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Abstract

Development of scientific modeling software increasingly requires the cou-

pling of multiple, independently developed models. Component-based soft-

ware engineering enables the integration of plug-and-play components, but

significant additional challenges must be addressed in any specific domain in

order to produce a usable development and simulation environment that also

encourages contributions and adoption by entire communities. In this pa-

per we describe the challenges in creating a coupling environment for Earth-

surface process modeling and the innovative approach that we have developed

to address them within the Community Surface Dynamics Modeling System.
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1. Introduction1

The Community Surface Dynamics Modeling System (CSDMS) project [12]2

is an NSF-funded, international effort to develop a suite of modular numerical3

models able to simulate a wide variety of Earth-surface processes, on time4

scales ranging from individual events to many millions of years. CSDMS5

maintains a large, searchable inventory of contributed models and promotes6

the sharing, reuse, and integration of open-source modeling software. It has7

adopted a component-based software development model and has created8

a suite of tools that make the creation of plug-and-play components from9

stand-alone models as automated and effortless as possible. Models or pro-10

cess modules that have been converted to component form are much more11

flexible and can be rapidly assembled into new configurations to solve a wider12

variety of scientific problems. The ease with which one component can be13

replaced by another also facilitates experimenting with different approaches14

to providing a particular type of functionality. CSDMS also has a mandate15

from the NSF to provide a migration pathway for surface dynamics modelers16

toward high-performance computing (HPC) and provides a 720-core super-17

computer for use by its members. In addition, CSDMS provides educational18

infrastructure related to physically based modeling.19

This paper presents key issues and design criteria for a component-based,20

integrated modeling system and then describes the design choices adopted21

by CSDMS to address them. CSDMS was not developed in isolation: it22

builds on and extends proven, open-source technology. The CSDMS project23

also maintains close collaborations with several other integrated modeling24

projects (such as ESMF, OpenMI and OMS) and seeks to evaluate different25
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approaches in pursuit of those that are optimal. As with any design problem,26

myriad factors must be considered in determining what is optimal, including27

how various choices affect users and developers. Other key factors are per-28

formance, ease of maintenance, ease of use, flexibility, portability, stability,29

encapsulation, and software longevity.30

Component-based programming brings the advantages of “plug and play”31

technology into the realm of software. When buying a new peripheral for a32

computer, such as a mouse or printer, one wishes to simply plug it into the33

correct kind of port (e.g., a USB, serial, or parallel port) and have it work,34

right out of the box. For this situtation to be possible, however, a published35

standard is needed, against which the makers of peripheral devices can de-36

sign their products. For example, most computers have universal serial bus37

(USB) ports, and the USB standard is well documented. A computer’s USB38

port can always be expected to provide certain capabilities, such as the abil-39

ity to transmit data at a particular speed and the ability to provide a 5-volt40

supply of power with a maximum current of 500 mA. The benefit of this41

standardization is that one can buy a new device, plug it into a computer’s42

USB port, and start using it. Software “plug-ins” work in a similar manner,43

relying on interfaces (ports) that have well-documented structure or capabil-44

ities. In software, as in hardware, the term component refers to a unit that45

delivers a certain functionality and that can be “plugged in.”46

Component programming builds on the fundamental concepts of object-47

oriented programming, with the main difference being the introduction or48

presence of a runtime framework. Components are generally implemented as49

classes in an object-oriented language and are essentially “black boxes” that50
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encapsulate some useful bit of functionality. The purpose of a framework is51

to provide an environment in which components can be linked together to52

form applications. The framework also provides services to all components,53

such as the linking mechanism itself. The following are some key advantages54

of component-based programming:55

• Components can be written in different languages and still communi-56

cate (via language interoperability).57

• Components are precompiled units that can be replaced, added to, or58

deleted from an application at runtime via dynamic linking.59

• Components can easily be moved to a remote location (different ad-60

dress space) without recompiling other parts of the application (via61

RMI/RPC support).62

• Components can have multiple different interfaces.63

• Components can be “stateful”; component data is retained between64

method calls over its lifetime.65

• Components can be customized at runtime with configuration param-66

eters.67

• Components facilitate code reuse and rapid comparison of different68

implementations.69

• Components facilitate efficient cooperation between groups, each doing70

what it does best.71
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2. Background72

Here we review the role that the Common Component Architecture (CCA)73

has played in coponent programming. We then discuss three foundational74

tools that underpin CSDMS: Babel, Ccaffeine, and Bocca.75

2.1. The Common Component Architecture76

The Common Component Architecture [3] is a component architecture77

standard adopted by federal agencies (largely the Department of Energy and78

its national laboratories) and academic researchers to allow software compo-79

nents to be integrated for enhanced functionality on high-performance com-80

puting systems. The CCA Forum is a grassroots organization that started in81

1998 to promote component technology standards and code reuse for HPC.82

CCA defines standards necessary for interoperation of components developed83

in different frameworks. Components that adhere to these standards can be84

ported with relative ease to another CCA-compliant framework. While var-85

ious other component architecture standards exist in the commercial sector86

(e.g., CORBA, COM, .Net, and JavaBeans), CCA was created to fulfill the87

needs of scientific, high-performance, open-source computing that are un-88

met by these other standards. For example, scientific software requires full89

support for complex numbers, dynamically dimensioned multidimensional90

arrays, Fortran (and other languages), and multiple processor systems. Arm-91

strong et al. [3] explain the motivation for creating CCA by discussing the92

pros and cons of other component-based frameworks with regard to scien-93

tific, high-performance computing. Many of the papers in our cited references94

have been written by CCA Forum members and are helpful for learning more95
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about the CCA. The CCA Forum has also prepared a set of tutorials called96

