
AME: An Anyscale Many-Task Computing Engine
Zhao Zhang∗, Daniel S. Katz†, Matei Ripeanu‡, Michael Wilde†§, Ian Foster∗†§

∗Department of Computer Science, University of Chicago
†Computation Institute, University of Chicago & Argonne National Laboratory

‡Department of Electrical and Computer Engineering, University of British Columbia
§Mathematics and Computer Science Division, Argonne National Laboratory

Abstract—Many-Task Computing (MTC) is an emerging pro-
gramming model whose relevance on supercomputers is in-
creasing, driven by applications in biology, economics, and
statistics, and by paradigms such as data intensive computations
and uncertainty quantification. However, its high inter-task
parallelism and data-intensive processing capabilities pose new
challenges to existing supercomputer hardware-software stacks.
These challenges include resource provisioning; task dispatching,
dependency resolution, and load balancing; data management;
and resilience. This paper examines the characteristics of MTC
applications which create these challenges, and identifies related
gaps in MTC middleware for extreme-scale systems. Based on
this analysis, we propose AME, an Anyscale MTC Engine, which
addresses the scalability aspects of these gaps. We describe
the AME framework and present performance results for both
synthetic benchmarks and real applications. Our results show
that AME’s dispatching performance linearly scales up to 14,120
tasks/second on 16,384 cores with high efficiency. The overhead
of the intermediate data management scheme does not increase
significantly up to 16,384 cores. AME eliminates 73% of the data
transfer between compute nodes and the global filesystem for
the Montage astronomy application on 2,048 cores. Our results
indicate that AME scales well on today’s petascale machines, and
is a strong candidate for exascale machines.

Keywords-Many-Task Computing; scheduling; load balancing;
data management; supercomputer systems.

I. INTRODUCTION

As computers have become more powerful, the simulations
and data processing applications that use them have become
increasingly resource hungry, and, at the same time more
complex. Simulation complexity has increased in the number
of dimensions (from 1D to 2D to 3D), in the set of equations
being simulated (from one equation, to multiple equations in
one domain, to multiple equations in multiple domains), and
in the number of time scales being studied simultaneously.
Similarly, data-intensive applications are being composed from
increasingly complex analyses. In both cases, achieving in-
creased scientific productivity demands the integration of an
increasing number of such applications into larger meta-
applications. This can be achieved by adding additional layers
around the initial application, as is done in optimization,
uncertainty quantification, or parameter sweeps. Such meta-
applications can be considered many-task computing (MTC)
applications, as they are assembled from diverse task patterns,
each of which may be as simple as a procedure call or as com-
plex as a complete standalone application. Each distinct task
has unique data dependencies, and the entire MTC application

is often viewed as a directed graph of these dependencies. In
many cases, the data dependencies take the form of files that
are written to and read from a file system shared between the
compute resources; however, tasks in MTC applications can
also communicate in other manners. MTC data dependency
patterns vary among applications, several of which have been
characterized by Wozniak et al. [1], [2]

Today’s most powerful supercomputing systems, many of
which are being used to run MTC applications (e.g., IBM
BG/P; Cray XE and XT; Sun Constellation) have a set of
common features that include: a large number of multicore
compute nodes that may have RAM-based filesystems but
no local persistent storage; additional service nodes for in-
teractive tasks, compilation, and job submission; one or more
low-latency communication networks; and a globally shared
persistent file system. Compute nodes generally have POSIX-
compliant access to the shared file system, and some systems
provide a complete Linux kernel. The scheduling granularity
(i.e., the smallest number of compute nodes that can be
allocated to a job) varies, but the minimum resource allocation
unit can be 64 or more nodes, as is the case for the Intrepid
BG/P supercomputer deployed at Argonne.

The resource management stack of these large computing
resources, and indeed the machines themselves, have not
been designed for MTC applications. These machines mostly
run MPI-based applications and have been optimized for
such “HPC” workloads. Thus it is natural that the existing
hardware/software architecture is inadequate for MTC appli-
cations. Our experience [3] confirms that naı̈vely running
MTC applications on the existing hardware/software stack will
often result in a series of problems, including low machine
utilization, low scalability, and file system bottlenecks. To
address these issues, rather than aiming for a complete re-
engineering of the resource management stack, this paper
explores optimization avenues within the context of existing,
heavily-adopted resource management systems: we propose
and evaluate scheduling and data-storage mechanisms that
address or alleviate the scalability, performance, and load-
balancing issues mentioned.

More concretely, we propose AME, an Anyscale MTC En-
gine, designed to be compatible with existing supercomputer
hardware/software stacks. AME features a linear task submis-
sion rate, linear performance for task dependency resolution,
and linear data transfer performance for a commonly used
data-dependency “pipeline” pattern. By plugging in AME,

MTC applications can fully benefit from the computational
capacity of today’s supercomputers.

Examining the characteristics of MTC applications and the
resource management stack of current supercomputers, we
identify six gaps:

1© Resource provisioning: A first gap lies between the static
resource provisioning scheme generally used and the
variability in the run times of MTC tasks. Well known
schedulers such as PBS offer a static scheduling solution,
where it is not possible to release some of the computing
resources while the job is still running. The result of
coarse scheduling granularity on current machines is that
in some stages, the number of ready-to-run tasks of
an MTC application is lower than the scheduling unit,
leading to low utilization.

2© Task dispatching: Most existing supercomputer sched-
ulers incur many seconds to several minutes of latency
when starting and/or terminating allocations. This is an
unacceptable overhead for MTC applications that have
tasks durations of a few seconds or less.

