [4].
Their experiments were executed on over 128K cores, pro-
viding insight into the network performance characteristics
of MPI.

Rahman et al. [21, 18] examined the performance of the Hi-
erarchical Torus Network (HTN) under the traffic pattern
generated by the matrix transpose computation. They de-
signed a deadlock-free routing algorithm for the HTN us-
ing virtual channels and evaluated the performance of the
HTN incontrast to the performance of conventional mesh
and other networks. There research results demonstrated the
high throughput and low-latency capabilities of HTN over
other networks.

Safaei et al. [22] presented a new mathematical model to

Table 5: Strong scaling performance of 1-billion-node model at configuration 326 with packet arrival rate of 160pkt/nson
Blue Gene/P.

Number of Processors
4,096 8,192 16,384 32,768 65,536 131,072

Efficiency 99.83% 99.90% 99.83% 99.55% 98.89% 97.51%
Event-rate (M/s) 609 1,192 2,260 4,002 7,307 12,359
Remote event percentage 11.71% 12.39% 13.77% 16.53% 16.88%17.22 %
Secondary rollback rate (×10−5) 1.06 0.254 0.0429 0.51 3.87 21.7



capture the mean message latency in the torus interconnect
network with circuit switching in the presence of a hot-spot.
Simulation experiments demonstrated close agreement be-
tween the observed network behavior and those obtained by
the analytical model.
Additional recent large-scale, parallel, discrete-eventperfor-
mance studies included the work of Bauer et al. [5], who
conducted an extensive study of the PHOLD model and an
electromagnetic wave propagation model. On Blue Gene/P,
they reported a peak event-rate of 12.3 G/s using 65,536
cores. They observed near-linear scaling on Blue Gene/L
from 1,024 cores to 32K cores. Yaun et al. [27, 28] demon-
strated that optimistic protocols were able to efficiently sim-
ulate large-scale TCP scenarios for realistic, network topolo-
gies using an inexpensive hyper-threaded computing system.

6 Conclusion

This paper focuses on the simulation of large-scale torus
networks. Based on the Rensselaer’s Optimistic Simulation
System (ROSS), we are able to achieve a near-linear speedup
for our torus model. On Blue Gene/L, the peak event-rate on
32K cores is 4.78 G/s. On Blue Gene/P, the best event-rate
observed is 12.359G/s on 128K cores. We further demon-
strated the ability to model and simulate a million-node and
a billion-node torus network on both Blue Gene/L and Blue
Gene/P platforms. The experiment results are validated by
Little’s law for different torus configurations under varying
packet arrival rate. We also conducted comparison tests be-
tween actual Blue Gene torus network and our model using
MPI Send()/MPIRecv(). The latencies captured are compa-
rable. We believe the difference is due to subtle complexities
in the Blue Gene’s packet routing that are not accounted for
in our model. We plan to work on improving the accuracy of
the model, for example, by introducing different torus rout-
ing algorithms and modeling the details of virtual channels.
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