“A Hands-On Guide to the Common Component Architecture” [11].97

A variety of different frameworks, such as Ccaffeine [1], CCAT/XCAT [25],98

SciRUN [15], and Decaf [26], adhere to the CCA standard. Ccaffeine was de-99

signed to support both serial and parallel computing, and SciRUN and XCAT100

were designed to support distributed computing. Decaf [26] was designed by101

the developers of Babel primarily as a means of studying the technical as-102

pects of the CCA standard itself. The important point is that each of these103

frameworks adheres to the same standard, and this facilitates reuse of CCA104

components in different computational settings.105

2.2. Language Interoperability with Babel106

One feature that often distinguishes components from ordinary subrou-107

tines, software modules, or classes is that they can communicate with other108

components that may be written in a different programming language. This109

capability is often provided within a component framework and is called110

language interoperability.111

Babel [29, 14] is an open-source, language interoperability tool (consist-112

ing of a compiler and runtime) that automatically generates the “glue code”113

necessary for components written in different computer languages to com-114

municate. As illustrated in Fig. 1, Babel currently supports C, C++, For-115

tran (77, 90, 95, and 2003), Java, and Python. Babel is much more than a116

“least common denominator” solution; it even enables passing of variables117

with data types that may not normally be supported by the target language118

(e.g., objects and complex numbers). Babel was designed to support scien-119

tific, high-performance computing and is used as an integral part of CCA-120
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compliant frameworks. It won an R&D 100 design award in 2006 for “the121

world’s most rapid communication among many programming languages in122

a single application.” It has been shown to outperform similar technologies123

such as CORBA and Microsoft’s COM and .NET.124

Figure 1: Language interoperability provided by Babel.

In order to create the glue code needed for two components written in dif-125

ferent programming languages to exchange information, Babel needs to know126

only about the interfaces of the two components. Babel therefore accepts as127

input a description of an interface in either of two “language-neutral” forms,128

XML (eXtensible Markup Language) or SIDL (Scientific Interface Defini-129

tion Language). The SIDL language (somewhat similar to CORBA’s IDL)130

was developed specifically for the Babel project. Its sole purpose is to pro-131

vide a concise description of a scientific software component interface. This132

interface description includes complete information about a component’s in-133

7



terface, such as the data types of all arguments and return values for each of134

the component’s methods (or member functions). SIDL has a complete set135

of fundamental data types to support scientific computing, from Booleans to136

double-precision complex numbers. It also supports more sophisticated data137

types such as enumerations, strings, objects, structs, and dynamic multi-138

dimensional arrays. A description of SIDL syntax and grammar can be found139

in “Appendix B: SIDL Grammar” in the Babel User’s Guide [14]. Complete140

details on how to represent a SIDL interface in XML are given in “Appendix141

C: Extensible Markup Language (XML)” of the same guide.142

2.3. The Ccaffeine Framework143

Ccaffeine [1] is the most widely used CCA framework, providing the run-144

time environment for sequential or parallel component applications. Us-145

ing Ccaffeine, component-based applications can run on diverse platforms,146

including laptops, desktops, clusters, and leadership-class supercomputers.147

Ccaffeine provides some rudimentary MPI communicator services, although148

individual components are responsible for managing parallelism internally149

(e.g., communicating with other distributed components). A CCA frame-150

work provides services, which include component instantiation and destruc-151

tion, connecting and disconnecting of ports, handling of input parameters,152

and control of MPI communicators. Ccaffeine was designed primarily to153

support single-component multiple-data (SCMD) programming, although it154

can support multiple-component multiple-data (MCMD) applications that155

implement more dynamic management of parallel resources.156

A typical CCA component’s execution consists of the following steps:157
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• The framework loads the dynamic library for the component. Static158