3© Task dependency resolution: At the scale of today’s
largest machines, which are approaching 106 cores, task
dependency resolution must be done in parallel, yet no
such scheme has previously existed for MTC applica-
tions.

4© Load balancing: To obtain high machine utilization,
MTC applications require workload-specific load balanc-
ing techniques.

5© Data management: MTC applications often exhibit an in-
tensive I/O and data management load that overwhelms a
supercomputer’s I/O subsystems (in particular, its shared
file systems), which are not provisioned and sometimes
not even designed for this type of highly-concurrent and
metadata-operation-intensive workload.

6© Resilience: The lack of resilience mechanisms in current
resource management frameworks poses another chal-
lenge for MTC applications. Various failures may occur
while an MTC application is running. In current systems,
hardware and operating system failures at the node level
lead to canceling an entire allocation. Such failures are
not recoverable at the MTC engine level. When these
failures occur, the challenges of recovery include iden-
tifying completed tasks, inferring the task dependencies
of incomplete and failed tasks, and re-establishing the
states of various services of the runtime system. These
capabilities are not provided by the resource management
stacks of current supercomputers.

In some cases, task dispatching (2©) and load balancing (4©)
are interleaved within a scheduler. For example, a centralized
task scheduler that sends the longest task to the next available
compute node also balances the load among the compute
nodes. In the following discussion, the term dispatcher denotes
the scheduler’s role in the task dispatching scenario, while the
term load balancer refers to the load balancing role of either
the scheduler or an independent load balancing service.

In this paper, we address three of the above gaps, presenting
solutions for task dispatching (2©), task dependency resolution
(3©, and data management (5©). Resource provisioning (1©)
is usually closely coupled with system administration policy,
such as minimum allocation unit and job limit per user. In
some cases, specific node allocations are based on a network
topology, and partially deallocating resources is not feasible;
thus dynamic provisioning can not be applied. Load balancing
(4©) and resilience (6©) will be addressed in future work. Our
approach can be summarized as follows:

• To address the task dispatching gap (2©), we take advan-
tage of previous lessons from Falkon [4] and design and
evaluate a multi-level dispatcher. In addition, we evalu-
ate the tradeoffs between centralized and decentralized
dispatching designs.

• Our solutions to address the task dependency resolution
(3©) and data management (5©) gaps are closely cou-
pled. We present a Distributed Data Availability Pro-
tocol (DDAP) that supports the common “single-write
multiple-read” pattern of MTC applications. This protocol
also supports task dependency resolution by tracking
file existence states at runtime. The protocol is closely
tied to a location service and is implemented on top
of a distributed key-value store. To address the data
management gap (5©), we classify data passing according
to the usage patterns described in Zhang et. al.[3] as
common input, unique input, output, and intermediate
data. Our focus here is on the optimized handling of
intermediate data, and our data availability protocol and
lookup service supports this optimization.

The rest of the paper is organized as follows. In §II, we
discuss both previous work in this domain and related work
with intriguing ideas from other domains. In §III, we present
the high level design of AME and the communication among
modules of the system. We present the benchmark design
in §IV, and explain performance results in §V. Specifically,
in §V-A, we evaluate AME task dispatching performance by
comparing two design alternatives. Taking the result as a base-
line in §V-B, we further evaluate the scalability and the impact
of file size on the intermediate data management scheme.
We conduct an in-depth overhead analysis in §V-B. Lastly,
we compare two intermediate data placement alternatives, and
evaluate their scalability and overheads in §V-C. In §VI, we
examine a real-world MTC application that exhibits diverse
data-flow patterns. We conclude in §VII, and summarize future
work in §VIII.

A major contribution of this work is AME as a whole. AME
enables the execution of the new class of MTC applications
on supercomputers, with good performance and high system
resource utilization. A second contribution is the Distributed
Data Availability Protocol (DDAP), which resolves task de-
pendencies in MTC applications that exhibit the single-write
multiple-read pattern. DDAP is a protocol that is independent
of any specific data format (e.g., the data could be a POSIX file
or a in-memory structure). Along with a distributed key-value

store and a lookup service, DDAP resolves task dependencies
in a distributed manner with linear scalability (in a weak-
scaling sense). AME supports MTC applications developed on
top of the Pegasus [5] and Swift [2], [6] workflow specification
tools, through a translator that converts a Pegasus workflow
description or a Swift script into an AME task description.

II. RELATED WORK

Related and previous work are categorized here with respect
to the set of gaps we address (defined in §I).

A. Task Dispatching

Regardless of the programming paradigm, the MTC appli-
cation specification needs to be translated to machine code that
can be executed. Different programming frameworks, in both
the parallel and distributed program contexts, have different
solutions to dispatch tasks to workers. MPI leaves this to the
programmers. In general, MPI programs include the code for
all the tasks that may be run, and each compute node does
its part of the work, as identified by the worker’s rank. This
scheme is the most scalable of the ones we found, but it
requires the compute nodes to load redundant information:
every compute node needs to load the full compiled binary.
Pegasus/Condor [5] uses a centralized task dispatcher, the sub-
mit host, which keeps a shadow of every single task. It tracks
the lifetime state changes of the tasks. Thus its scalability
is limited to the capacity of the submit host. Additionally this
solution consumes a lot more memory on the submit host than
the MPI case. While Falkon [4] uses a three-tier architecture
(a first-tier submit host, a group of second-tier dispatchers,
and a group of third-tier workers), it still tracks task status
on the single first-tier submit host, thus the scalability of
running short tasks (O(1) s) stops growing linearly at some
point (which is dependent on the specific system, e.g., on the
BG/P it is at 4096 cores.) AME’s task dispatching mechanism
employs the same three-tier architecture as Falkon, but AME’s
dispatcher does not monitor the status of each task, which
results in higher scalability than Falkon; it makes the other
choice in the tradeoff between scalability and detailed task
status monitoring.

