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ON USE OF DISCRETE LAPLACE OPERATOR FOR
PRECONDITIONING KERNEL MATRICES

JIE CHEN∗

Abstract. This paper studies a preconditioning strategy applied to certain types of kernel
matrices that are increasingly ill conditioned. The ill conditioning of these matrices is tied to the
unbounded variation of the Fourier transform of the kernel function. Hence, the technique is to
differentiate the kernel to suppress the variation. The idea resembles some existing preconditioning
methods for Toeplitz matrices, where the theory heavily relies on the underlying fixed generating
function. The theory does not apply to the case of a fixed domain with increasingly fine discretiza-
tions, because the generating function depends on the grid size. For this case, we prove equal
distribution results on the spectrum of the resulting matrices. Furthermore, the proposed precondi-
tioning technique also applies to non-Toeplitz matrices, thus ridding the reliance on a regular grid
structure of the points. The preconditioning strategy can be used to accelerate an iterative solver
for solving linear systems with respect to kernel matrices.
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1. Introduction. Matrices generated by kernel functions are widely seen in sci-
entific computing and engineering applications, such as statistical analysis, electronic
structure calculations, and solving integral equations. Such matrices are often dense
(essentially full), unless the kernel function has a finite support, and/or sufficiently
small values are precluded. Hence, kernel matrices pose significant challenges for
solving the respective linear systems. This paper does not discuss the direct method
approaches (for recent developments of compression based direct methods see [17, 4]
among others); rather, iterative methods are in concern. The complexity of the for-
mer is dimension dependent, whereas the latter enjoys a linear complexity provided
that matrix-vector multiplications can be efficiently carried out and the number of
iterations grows “very slowly” with the matrix size. In this paper, we are interested
in improving the conditioning of the matrix to encourage convergence and reduce
iteration counts.

Formally, given a fixed and finite domain Ω in Rd, consider the matrix Φ ∈ Rn×n

defined with entries

Φij = φ(xi − xj)

for a set of points X = {xi ∈ Rd, i = 1, . . . , n} ⊂ Ω̄ and a kernel function φ : Rd → R
which is even, that is, φ(−x) = φ(x). We are interested in the asymptotics (in
particular the condition number κ) of Φ as n → ∞. The scenario of a fixed, finite
domain with increasingly dense points is not rare. Examples in practice include solving
equations in a domain with increasingly fine discretizations, or simulating stochastic
processes using increasingly dense sampling.

Suppose the kernel φ admits a Fourier transform (the case when φ admits only a
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generalized Fourier transform is discussed later). Denote by φ̂ the transform, that is,

φ(x) =

∫
Rd

φ̂(ω) exp(iωTx) dω. (1.1)

Then, for any vector a, the bilinear form aTΦa can be written as

n∑
i,j=1

aiajφ(xi − xj) =

∫
Rd

φ̂(ω)

∣∣∣∣ n∑
i=1

ai exp(iω
Txi)

∣∣∣∣2 dω. (1.2)

Here, the upright bold face letter i denotes the imaginary unit, and it is to be dis-
tinguished with the italic bold face letter i meaning a vector. Since φ is even, Φ is
symmetric, hence the condition number κ(Φ) is the ratio between the largest and the

smallest absolute eigenvalues of Φ. Further, Φ is positive definite if and only if φ̂ is
positive almost everywhere.

The analysis of the integral (1.2) is made easy if one assumes that the point
set X forms a regular grid; this assumption is used to illustrate the ill conditioning
of Φ. Without lost of generality we assume that Ω̄ = [0, 1]d and the grid has size
n1 × · · · × nd. We use the vector n to compactly denote the entries n1, . . . , nd, and
naturally we let n = n1×· · ·×nd. It would be more convenient to index the points by
an integer vector, such as j, which takes values from 0 to n−1. Denote by x ◦y and
x/y the element-wise multiplication and division of two vectors x and y, respectively.
Then the Fourier transform (1.1) leads to [12, 11]

φ(j/n) =

∫
[0,2π)d

φ̂n(ω) exp(iωT j) dω (1.3)

with

φ̂n(ω) ≡ n
∑
l∈Zd

φ̂ (n ◦ (ω + 2πl)) , ω ∈ [0, 2π)d. (1.4)