linking options are also available.159

• The component is instantiated. The framework calls the setServices160

method on the component, passing a handle to itself as an argument.161

• User-specified connections to other components’ ports are established162

by the framework.163

• If the component provides a gov.cca.ports.Go port (similar to a164

“main” subroutine), its go() method can be invoked to initiate com-165

putation.166

• Connections can be made and broken throughout the life of the com-167

ponent.168

• All component ports are disconnected, and the framework calls re-169

leaseServices prior to calling the component’s destructor.170

The handle to the framework services object, which all CCA components171

obtain shortly after instantiation, can be used to access various framework172

services throughout the component’s execution. This represents the main173

difference between a class and a component: a component dynamically ac-174

cesses another component’s functionality through dynamically connecting175

ports (requiring the presence of a framework), whereas classes in object-176

oriented languages call methods directly on instances of other classes.177

2.4. Component Development with Bocca178

Bocca [2] is a tool in the CCA tool chain that was designed to help users179

create, edit, and manage a set of SIDL-based entities, including the CCA180

9



components and ports associated with a particular project. Once a set of181

CCA-compliant components and ports has been prepared, a CCA-compliant182

framework such as Ccaffeine can be used to link the components together to183

create applications or composite models.184

Bocca was developed to address usability concerns and reduce the devel-185

opment effort required to implement multilanguage component applications.186

Bocca was designed specifically to free users from mundane, time-consuming,187

low-level tasks so they can focus on the scientific aspects of their applications.188

It can be viewed as a development environment tool that allows application189

developers to perform rapid component prototyping while maintaining ro-190

bust software engineering practices suitable to HPC environments. Bocca191

provides project management and a comprehensive build environment for192

creating and managing applications composed of CCA components. Bocca193

operates in a language-agnostic way by automatically invoking the Babel194

compiler. A set of Bocca commands required to create a component project195

can be saved as a shell script, so the project can be rapidly rebuilt, if neces-196

sary. Various aspects of an existing component project can also be modified197

by typing Bocca commands interactively at a Unix command prompt.198

While Bocca automatically generates dynamic libraries, a separate tool199

can be used to create stand-alone executables for projects by automatically200

bundling all required libraries on a given platform. Examples of using Bocca201

are available in the set of tutorials called “A Hands-On Guide to the Common202

Component Architecture,” written by the CCA Forum members [11].203
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3. Component Design Issues204

In this section we overview our CSDMS infrastructure design criteria and205

implementation approach.206

3.1. Design Criteria207

The technical goals of CSDMS include the following.208

• Support for multiple operating systems (especially Linux, Mac OS X,209

and Windows).210

• Language interoperability to support code contributions written in pro-211

cedural languages (e.g., C or Fortran) as well as object-oriented lan-212

guages (e.g., Java, C++, and Python).213

• Support for both structured and unstructured grids, requiring a spatial214

regridding tool.215

• Platform-independent graphical user interfaces (GUIs) and visualiza-216

tion capabilities where appropriate.217

• Use of well-established, open-source software standards whenever pos-218

sible (e.g., CCA, SIDL, OGC, MPI, NetCDF, OpenDAP, and XML).219

• Use of open-source tools that are mature and have well-established com-220

munities, avoiding dependencies on proprietary software (e.g., Win-221

dows, C#, and Matlab) whenever possible.222

• Support for both serial and parallel computation (multiprocessor, via223

MPI standard).224
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• Interoperability with other coupling frameworks. Because code reuse is a225

fundamental tenet of component-based modeling, the effort required to226

use a component in another framework should be kept to a minimum.227

• Robustness and ease of maintainenance. The modeling system will228

clearly have many software dependencies, and this software infrastruc-229

ture must be updated on a regular basis.230

• Use of HPC tools and libraries. If the modeling system runs on HPC231

architectures, it should strive to use parallel tools and models (e.g.,232

VisIt, PETSc, and the ESMF regridding tool).233

• Familiarity. Model developers and contributors should not be required234

to make major changes to their existing development processes and235

habits.236

With regard to the last criterion, developers should not be required to237

convert to another programming language or make pervasive changes to their238

code (e.g., use specified data structures, libraries, or classes). They should239

be able to retain “ownership” of the code and make continual improvements240

to it. Someone should be able to componentize future, improved versions241

with minimal additional effort. The developer will likely want to continue to242

use the code outside the framework. However, some degree of code refactor-243

ing (e.g., breaking code into functions or adding a few new functions) and244

ensuring that the code compiles with an open-source compiler are considered245

reasonable requirements.246

12



3.2. Interface vs. Implementation247

Many people, when hearing the word interface, immediately think of the248

interface between a person and a computer program, such as a graphical user249

interface. Within the present context of component programming, however,250

the focus is on interfaces between components. The word interface then has a251

specific meaning, essentially the same as in the Java programming language.252

An interface is a user-defined entity or type, similar to an abstract class.253

It does not have any data fields; instead, it is a named set of methods or254

member functions, each defined completely with regard to argument types255

and return types but without any actual implementation.256

Interfaces are key to reusability or “plug and play.” Once an interface has257

been defined, one can ask: Does this component have interface A? To answer258

this question, we simply look at the methods (or member functions) that259

the component has with regard to their names, argument types, and return260

types. If a component has a given interface, then it is said to expose, or261

implement, that interface; in other words, it contains an implementation for262

each of those methods. The component may also have other methods beyond263

those that constitute a particular interface. Thus, a single component can264

expose multiple, different interfaces, allowing it to be used in a greater variety265