B. Task Dependency Resolution

Pegasus/Condor [5] lets users explicitly compose a work-
flow, while with the parallel scripting language Swift [2], [6],
workflow composition is implicit and dynamic. Nevertheless,
both systems use a a centralized submit host to resolve task
dependencies. AME can parse either a Pegasus workflow
description and or a Swift script, convert them to AME ad-hoc
task descriptions, and implicitly resolve the dependencies at
runtime in a distributed manner.

C. Data Management

Data management is a key component of many parallel and
distributed computing programming systems. Related work
on data management ranges from the operating system to
distributed computing middleware. ZOID [7] works with the

computer node OS kernel to accelerate I/O throughput from
computing resources to persistent storage. GPFS [8], LUS-
TRE [9], and PVFS [10] aim to provide scalable global
persistent storage for supercomputers. GridFTP [11], MosaS-
tore [12], and Chirp [13] provide data management primitives
on grids and clusters at workflow runtime. MPI I/O, includ-
ing the ROMIO [14] implementation, is designed to support
parallel I/O in MPI; it can be viewed as a data management
module. MPI also leaves this feature to programmers. In most
MapReduce scenarios, the data to be processed are assumed to
reside on the compute nodes. HDFS [15] (Hadoop Distributed
File System) places three replicas of each data chunk across
the compute nodes. Other work tries to isolate the data storage
and processing. HDFS’s scalability is mainly limited by its sin-
gle management node architecture. AME’s data management
system is designed to support MTC applications. It differs
from persistent storage in terms of the lifetime of the data
it manages. Using a scalable DHT-based design (described in
§III), it could theoretically scale up to any number of compute
nodes.

III. AME DESIGN

The AME system currently tackles three gaps, as previously
discussed: task dispatching, task dependency resolution, and
data management. AME consists of five modules: a provi-
sioner, a submitter, a group of decentralized dispatchers, a
group of DHT-based Data Location Lookup Services (DDLLS)
servers, and one worker per compute node. The provisioner
is in charge of resource requests and releases. It currently
uses a static resource provisioning strategy. The submitter is
the only central point in the AME system. The submitter
submits workflow descriptions to a number of dispatchers.
The decentralized dispatchers uniformly dispatch tasks to all
workers. The key-value store based DDLLS implements a
distributed data availability protocol, and provides file state
and location lookup interfaces. In addition to running a task,
a worker is capable of querying and updating the state and
location of data, and stealing tasks from neighbors. Fig. 1
shows the overview of the whole system.

Interconnect Network

Worker

Queue

Worker

Worker

DDLLS Server

DDAP

DHT

Worker

Queue

Worker

Worker

Dispatcher

Queue

Submitter

Task Partition

Task Partition

Fig. 1. AME overview

The submitter runs on the login node while task dispatchers,

Invalidstart Ready
input ready

Fig. 2. Task state transition diagram

DDLLS servers, and workers run on compute nodes. The
submitter communicates with the task dispatcher via POSIX
files on the shared file system. These files contain task de-
scriptions. All communications among dispatchers, DDLLS
servers, and workers are through the supercomputer’s inter-
connect network. The dispatchers only have a local view of
the tasks in their allocations; they talk to a designated group of
workers to dispatch tasks and collect task status. The DDLLS
servers exchange messages with workers to provide the data
location and data state change. Workers communicate among
themselves for data transfer.

One important notion in AME is an AME-unit. Each AME-
unit comprises a set of nodes that contains one dispatcher, a
group of workers, and one or several data managers. Each
individual node could contain the dispatcher and/or one or
more data mangers and/or a worker.

AME’s distributed data availability protocol (DDAP) is
used to resolve task dependencies. The submitter submits
all available tasks, regardless of data availability, and AME
guarantees that the tasks are launched in an order that satisfies
the dependencies. A feature of the AME system is that support
services can be scaled up to match the overall system scale
and workload intensity. For example, by maintaining a fixed
ratio of DDLLS servers to compute nodes, the number of file
records that each server manages remains stable regardless of
system scale. Thus the per-node query and update workload
will not increase with the number of tasks. In an ideal case,
where all tasks run for an identical time, the utilization of each
AME-unit remains constant as the system scales and number
of tasks increase.

We define task states as INVALID or READY based on
the availability of their input data. All tasks are initiated as
INVALID. As input data becomes available, either because it
already exists before execution or is produced during the run,
the state of the associated task is changed from INVALID to
READY, as shown by Fig. 2. A READY task state indicates a
task can be executed. This data-driven state transition separate
task management logic from data management logic. The
DDAP and the DDLLS simply monitor the state of every
single piece of data. Task dependencies are resolved based
on data state updates. Tasks assigned to a worker are executed
in a first READY, first run manner. Task dependencies in AME
are implicit; they are extracted from the workflow script. In
other tools (e.g., Pegasus), they are explicit; the user has to
specify them in the workflow description.