Then, (1.2) is equivalent to

∑
0≤i,j≤n−1

aiajφ(i/n− j/n) =

∫
[0,2π)d

φ̂n(ω)

∣∣∣∣ ∑
0≤j≤n−1

aj exp(iω
T j)

∣∣∣∣2 dω. (1.5)

By choosing the vector a with a unit norm, an immediate consequence of (1.5) is that

if |φ̂n| is bounded away from 0 and ∞, then the condition number

κ(Φ) ≤ sup |φ̂n|
inf |φ̂n|

. (1.6)

In other words, κ depends on the variation of φ̂n. For example, when φ is positive,
radially symmetric and decreasing, and when n is sufficiently large, (1.4) implies

that the ratio on the right-hand side of (1.6) is in the order φ̂(0)/φ̂(n). Then Φ is

increasingly ill conditioned even if φ̂ decays in a polynomial rate.
Central to this paper is the manipulation of the Fourier transform φ̂ (or φ̂n) to

suppress the growth of the condition number as n (or n) increases. The essential idea
is to take Laplacians on the kernel, and this applies to kernels with a Fourier transform
that behaves like a power function. Section 2 offers an overview of the theory for not
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only the case of the existence of a Fourier transform and a regular grid, but also the
case of generalized Fourier transforms and the case without a regular grid. Detailed
analysis is then provided in subsequent sections. Even for the case of a regular grid,
which brings about a multi-level Toeplitz matrix, one should consider the implication
of a fixed and finite domain that makes existing theory on Toeplitz systems (see,
for example, [10, 1]) and preconditioners for Toeplitz systems [2, 3] not immediately
applicable. Existing theory is generally based on a regular grid with fixed spacing
but growing size. Thus, the analysis is made convenient by an underlying generating
function that is independent of the grid size. On the other hand, when we recast the
Fourier transform relation (1.1) into a Fourier series (cf. (1.3))

φ̂n(ω) =
1

(2π)d

∑
j∈Zd

φ(j/n) exp(−iωT j), (1.7)

one sees that the so called “generating function” φ̂n is dependent on n. The sequence
{φ̂n} does not converge to some limit independent of n, which hinders the applicability
of existing theory.

A study of (1.1) enables generalizations of the preconditioning technique to non-
Toeplitz matrices, when one has a set of scatted points possibly without structures.
It is nontrivial to approximate derivatives on points without structures. The major
technique considered here is a discretization of the Green’s identity, so that second
order derivatives are represented as a linear transform of the original function at the
discretized locations. Thus, this work bridges a connection between the precondition-
ing theory and the theory of finite element methods. It is not surprising to see that
the derived linear transformation has a close connection with the stiffness matrix,
which occurs when one discretizes an elliptic equation.

2. Laplacian preconditioning. The spectrum of Φ has a close connection with
the transform φ̂. Consider the regular grid case. By discretizing the region [0, 2π)d,
the right-hand side of (1.5) is approximated by

(2π)d

n

∑
0≤k≤n−1

φ̂n(2πk/n)

∣∣∣∣ ∑
0≤j≤n−1

aj exp(i (2πk/n)
T j)

∣∣∣∣2.
This, in fact, is a bilinear form aT Φ̂a, where Φ̂ is defined as UHΛU , with U ∈ Cn×n

being unitary, Λ ∈ Rn×n being diagonal, and

Ukj = exp(i (2πk/n)T j)/
√
n, Λkk = (2π)dφ̂n(2πk/n).

Naturally, one would expect that the spectrum of Φ is in some sense similar to that
of Φ̂, that is, the set {(2π)dφ̂n(2πk/n)}. In Section 3, we prove that they are equally
distributed after a concurrent scaling by n. The definition of equal distribution re-
sembles the determination of the equivalence of two random variables by equating all
their moments. Therefore, with large samples, the histograms are sufficiently close.
In our setting, this means that when n is large, the shape of the discrete surface of
the eigenvalues (arranged in some way) looks almost the same as that of the surface

(2π)dφ̂n(ω) in [0, 2π)d. Then, we have

κ(Φ) ≈ max |φ̂n(2πk/n)|
min |φ̂n(2πk/n)|

, (2.1)
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which is consistent with (1.6).
There are several ways to make use of the result of equal distributions. One way

is to differentiate φ such that φ̂ is correspondingly modified. Taking the Laplacian of
both sides of (1.1) 2s times gives