of settings. An analogy exists in computer hardware, where a computer or266

peripheral may have a number of different ports (e.g., USB, serial, parallel,267

and ethernet) to enable it to communicate with a wider variety of other268

components.269

The distinction between interface and implementation is an important270

theme in computer science. The word pair declaration and definition is used271

13



in a similar way. A function (or class) declaration tells what the function272

does (and how to interact with or use it) but not how it works. To see how273

the function actually works, we must look at how it has been defined or274

implemented. C and C++ programmers are familiar with this idea, which275

is similar to declaring variables, functions, classes, and other data types in a276

header file with the file name extension .h or .hpp, and then defining their277

implementations in a separate file with extension .c or .cpp.278

Most of the gadgets that we use every day (from iPods to cars) are like279

this. We must understand their interfaces in order to use them (and interfaces280

are often standardized across vendors), but often we have no idea what is281

happening inside or how they actually work, which may be quite complex.282

While the tools in the CCA tool chain are powerful and general, they do283

not provide a ready interface for linking geoscience models (or any domain-284

specific models). In CCA terminology, a port is essentially a synonym for285

interface, and a distinction is made between ports that a given component286

uses (uses ports), and those that it provides (provides ports) to other com-287

ponents. This approach provides a means of bidirectional information ex-288

change between components, unlike dataflow-based approaches that support289

only unidirectional links between components.290

Each scientific modeling community that wishes to make use of the CCA291

tools must design or select the component interface best suited to the kinds292

of models they wish to link together. This is a big job that involves both293

social and technical issues and requires a significant time investment. The294

component interface we have developed for CSDMS is described in Sections295

4 and 5.296
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3.3. Granularity297

While components may represent any level of granularity, from a sim-298

ple function to a complete hydrologic model, the optimum level appears to299

be that of a particular physical process, such as infiltration, evaporation, or300

snowmelt. This is the level at which researchers typically want to swap out301

one method of modeling a process for another. A simpler method of param-302

eterizing a process may apply only to simplified special cases or may be used303

because there is insufficient input data to drive a more complex method. A304

different numerical method may solve the same equations with greater accu-305

racy, stability, or efficiency; it may or may not use multiple processors. Even306

the same method of modeling a given process may exhibit improved perfor-307

mance when coded in a different programming language. Physical processes308

often act within a domain that shares a physically important boundary with309

other domains (e.g., coastline and ocean-atmosphere). The fluxes between310

these domains are often of key interest and help to determine granularity.311

Some models are written in such a way that decomposing them into sepa-312

rate process components is not appropriate because of some special aspect of313

the model’s design or because decomposition would result in a loss of perfor-314

mance (e.g., speed, accuracy, or stability). For example, multiphysics mod-315

els—such as Penn State Integrated Hydrologic Model (PIHM)—represent316

many physical processes as one large, coupled set of ODEs that are then317

solved as a matrix problem on a supercomputer.318

3.4. Interchangeability and Autoconnection319

A key goal of component-based modeling is to create a collection of com-320

ponents that can be coupled together to create new and useful composite321
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models. This goal can be achieved by providing every component with the322

same interface. A secondary goal, however, is for the coupling process to be323

as automatic as possible, that is, to require as little input as possible from324

users. In order to achieve this goal, components must somehow be grouped325

into categories according to the functionality they provide. This grouping326

must be readily apparent to both a user and the framework (or system)327

so that it is clear whether a given pair of components are interchangeable.328

But what should it mean for two components to be interchangeable? Do329

they really need to use identical input variables and provide identical output330

variables?331

To clarify this issue, consider the physical process of infiltration within332

a hydrologic model. An infiltration component must provide the infiltration333

rate at the surface, because it represents a loss term in the overall hydro-334

logic budget. If the domain of the infiltration component is restricted to335

the unsaturated zone, above the water table, then it may also need to pro-336

vide a vertical flow rate at the water table boundary. Thus, any infiltration337

component must provide fluxes at the (top and bottom) boundaries of its338

domain. To do so, it needs variables such as flow depth and rainfall rate that339

are outside its domain and computed by another component. Hydrologists340

use a variety of different methods and approximations to compute surface341

infiltration rate. The Richards 3D method, for example, is a more rigor-342

ous approach that tracks four state variables throughout the domain. The343

Green-Ampt method, on the other hand, makes a number of simplifying as-344

sumptions, computes a smaller set of state variables, and does not resolve345

the vertical flow dynamics to the same level of detail (i.e., piston flow, sharp346
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wetting front). As a result, the Richards 3D and Green-Ampt infiltration347

components use a different set of input variables and provide a different set348

of output variables. Nevertheless, they both provide certain, key outputs such349

as surface infiltration rate and can therefore be used “interchangeably” in a350

hydrologic model.351

Autoconnection of components is important from a user’s point of view.352

Components typically require many input variables and produce many out-353

put variables. Users quickly become frustrated when they need to manually354

create all of these pairings or connections, especially when using more than355

just two or three components at a time. CSDMS currently employs an ap-356

proach to autoconnection that involves providing interfaces (i.e., CCA ports)357

with different names to reflect their intended use (or interchangeability), even358