A. AME Execution Model

Fig. 3 shows the AME execution model. 1© Initially, a user
describes a workflow in the Swift [2], [6] language. Then the

Swift script is compiled into 2© a file list and 3© a task list. 4©
Once AME starts, the file list is loaded by the Distributed Data
Location Lookup Service (the DDLLS), and file records are
initialized accordingly. 5© All task descriptions are dispatched
to workers, and each worker maintains a local queue of tasks.
6© Workers talk to the DDLLS to find out the location of the

files, in this case, the intermediate files. Workers communicate
with each other either 7© to forward a task to another worker
for the purpose of locality or 8© to copy a file that was
produced remotely. (Note that locality is the subject of ongoing
research and is not further addressed in this paper.)

foreach i in files{
 temp[i] = produce(files[i]);
 output[i] = consume(temp[i]);
}

FileID Filename State
0 files0 Shared
...
N-1 filesN Shared
N temp0 Invalid
...
2N-1 tempN Invalid
2N output0 Invalid
...
3N-1 outputN Invalid

TaskID Binary Input Output Rule
0 -b /bin/produce -i files0 -o temp0 -a files0 temp0
...
N-1 -b /bin/produce -i filesN -o tempN -a filesN tempN
N -b /bin/consume -i temp0 -o output0 -a temp0 output0
...
2N-1 -b /bin/consume -i tempN -o outputN -a tempN outputN

Compute Node

Queue

Compute Node

DDLLS Server

DDAP

Swift Script

File List Task List

１

３２

５４

Compute Node

６ ７

Worker

Queue

Worker
8

Fig. 3. AME execution model

B. Distributed Memory Coherence Protocol

We introduce the distributed data availability protocol
(DDAP) to record file state transition. The DDAP is imple-
mented in two places, the worker and the DHT-based Data
Location Lookup Services.

In a worker, state transition logic tracks the state change
of every file that is related to tasks on the worker. There are
four states in this protocol: INVALID, LOCAL, SHARED,
and REMOTE. INVALID indicates that this file is not available
anywhere in the system; it is expected to be generated by some
task, but the task has not yet run. LOCAL means this file is
available on the local disk or the memory of this compute
node. SHARED files are in the shared file system. REMOTE
files are available on some other compute node. There is a state
transition from INVALID to REMOTE when an intermediate
file is produced. Upon an update from INVALID to REMOTE,
the protocol initiates a broadcast of the file location to all
workers that have requested the file. After an intermediate file
is copied from the producer to consumer, its state (on the
consuming node) is updated from REMOTE to LOCAL. A
state transition from LOCAL to SHARED only happens when
an output file is written from a local disk to the shared file
system. As MTC applications have a single-write multiple-
read pattern, once an intermediate file is written, its state is

Invalidstart Remote

LocalShared

Update

Update
Copy

Copy

Query Query

QueryQuery

Fig. 4. Local file state transition diagram, as used in the DDAP on the
workers

Invalidstart Valid
Update

Query Query

Fig. 5. Global file state transition diagram, as used in the DDAP on the
DDLLS servers

LOCAL and there will be no further state updates. Files that
are application outputs, on the other hand, will be copied to
persistent storage and their final state will be SHARED. Fig. 4
shows these state transitions.

The DDAP on the DDLLS has two states: INVALID and
VALID. All intermediate files are initialized as INVALID.
Upon a state query for an INVALID file, the protocol returns
the “not available” message, and links the address of the
worker to this file. Once an INVALID file is produced by
a worker, the producer updates the DDAP for that file from
INVALID to VALID. The DDAP associates the producer’s
address with the file, and broadcasts the producer’s address to
all workers who have queried this file. After this, queries on
the VALID file will return the address of the producer. Fig. 5
shows these state transition.

The DDAP is used for but not limited to POSIX-compatible
file state transition tracking. It could also be used to track
state change of in-memory data in another HPC programming
paradigm.

C. DHT-based Data Location Lookup Services

Each of the Data Location Lookup Servers has a in-memory
hash table. The key for the hash table is a file name as a string.
Each file name is unique in the namespace of one execution
of a MTC application. The associated value stores the status

of the file, the location of the file, and an address list. The
address list keeps track of the workers that request this file.

We use a static approach for the DHT design. (In this work,
we assume that no DHT servers leave or join during execution
of one workflow. This can be generalized by use of a reliable
DHT service, e.g., Chord [16].) The information on all related
files is distributed to all Data Lookup Servers by a consistent
hash function.

The following equations are used to compute the target
server for a given file:

Server_Rank = The rank of the server
Server_Num: The total number of servers
File_Name: The string of a file name
Hash_Value: The return value of

the hash function

Hash_Value = Hash(File_Name)
Server_Rank = Hash_Value % Server_Num

In this way, the records are uniformly distributed on all
DDLLS servers. Workers use the same method to find out
which server to query for the status of a given file.

To reduce the overhead produced by the MTC applications,
we adopt the approach described in our previous paper [3].
A pre-created hashed output directory can significantly reduce
the metadata server overhead by avoiding the locking mecha-
nism in GPFS and other shared file systems that don’t already
have hashed metadata servers.

D. Dispatcher

The AME dispatcher has a three-tier architecture. At the
highest level, the submitter is a central point; it provides tasks
to the second level dispatchers proportionally to the number
of workers associated with each dispatcher. The second level
dispatchers send tasks to the workers in its range also in a
uniform way. Each dispatcher keeps a record in memory for
every task that it owns. Before a task is sent to a worker, the
second level dispatcher puts a tag in the task in order to mark
the source of the task. (This tag is required for routing of
tasks when work stealing is used, but this is related to load-
balancing and data-aware scheduling that are not covered in
this paper.)