though they use the same interface internally.359

4. The Basic Model Interface360

Most Earth-science models initialize a set of state variables (often as 1D,361

2D, or 3D arrays) and then execute of series of time steps that advance the362

variables forward in time according to physical laws (e.g., mass conservation)363

or some other set of rules. Hence, the underlying source code tends to follow a364

standard pattern that consists of three main parts. The first part comprises365

all source code prior to the start of the time loop and serves to set up or366

initialize the model. The second part comprises all source code within the367

time loop and is where the main functionality of the model is implemented368

to update state variables with each time step. The third part consists of all369

source code after the end of the time loop and serves to tear down, or finalize,370
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the model. Note that root-finding and relaxation algorithms follow a similar371

pattern even if the iterations do not represent timestepping.372

All the model coupling projects that we are aware of (including CSDMS,373

ESMF, OMS, and OpenMI) have developed a component interface that pro-374

vides initialize, update, and finalize functions. This approach provides a375

caller with fine-grained control that is essential for model coupling and al-376

lows the caller to bypass the model’s own time loop.377

The streamlined approach developed by CSDMS for converting mod-378

els into plug-and-play components utilizes two new interfaces in a two-level379

wrapping process. Recall that a component interface is simply a named set380

of functions (called methods) that have been defined completely in terms of381

their names, arguments, and return values. The first-level interface, called382

the Basic Model Interface (BMI), is the only one that model contributors are383

required to implement. The purpose of the BMI is to ensure that the model384

“fits into” the second-level wrapper, called the CSDMS Component Model385

Interface (CMI), discussed in the next section. By design, the BMI uses only386

simple data types and is easy to implement in all of the languages supported387

by CSDMS. However, it provides all of the information that is needed at the388

CMI level for plug-and-play modeling.389

Table 1 summarizes the key BMI functions. BMI.initialize() typically390

reads data from a configuration file, initializes variables, opens output files,391

and stores data in a “handle” for non-object-oriented languages. BMI.update()392

advances the state variables by one model time step. BMI.finalize() typically393

frees resources and closes files. Several “getter” and “setter” functions, whose394

details differ between languages, allow the CMI wrapper to retrieve data from395
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and load data into the model. The CMI wrapper must be able to retrieve396

anything it needs for model coupling, such as lists of input and output vari-397

able names; any variable’s units, rank or data type; and a description of the398

model’s grid or mesh. The BMI functions that must be provided to fully399

describe a model’s computational grid (not shown) depend on the type of400

grid, e.g. uniform, orthogonal curvilinear, or unstructured.401

Table 1. Summary of BMI functions.

opaque initialize( string config file )

Returns a “handle”. Initialize variables, open files, etc.

void update( double dt )

Advance state variables by one time step (model’s own, if dt = -1)

void finalize()

Free resources, close files, reporting, etc.

void run model( string config file )

Do a complete model run. (Not called by CMI.)

array<string> get input var names()

Return a list of model’s input vars.

array<string> get output var names()

Return a list of model’s output vars.

string get attribute( string att name )

Return mesh type (raster/ugrid), time step type (fixed/adaptive), etc.

string get var type( string long var name )

Return variable’s type, e.g. ‘double’, ‘int’

string get var units( string long var name )

Return variable’s units, e.g. ‘meters’ (UD units standard)

int get var rank( string long var name )

Return variable’s number of dimensions (0 for scalars)

(continued on next page)
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string get var name( string long var name )

Return model’s internal, short variable name

double get time step() # Return model’s current timestep

string get time units() # Return model’s time units, e.g. ‘seconds’

double get start time() # Return model’s start time

double get current time() # Return model’s currrent time

double get end time() # Return model’s end time

double get 0d double( string long var name )

Return a scalar of type double

array<double> get 1d double( string long var name )

Return a 1D array of type double

array<double,2> get 2d double( string long var name )

Return a 2D array of type double

array<double> get 2d double at indices( string long var name, array<int> in-

dices ) # Return a 1D array of values at specified indices in 2D array

void set 0d double( string long var name, double scalar )

Set a scalar of type double

void set 1d double( string long var name, array<double> array)

Set a 1D array of type double

void set 2d double( string long var name, array<double,2> array)

Set a 2D array of type double

void set 2d double at indices( string long var name, array<int> indices,

array<double,2> array) # Set values at indices in a 2D array of type double.

Notes:

(1) Each BMI function also has a “handle” argument, not shown.

(2) long var name must comply with the NetCDF CF conventions.

(3) Models with 3D arrays provide BMI.get 3d double(), etc.