E. Worker

The worker’s main function is to execute tasks. In addition,
it also has functions to enable task dispatching, work stealing,
etc. It keeps several data structures in memory: a queue that
stores tasks received from the dispatcher, a ready queue that
stores all tasks that are ready to run, a result queue that keeps
the results for finished tasks, a task hash map with task ID
as key and task description as value to store tasks that have
unavailable data, and a reverse hash map with file name as key
and task ID as value. In the task hash map, there are also a
pair of values that indicate the number of available input files
and the total input files.

The worker has four active data coordination threads. The
fetcher fetches tasks from the dispatcher, and pushes them into

the task queue. The committer pops results from the result
queue and send them to dispatcher. The task mover checks
the availability of input files of the tasks in the task queue.
The receiver accepts broadcast messages from DHT servers.
Upon every received message, it first finds the corresponding
task ID in the reverse hash map, then adds one to the available
input file count in the task map. In addition, the worker has
one thread per core that is used to run the tasks. On the BG/P,
there are four such threads.

IV. AME DESIGN ALTERNATIVES

In this section, we describe two of the choices we have
made in the design on AME, and why we have made them.
In §V, we will show experimental results of these choices.

A. Centralized vs. Decentralized Dispatching

In a centralized design, the submitter keeps track of the
states of the tasks (i.e., it monitors the state transition of tasks.)
It requires some amount of memory to store the return state,
queuing time, running time, etc. In a decentralized design,
the submitter only keeps track of the number of tasks for
each dispatcher, initializes the dispatchers, and waits until all
dispatchers return. It is easier for a centralized submitter to find
the status of tasks and to rerun tasks that have failed or not
returned. Removing the management logic from the submitter
has two advantages: it reduces the amount of memory used
by the submitter, and it reduces the amount of work done by
the submitter. Thus, it enhances scalability, as will be shown
in §V-A. In the centralized design, there is a tradeoff between
scalability and efficiency, while the decentralized design has
better efficiency at large scale, but sacrifices centralized task
information.

B. Collocated vs. Isolated Data Processing and Storage

To support intermediate data caching, we could either use an
intermediate file system that is aggregated over some dedicated
compute nodes on-the-fly, or we could use a distributed data
store spread on all compute nodes while they run tasks. We
refer to the former case as isolated data processing and storage
(isolated), and the latter as collocated data processing and
storage (collocated). In both cases, the DDLLS is similarly
used, as tasks that need intermediate data files will need to
find out where they are. However, in the collocated case,
files are only copied once, from their source directly to their
destination, while in the isolated case, each file is copied twice,
from its source to the data store and from the data store to
its destination. Both the collocated and isolated schemes have
been implemented in AME, and their performance is discussed
in §V-C.

V. PERFORMANCE EVALUATION

We have used the IBM BG/P Intrepid at Argonne National
Laboratory for performance testing of AME. It has 40,960
quad-core compute nodes, each with 2 GB of memory. Intrepid
is composed of 640 psets, each of which is a group of 64
compute nodes and one associated I/O node. Within a pset, the

I/O node and compute nodes communicate via a tree network.
Compute nodes in different psets communicate via a 3D torus
network.

AME on BG/P uses a single submitter on a login node. We
divide our allocated resources into AME-units of 64 compute
nodes, and on each, we run the dispatcher and the data
manager on a single node, with the other 63 nodes running
one worker each.. The submitter and dispatchers communicate
via the shared file system, and the workers, dispatchers, and
data managers communicate over the torus network.

A. Dispatching, without data transfer

We first show the AME dispatching performance with both
the centralized and decentralized design. In the centralized
design test, we want to find out the appropriate scale, given the
task length and required efficiency, while in the decentralized
design, we try to verify that the performance remains constant
as the scale increases. We first test the AME dispatcher’s
performance by running a suite of synthetic tasks. We run 16
tasks on each code, each of which runs for the same amount
of time, 0, 1, 4, 16, or 64 seconds, in a given test. Figs. 6
and 7 show the dispatching rates for the centralized and de-
centralized dispatcher. The dispatching rate of the centralized
dispatcher increases linearly up to 512 nodes (2,048 cores).
From there, the increase slows down significantly due to the
login node’s limited ability to manage traffic over sockets.
In the decentralized dispatching case, the performance keeps
increasing linearly up to 4,096 nodes (16,384 cores). The
reason for this improvement is that the submitter partitions
the task description file and only issues control traffic to the
dispatchers, instead of sending tasks to them. The dispatch
rate will stop increasing linearly at some point, because the
system hits the GPFS read performance limit.

Fig. 6. Dispatching rate of centralized dispatcher

Figs. 8 and 9 shows the workload efficiency in both of the
centralized and decentralized dispatchers. The efficiency (E)
is computed as

E =
task length ∗ tasks per core ∗ num cores

time to solution ∗ tasks per core ∗ num cores
(1)

Figs. 8 and 9 show how long a task should be in order
to achieve a certain efficiency, ignoring data transfer at this
point. Centralized dispatching performs better at small core
counts here, but in order to efficiently scale up, decentralized

Fig. 7. Dispatching rate of decentralized dispatcher

dispatching is needed. For example, to achieve 90% efficiency
at 8,192 cores, tasks run by the centralized dispatcher need
to be at least 16 seconds long, but with the decentralized
dispatcher, tasks only need to be 4 seconds long. The decen-
tralized dispatcher allows domain scientists more flexibility by
permitting them to use shorter tasks in their MTC applications.