(4) Models with 2D integer arrays provide BMI.get 2d int(), etc.
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Table 2. Summary of CMI functions.

bool initialize( string config file )

bool run for( double time interval, string time units )

void finalize()

bool run model( string config file, string stop rule, array<double> stop vars)

array<> get values( string long var name )

void set values( string long var name, array<> values )

string get status() # (see BMI set status)

void set status( string status )

string get mode() # (‘driver’ or ‘nondriver’)

void set mode( string mode )

array<string> get input var names()

Return a list of model’s input vars (CF convention long names).

array<string> get output var names()

Return a list of model’s output vars (CF convention long names).

string get var units( string long var name )

string get attribute( string att name )

Return mesh type (raster/ugrid), time step type (fixed/adaptive), etc.

void setServices() # (used by CCA framework)

void releaseServices() # (used by CCA framework)

5. The CSDMS Component Model Interface402

A model that provides the BMI functions is ready to be converted to a403

CSDMS plug-and-play component using automated tools that provide it with404

the CSDMS Component Model Interface. Therefore, model contributors do405

not need to know anything about the CMI or technical CCA framework con-406

cepts such as ports. The functions in the CMI allow CSDMS components to407

communicate and share data with other CSDMS components even if they are408
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written in a different language, use a different grid, use different units, or use409

a different timestepping scheme. A model wrapped as a CSDMS component410

becomes an object and can maintain its state variables between method calls,411

regardless of whether it was written in an object-oriented language.412

A CSDMS component must communicate with (make function calls to)413

five entities: (1) the model that it wraps, (2) other CSDMS components, (3)414

itself, (4) CSDMS service components and (5) the CSDMS/CCA framework.415

Each entity provides interface functions for this purpose. BMI functions416

are used to communicate with the underlying, wrapped model. CMI func-417

tions are used to communicate with other CSDMS components (and itself).418

Service components each have their own interface and provide a rich set of419

useful services, such as spatial regridding, interpolation in time, unit conver-420

sion, and writing of output to a standard file format (e.g., NetCDF). Every421

CSDMS component has a setServices() function that the framework calls to422

instantiate the component and give it a handle for calling framework services423

(e.g., services.getPort()).424

In CCA jargon, the “IMPL file” is where all the CMI functions are imple-425

mented. In our design, the CMI functions make calls only to the interfaces426

of the entities just discussed. Anything that is needed from the model is427

obtained through standardized BMI function calls. This means that essen-428

tially the same IMPL file can be used for all components written in a given429

language, such as Fortran.430

By design, our process to convert a model with a BMI interface to a plug-431

and-play component with a CMI interface is noninvasive. Model contributors432

do not insert any calls in their (BMI-compliant) code to CSDMS utilities or433
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services. The BMI functions do not call any external entity.434

Babel is used during compilation to create language bindings, or “glue435

code”, that allow the component to share data with other CSDMS compo-436

nents that may have been written in another language. In most cases, CS-437

DMS components access each other’s state variables through references (pass-438

by-reference) rather than copying data (pass-by-copy), as this approach re-439

sults in higher performance. However, since Babel supports Remote Method440

Invocation (RMI), it is not necessary for CSDMS components to reside in441

the same address space and they could even be coupled across a network.442

Table 2 summarizes the key CMI functions. CMI.initialize() must get443

and save the CCA ports it needs to call other components. It then calls444

CMI.initialize() on those components, if necessary, and finally calls BMI.initialize().445

CMI.run for() first calls CMI.run for() on the components it needs data from446

and retrieves that data. It then makes as many calls to BMI.update()447

as necessary to span a time interval. Because of this fine-grained control,448

CMI.run for() can then call service components to do other tasks after each449

update, such as write data to NetCDF files at a specified interval, advance450

a progress bar, or check a stopping rule. CMI.finalize() releases CCA ports451

and calls BMI.finalize(). CMI.get values() takes a long variable name argu-452

ment (following the NetCDF CF conventions) and makes calls to various BMI453

methods to retrieve the requested data. It then uses service components, if454

necessary, to convert units to those needed by the caller or perform spatial455

regridding to the caller’s grid. CMI.set values() does unit conversion and456

regridding, if necessary, before loading variables into the model’s state using457

BMI methods. A more detailed explanation of the CMI will be provided in458

23



a subsequent paper.459

6. Service Components: Tools That Any Component Can Use460

It is helpful for certain low-level tools or utilities to be encapsulated in461

special components called service components that can be automatically in-462

stantiated by a CCA framework on startup. Unlike other components, which463

users may assemble graphically into larger applications, users do not inter-464

act with service components directly. However, CMI functions can call the465

methods of service components through service ports. The use of service466

components allows CSDMS to maintain code for a shared functionality in467

a single place and to make that functionality available to all components468

regardless of the implementation language. Any CCA component can be469

“promoted” to a service component by registering it as such using a CCA470

port called gov.cca.ports.ServiceRegistry.471

CMI functions call service components for tasks like spatial regridding,472

as explained previously. An example regridding scenario is shown in Fig-473

ure 2. CSDMS uses regridding tools from both the ESMF and OpenMI474

projects. The ESMF regridder is implemented in Fortran and uses multiple475

processors. It also supports sophisticated options such as mass-conservative476

interpolation.477

7. Component Wrapping Issues478

For a small or simple model, little effort may be needed to rewrite the479

model in a preferred language and with a particular interface. Rewriting480

large models, however, is both time-consuming and error prone. In addition,481
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(a) Voronoi cells. (b) Intersecting raster and Voronoi cells.