Fig. 8. Efficiency of centralized dispatcher

Fig. 9. Efficiency of decentralized dispatcher

B. Dispatching and transferring data

Next, we try to verify the linear scalability of the proposed
intermediate data management scheme, evaluate how the file
size affect the scheme.

1) Scalability: We use the same settings as the test suite
in the above section with only one difference: we introduce
task dependencies. Rather than sending 16 independent tasks
to each core, we send eight pairs of tasks, each pair containing
a task dependency. The first task in each pair runs for the task

length, and outputs a 10-byte file. The second task in each
pair takes the file from first task as input, then runs for the
same task length. We use the decentralized dispatcher with
the DDLLS to conduct the tests. The tests are set up so that
every pair of tasks runs on two separate nodes, meaning that
satisfying the dependencies always requires a file transfer.

Fig. 10 shows the time-to-solution vs. the task length for
various numbers of cores. Though some overhead is introduced
by the intermediate data handling scheme, it remains almost
constant up as the number of cores increases to 8,192 due to
the consistent hashing scheme, as shown in Fig. 11. At 16,384
cores, there is a significant increase for the task lengths of 1
and 4 seconds. This is because the peer data transfer on the
interconnect network takes a longer time as the scale increases,
and shorter tasks cause more temporal hot spots in the DDLLS
servers. Overhead is computed as the difference between the
time-to-solution of the dispatching without data transfer test
(performed in §V-A) and the dispatching with data transfer test
(performed here). Note that the intermediate data management
overhead decreases as the task length increases because longer
running tasks better spread traffic to the DDLLS servers over
time, preventing temporal hot spots.

Fig. 10. Time-to-solution with intermediate data

Fig. 11. Overhead introduced by intermediate data handling scheme

2) File Size Impact: We next examine the impact of varying
the file size, running four pairs of 16-second tasks with data
dependencies between the pairs as in the previous test. We
sweep over two parameters: number of cores and file size. In
each experiment, these files are either 1 KB, 1 MB, or 10 MB.
The tests are again set up so that every pair of tasks runs on
two separate nodes, meaning that satisfying the dependencies

always requires a file transfer. In this workload, each compute
node has 16 cached files that are produced by its four cores,
and another 16 files transferred from other compute nodes. The
ideal (no overhead) time-to-solution of this test would be 128
seconds. There are two sources of overhead: task dispatching
and intermediate data management. We see two trends in
Fig. 12. One is that for a given number of cores, larger file
sizes have more overhead, between 0.14% and 0.49% going
from 1 KB to 1 MB files, and between 1.1% and 3.1% going
from 1 KB to 10 MB files. The other trend is that for the same
size files, using more cores has more overhead. The overhead
comes from the file transfer over the torus network; more cores
mean that file transfers have to take more hops across the
network. From 256 cores to 8,192 cores, the increase in data
transfer overhead is 5.5%, 5.8%, and 6.4%, for file sizes of
1 KB, 1 MB, and 10 MB respectively.

Fig. 12. Impact of file size time-to-solution

C. Collocated vs. Isolated Data Storage and Processing

This test verifies the scalability of both collocated and
isolated data storage and processing. Fig. 13 shows the over-
head of the two schemes. We used the same settings and
workloads as §V-B, and we ran each test 5 times, computing
the overhead by subtracting the ideal time-to-solution from
the average. Generally, the collocated scheme performs better
than the isolated scheme in terms of time-to-solution, as was
previously discussed. (One might naı̈vely assume the overhead
of the isolated scheme would be as twice that of the collocated
scheme, as it involves two data movements as opposed to one.
However, it is not, as the data transfer overlaps the tasks
execution on the workers.) It is possible that the isolated
scheme would have lower overhead than the collocated scheme
if the compute nodes that were used to store the data were
saturated by computation. A fuller comparison, which would
also have to include any sacrifice of nodes to the intermediate
storage system, is left for future work.

D. Data Transfer Overhead Analysis

Finally, we examine the overhead of the intermediate data
management scheme. There are four potential sources: net-
work congestion, DDLLS queuing, hash table synchronization
in the DDLLS, and CPU-saturation of the OS. Workers access
the DDLLS for two reasons: to query the state of some
intermediate data, and to update the state of a piece of

Fig. 13. Performance of collocated vs. isolated data storage and processing

data. Initially, each worker queries the input files for the
second task in each pair, which have not yet been generated.
The next eight rounds of data operations are updates. When
the workers finish the first tasks in each pair, they update
the state of the files they produce. Upon these updates, the
DDLLS broadcasts the data locations to the workers who
queried them. Then, workers copies the files from remote
peers. In our test with 64 compute nodes (63 workers and
1 dispatcher and data manager), we run 4,032 tasks with
2,016 intermediate files. There are several periods of traffic
congestion: in the first round of query traffic, 2016 queries
arrive the DDLLS concurrently; once each round of tasks
finishes, 252 updates arrive at the DDLLS concurrently; and
upon receiving the location of the files, workers copy them
across the network, with potential network congestion. These
three potential congestion overlap or partially overlap, and
cause overhead in the intermediate data management scheme.