(c) Voronoi cells before regridding. (d) After regridding to raster cells.

Figure 2: Regridding example.

most large models are under continual development, and a rewritten version482

will not see the benefits of future improvements. Thus, for code reuse to483

be practical, we need a language interoperability tool (such as Babel), so484

that components do not need to be converted to a different language, and485

a wrapping procedure to provide existing code with a new calling interface.486

Wrapping applies to the “outside” (interface) of a component vs. its “inside”487
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(implementation), so it tends to be a noninvasive and practical way to convert488

existing models into components.489

7.1. Wrapping for Object-Oriented Languages490

Component-based programming is essentially object-oriented program-491

ming with the addition of a runtime framework. Thus, if a model has been492

written as a class with a BMI interface, it is straightforward to convert it493

to a component with a CMI interface. For object-oriented languages, all494

the model data is encapsulated in the model object, and the built-in use495

of namespaces makes compilation straightforward. The object-oriented lan-496

guages supported by Babel are C++, Java, and Python.497

7.2. Wrapping for Procedural Languages498

Languages such as C or Fortran (up to 2003) do not provide object-499

oriented primitives for encapsulating data and functionality. Because component-500

based programming requires such encapsulation, the CCA provides a means501

to produce object-oriented software even in languages that do not support it502

directly. Specifically, all of the model’s data and functions must be bundled503

and a suitable namespace created. A model contributor provides implemen-504

tations for each of the BMI functions. In the case of Fortran, the model’s505

variables are encapsulated in named modules that are accessed via “use mod-506

ule name.” The model is then compiled as a set of shared library functions507

using Babel.508

When the model is wrapped with a CMI interface, the data and functions509

are made accessible to all the other CMI functions by using a “handle” that510

provides a reference to the model object. This handle is passed as the first511
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argument to each of the interface functions so that they can operate on a512

particular instance of a model. For example, in C this handle could simply513

be a pointer to the object, and in Fortran the handle could be an index into514

a table of opaque objects in a system table. Model handles are allocated and515

deallaocated in the CMI initialize and finalize functions, respectively.516

The creation of class or component wrappers also enables the careful517

definition of namespaces, thus reducing potential conflicts when integrating518

with other classes or components. In non-object-oriented languages, symbols519

(e.g., function names) are prefixed with the names of all enclosing packages520

and parent class. This approach greatly reduces the potential build-, link-,521

or runtime name conflicts that can result when multiple components define522

the same interfaces (e.g., the initialize, update, and finalize methods).523

8. The CSDMS Modeling Tool524

As explained in Section 2.3, Ccaffeine is a CCA-compliant framework525

for connecting components to create applications. From a user’s point of526

view, Ccaffeine is a low-level tool that executes a sequence of commands527

in a Ccaffeine script. The commands in the Ccaffeine scripting language528

are fairly simple, but many people prefer using a GUI because it provides529

a natural, visual representation of the connected components as boxes with530

buttons connected by wires. It can also prevent common scripting errors531

and offer many other convenient features. The CCA Forum developed such532

a GUI, called Ccafe-GUI, that presented components as boxes in a palette533

that can be moved into an arena (workspace) and connected by wires. It534

also allows component configurations and settings to be saved in BLD files535
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and instantly reloaded later. As a lightweight and platform-independent tool536

written in Java, Ccafe-GUI can be installed and used on any computer with537

Java support to create a Ccaffeine script. This script can then be sent to a538

remote, possibly high-performance computer for execution.539

While Ccafe-GUI was certainly useful, the CSDMS project realized that it540

could be improved and extended in numerous ways to make it more powerful541

and more user-friendly. In addition, these changes not only would serve the542

CSDMS community but could be shared back with the CCA community.543

The new version, called CMT (CSDMS Modeling Tool), works with any544

CCA-compliant components, not just CSDMS components. Significant new545

features of CMT 1.6 include the following.546

• Integration with a powerful visualization tool called VisIt (see below).547

• New, “wireless” paradigm for connecting components (see below).548

• A login dialog that prompts users for remote server login information.549

• Job management tools that are able to submit jobs to processors of a550

cluster.551

• “Launch and go”: launch a model run on a remote server and then552

shut down the GUI (the model continues running remotely).553

• New file menu entry: “Import Example Configuration.”554

• A help menu with numerous help documents and links to websites.555

• Ability to submit bug reports to CSDMS.556
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• Ability to do file transfers to and from a remote server.557