Fig. 14 quantifies this congestion. The average time needed
for a query is 148.4 ms (of which 144.3 ms is the queuing
time at the DDLLS), while the average update operation takes
3.1 ms (of which 2.5 ms is the queuing time at the DDLLS).
Upon receiving the intermediate data location, workers initiate
transfers to remote peer to get the data. As Fig. 14 shows, the
data transfer takes 0.2 s on average, with standard deviation
of 0.24 s. The latency comes from the CPU-saturated OS.
Comparing between the rounds of data transfer, later rounds
are spread across a longer range of time, with a lower workload
on the CPU, and thus lower data transfer latency. There
are eight threads running actively in a worker on a quad-
core Power CPU. Shorter tasks put a heavier load on thread
switching on the CPU, producing a larger overhead.

VI. APPLICATION EXPERIMENTS

Montage is an astronomy application that builds mosaics
from a number of small images from telescope. It has been
successfully run on supercomputers and grids, with MPI and
Pegasus respectively [17]. The Pegasus version of the Montage
workflow has nine stages, three of which involve steps that
can be executed in parallel. In the AME version of Montage,
we divide Montage into eight stages. Stage 1 is mProject,
which takes in raw input files and outputs reprojected images.
Stage 2 is mImgtbl, which takes the metadata of all the

Fig. 14. End-to-end operation time on workers

reprojected images, and generates a summary image table.
Stage 3 is mOverlaps, which analyses the image table, and
produces a metadata table describing which images overlap
along with a task list of mDiffFit tasks (one for each pair of
overlapping images). The fourth stage, mDiffFit, has tasks
that take as input two overlapping output files from Stage 1
and fit a plane to the overlap region. Stage 5, mConcatFit,
is similar to Stage 2; it gathers all output data from the
previous stage (coefficients of the planes), and summarizes
them into one file. mBgModel, Stage 6, analyses the metadata
from Stage 2 and the data from Stage 5, creating a set
of background rectification coefficients for each image, then
generates a mBackground task list for the next stage. The
7th stage of the current workflow is mBackground, which
actually applies the rectification to the reprojected images.
The mBackground stage is the only stage where we move
data from the compute nodes to GPFS; in all other stages,
the data remains only on the compute nodes. The last stage,
mAdd, reads output files from mBackground, and writes an
aggregated mosaic file, the size of which is close to the sum of
the sizes of the input files. Because the combined size of the
input and output files in this state exceeds the RAM capacity
of a BG/P nodes, we run the Montage-provided version of
mAdd on the data that AME stored in GPFS.

We ran a test of Montage that produces a 6 x 6 mosaic
centered at galaxy M101. It has 1,319 input files, each of
which is 2 MB. Stage 1 outputs 1,319 4-MB files. We ran the
2nd and 5th stage with the AME built-in reduction function.
Stages 3 and 6 runs on the login node, as they analyze
summarized files, and generate new tasks. Stages 1, 4, 7 each
run in a parallel manner; they process the input/output data
with the data management scheme we described in previous
sections. Each task in Stage 7 writes a file of 4 MB size.
We compare the performance of the 512-core approach with
a single node execution to show speedup, as in Table I. The
time is measured in seconds.

The 1-core data is estimated from the performance of the
login node, which is 4x times faster than a compute node.
The mBackground stage has a lower speedup because it
moves the output from compute nodes to GPFS. If we can run
mAdd in a MTC style, then we could reduce this consumption
by transferring data among compute nodes, and only port

of tasks 1 core (s) 512 cores (s) speedup
mProject 1319 21220.32 56.53 375.38
mDiffFit 3883 35960.12 95.32 377.27
mBackground 1297 9815.92 64.44 152.33

TABLE I
PERFORMANCE COMPARISON OF AME AND SINGLE-NODE EXECUTION

GPFS (MB) AME (MB) Saving(%)
mProject-input 2800 2800 0%
mProject-output 5500 0.36 100%
mDiffFit-input 31000 0 100%
mDiffFit-output 3900 0.81 100%
mBackground-input 5200 0 100%
mBackground-output 5200 5200 0%
mAdd-input 5200 5200 0%
mAdd-output 3700 3700 0%
total 62500 16901.17 72.96%

TABLE II
COMPARISON OF DATA TRANSFER AMOUNT BETWEEN GPFS AND AME

APPROACHES

the mAdd output to GPFS. The mImgtbl and mBgModel
stages are done with the AME built-in reduction function. The
processing times are short, 9.6 and 14 seconds respectively. In
this test, we reduce the data movement from compute nodes
to GPFS by 45.6 GB, as shown in Table II.

VII. CONCLUSION

None of the existing parallel programming language models
were designed for exascale systems. Some of them, like MPI,
might have a lower barrier to scaling up to exascale with some
optimization, but some of them are themselves limited by
their architecture. Nevertheless, to scale up a programming
paradigm to the order of millions of CPU cores, we need
to solve some common issues, which are perfectly covered
by our six gaps: resource provisioning, task dispatching, task
dependency resolution, load balancing, data management and
system resilience.

AME is a MTC Computing engine that is designed for
ultrascale supercomputers, with the focus on scalability. Using
the principle of avoiding a central point, AME’s dispatchers
dispatch tasks in a partially distributed manner, AME’s inter-
mediate data management scheme employ a linear scalable
solution theoretically up to any scale, and AME’s load bal-
ancing scheme relies on a work-stealing algorithm that is fully
distributed across the allocation.

The benchmarks show that AME performs as expected.
Dispatching performance increases linearly up to 16,384 cores.
We are confident that performance will keep scaling up linearly
until it hits the read performance bottleneck of the GPFS
configuration. Even though the intermediate data management
scheme introduces extra overhead, the overhead remains con-
stant in the benchmark tests up to 16,384 cores.

AME emphasizes its scalability on ultrascale machines with
all of its tasks dispatchers, data managers and load balancers.
In the dispatching test on 16,384 cores, AME ran 262,144
tasks with variable task lengths. And in the data management

test on 16,384 cores, the total number of files managed was
131,072. With 10 MB per file, the total file size was 1.3 TB.

AME is successful at running the Montage workflow. The
workflow that produces a 6x6 mosaic using 512 cores on
BG/P handles 62.5 GB of data in total. AME reduces data
movement between compute nodes and GPFS from 62.5 GB
to 16.9 GB, and significantly improves the utilization of the
allocation during the run. The current implementation of AME
can only takes advantage of tasks with I/O that is small enough
to be be done in RAM. In addition to using a shared disk
storage system, an aggregated shared intermediate file system
(e.g., MosaStore) could be used to remedy this issue.

VIII. FUTURE WORK

To benefit from data locality, we will determine the advan-
tages and disadvantages of routing tasks to data rather than
moving data to tasks by leveraging the existing implementation
of the DDLLS. This work is underway.

To address the reliability of the system, we need to provide
domain scientists with resilience features because the work-
flow can fail during any part of the run. For this, failed and
unreturned tasks could be retried explicitly by the scientists or
automatically by the system.

Automatically integrating the engine with existing parallel
scripting language such as Swift is another challenging area
of work. We will identify the primitive semantics of parallel
scripting languages and build them into the AME system. One
basic question is how to support dynamic branching in the
engine.

With larger scale testing, we will answer a further question,
which is a basic assumption of this work: will network con-
gestion dramatically increase as the scale increases? If so, we
need to determine a topology-aware algorithm to determine the
location of DDLLS servers to minimize the traffic congestion.

Finally, we will collaborate with additional domain scien-
tists to run more MTC applications with AME, in order to
gain more real-world understanding of AME’s performance
and utility.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Department
of Energy under the ASCR X-Stack program (contract DE-
SC0005380) and under contract DE-AC02-06CH11357. Com-
puting resources were provided by the Argonne Leadership
Computing Facility. We thank Kamil Iskra, Kazutomo Yoshii,
and Harish Naik from the ZeptoOS team at the Mathematics
and Computer Science Division, Argonne National Laboratory,
for their effective and timely support. We also thank the ALCF
support team at Argonne. Special thanks goes to Professor
Rick Stevens of the Dept. of Computer Science, U. Chicago
for his enlightening class.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,

and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

REFERENCES

[1] J. M. Wozniak and M. Wilde, “Case studies in storage access by
loosely coupled petascale applications,” in Proc. 4th Annual Workshop
on Petascale Data Storage, 2009, pp. 16–20.

[2] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu, “Parallel scripting for applications
at the petascale and beyond,” Computer, vol. 42, pp. 50–60, 2009.

[3] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, and M. Wilde,
“Design and evaluation of a collective I/O model for loosely coupled
petascale programming,” in Proceedings of Many-Task Computing on
Grids and Supercomputers, 2008, 2008, pp. 1–10.

[4] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, “Falkon: a
Fast and Light-weight tasK executiON framework,” in Proc. IEEE/ACM
Supercomputing 2007, 2007, pp. 1–12.

[5] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, pp. 237–246, 2002.

[6] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, pp. 633–652, September 2011.

[7] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-
forwarding infrastructure for petascale architectures,” in Proc. of 13th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’08. New York, NY, USA: ACM, 2008, pp. 153–162.

[8] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” in In Proceedings of the 2002 Conference on File
and Storage Technologies FAST, 2002, pp. 231–244.

[9] S. Donovan, G. Huizenga, A. J. Hutton, A. J. Hutton, C. C. Ross, C. C.
Ross, L. Symposium, L. Symposium, L. Symposium, M. K. Petersen,
W. O. Source, and P. Schwan, “Lustre: Building a file system for 1,000-
node clusters,” 2003.

[10] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur, “PVFS:
a parallel file system for linux clusters,” in Proceedings of the 4th
annual Linux Showcase & Conference - Volume 4. Berkeley, CA,
USA: USENIX Association, 2000, pp. 28–28.

[11] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke,
“Data management and transfer in high-performance computational grid
environments,” Parallel Comput., vol. 28, pp. 749–771, May 2002.

[12] S. Al-Kiswany, A. Gharaibeh, and M. Ripeanu, “The case for a versatile
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 10–14, March
2010.

[13] D. Thain, C. Moretti, and J. Hemmes, “Chirp: a practical global
filesystem for cluster and grid computing,” Journal of Grid Computing,
vol. 7, no. 1, pp. 51–72, 2009.

[14] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in
ROMIO,” Symp. on Frontiers of Massively Par. Proc., p. 182, 1999.

[15] D. Borthakur, “HDFS architecture,”
http://hadoop.apache.org/common/docs/r0.20.0/hdfs design.pdf.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the ACM SIGCOMM ’01 Conference, August 2001.

[17] D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good, A. C. Laity,
E. Deelman, C. Kesselman, and G. Singh, “A comparison of two
methods for building astronomical image mosaics on a grid,” in Proc.
2005 Intl. Conf. on Parallel Proc. Workshops, 2005, pp. 85–94.