• Help button in tabbed dialogs to launch component-specific HTML558

help.559

• Support for droplists and mouse-over help in tabbed dialogs.560

• Support for custom project lists (e.g., projects not yet ready for re-561

lease).562

• A separate “driver palette” above the component palette.563

• Support for numerous user preferences, many relating to appearance.564

• Extensive cross-platform testing and “bulletproofing.”565

CMT provides integrated visualization by using VisIt. VisIt [47] is an566

open-source, interactive, parallel visualization and graphical analysis tool for567

viewing scientific data. It was developed by the U.S. Department of Energy568

Advanced Simulation and Computing Initiative to visualize and analyze the569

results of simulations ranging from kilobytes to terabytes. VisIt was designed570

so that users can install a client version on their PC that works together with571

a server version installed on a high-performance computer or cluster. The572

server version uses multiple processors to speed rendering of large data sets573

and then sends graphical output back to the client version. VisIt supports574

about five dozen file formats and provides a rich set of visualization features,575

including the ability to make movies from time-varying databases. CSDMS576

uses a service component to provide other components with the ability to577

write their output to NetCDF files that can be visualized with VisIt. Output578
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can be 0D, 1D, 2D, or 3D data evolving in time, such as a time series (e.g.,579

a hydrograph), a profile series (e.g., a soil moisture profile), a 2D grid stack580

(e.g., water depth), a 3D cube stack, or a scatter plot of XYZ triples.581

Another innovative feature of CMT 1.6 is that it can toggle between the582

original, wired mode and a new wireless mode. CSDMS found that displaying583

connections between components as wires (i.e., red lines) did not scale well to584

configurations with several components and multiple ports. In wireless mode,585

a component dragged from the palette to the arena appears to broadcast what586

it can provide (i.e., CCA provides ports) to other components in the arena587

(using a concentric circle animation). Any components in the arena that588

need to use that kind of port get linked automatically to the new one, as589

indicated using unique, matching colors (Fig. 3).590

CSDMS continues to make usability improvements to the CMT and used591

it to teach a graduate-level course on surface process modeling at the Univer-592

sity of Colorado, Boulder, in 2010. Several features of the CMT are ideal for593

teaching, including (1) the ability to save prebuilt component configurations594

and their settings in BLD files, (2) the File >> Import Example Configu-595

ration feature, (3) a standardized HTML help page for each component, (4)596

a uniform, tabbed-dialog GUI for each component, (5) rapid comparison of597

different approaches by swapping one component for another, (6) the simple598

installation procedure, and (7) the ability to use remote resources.599

9. Providing Components with a Uniform Help System and GUI600

Within a framework where it is easy to connect, interchange, and run601

coupled models, some users may treat components as black boxes and ignore602
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the underlying assumptions that a component was built upon. They may603

even couple two components for which coupling does not make sense. To604

combat this problem, each CSDMS component is bundled with an HTML605

help document, easily accessible through the CMT, that describes the model606

it wraps. These documents are standardized to include the following.607

• Extended model description (along with references)608

• Listing and brief description of the component’s uses and provides ports609

• Main equations of the model610

• Sample input and output611

• Acknowledgment of the model developer(s)612

CSDMS components also include XML files that describe their user-613

editable input variables. These files contain XML elements with detailed614

information about each variable including a default value, range of accept-615

able values, short and long descriptions, units, and data type. Using this616

XML file, the CMT automatically generates a graphical user interface for617

each component as a tabbed dialog. Despite significant differences between618

different models’ input files, this provides CMT users with a uniform in-619

terface across all components. Furthermore, the GUI checks user input for620

errors and provides easily accessible help within the same environment. Input621

obtained from the GUI is automatically saved into whatever type of input622

or configuration file the model was designed to use. This process is done by623

replacing placeholders in an input file template with values from the GUI.624
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10. Conclusions625

CSDMS has developed a component-based approach to integrated mod-626

eling that draws on the combined power of several open-source tools such627

as Babel, Bocca, Ccaffeine, the ESMF regridding tool, and the VisIt visu-628

alization tool. This noninvasive approach includes the new BMI and CMI629

interfaces. CSDMS also draws on the combined knowledge and creative effort630

of a large community of Earth-surface dynamics modelers and computer sci-631

entists. Using a variety of tools, standards and protocols, CSDMS converts632

a heterogeneous set of open-source, user-contributed models into a suite of633

plug-and-play modeling components that can be reused in many different634

contexts. The CSDMS model repository currently contains more than 160635

models and tools. Of those, 50 have been converted into components that636

can be used in coupled modeling scenarios with Ccaffeine or the CMT. An637

up-to-date list is maintained at csdms.colorado.edu. As with the model repos-638

itory as a whole, CSDMS components cover the breadth of surface dynamics639

systems.640

All the software that underlies CSDMS is installed and maintained on641

its high-performance cluster. CSDMS members have accounts on this clus-642

ter and access its resources using a lightweight, Java-based client application643

called the CSDMS Modeling Tool (CMT) that runs on virtually any desk-644

top or laptop computer. This approach is a type of community cloud since645

it provides remote access to numerous resources. This centralized cloud ap-646

proach offers many advantages including (1) simplified maintenance, (2) more647

reliable performance, (3) automated backups, (4) remote storage and com-648

putation (user’s PC remains free), (5) ability for many components (such649
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as ROMS) and tools (such as VisIt and ESMF’s regridder) to use parallel650

computation, (6) need for users to install only a lightweight client on their651

PC, (7) less need for technical support, and (8) ability to submit and run652

multiple jobs.653
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Figure 3: Hydrologic model assembled in the CMT by dragging interchangeable process

components from the palette to the arena.
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