∆2sφ(x) =

∫
Rd

‖ω‖4sφ̂(ω) exp(iωTx) dω. (2.2)

For example, consider the Matérn kernel [12, 6, 16] whose Fourier transform

φ̂(ω) � (1 + ‖ω‖)−4τ , τ > 0. (2.3)

Then ‖ω‖4sφ̂ � ‖ω‖4s(1 + ‖ω‖)−4τ , which decays slower than φ̂. This immediately
reduces the growth of the condition number of Φ: using the approximation (2.1),
κ(Φ) ≈ O

(
‖n‖4τ

)
= O

(
n4τ/d

)
. After taking the Laplacian ∆2s, the growth is reduced

to O(n4(τ−s)/d).
For the preconditioning purpose, the task is to obtain a new matrix that approx-

imates the kernel matrix defined by ∆2sφ via linear transformations of Φ. Section 4
considers the regular grid case, where ∆ is naturally approximated by second order
finite difference, which is denoted by D. We show that the spectrum of the new ma-

trix by applying D2s and the set {(2π)dφ̂[2s]
n (2πk/n)} are equally distributed, where

φ̂
[2s]
n corresponds to D2s φ just as φ̂n corresponds to φ. Strictly speaking, s has to be

strictly less than τ − d/4. Otherwise, (2.2) does not hold because ‖ω‖4sφ̂ is not inte-
grable, and a presumption in the analysis in Section 4 is also not satisfied. However,
empirically when s passes τ − d/4 the growth of the condition number of the new
matrix still follows the rate O(n4(τ−s)/d). This probably requires a different analysis
argument. For example, when τ is an integer and when s = τ , [14] proves that the
condition number of the new matrix is O(1) (that is, independent of n), by directly

upper and lower bounding φ̂
[2s]
n . As a rule of thumb, for any τ > 0, one chooses

s = round(τ) to obtain the best preconditioning result.
The second way is to consider some φ that does not admit a Fourier transform,

but rather, a generalized Fourier transform. To avoid the technicalities of generalized
functions [8], we consider restricting the validity of (1.2) to some subspace instead.
For example, consider the power function

φ(x) =

{
‖x‖α, α/2 /∈ N
‖x‖α log ‖x‖, α/2 ∈ N

for some α > 0. Standard theory on conditional positive definite functions [15] shows

that (1.2) holds with φ̂(ω) = c‖ω‖−α−d for all sets of {ai} that satisfy

n∑
i=1

aiP (xi) = 0 (2.4)

where P is any polynomial of degree at most t = bα/2c, and where c is some constant

independent of ω (see [6, 13]). The function φ̂ is known as the generalized Fourier
transform of φ, and the vectors a form a subspace. Section 5 gives some results useful
for supporting the applicability of Laplacian preconditioning in this case. In particu-
lar, every vector in the range of the discrete Laplace operator D satisfies (2.4) for P
up to degree 1, and recursively applying the operator yields vectors that satisfy (2.4)
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for higher order polynomials. In other words, restricting the validity of (1.2) to some
subspace does not impose additional constraints compared with the case when φ ad-
mits a Fourier transform φ̂. Thus, the preconditioning strategy is also applicable
here. In particular, since φ̂ in this case is asymptotically the same as the one in (2.3)
for ω away from the origin, we similarly apply the discrete operator D2s to suppress
the growth of the condition number. In the ideal case, when 4s matches α + d (the

exponent of ‖ω‖ in φ̂), in the generalized function sense the left-hand side of (2.2) is
the delta function which in some sense results in the identity matrix. In other words,
letting s = round((α+ d)/4) may give the best preconditioning result.

The third way to fully exploit the Laplacian preconditioning idea is to rid the
regular grid reliance. It is nontrivial to discretize the Laplace operator on a set
of scattered points without a regular grid structure. In Section 6, with a reasonable
assumption that a finite element mesh of the points is available, we construct a discrete
Laplace operator based on a discretization of the Green’s identity. The resulting
operator has a close connection with the stiffness matrix in finite element analysis.
We show that the discretization error decreases linearly with the size of the finite
elements. Hence, in the limit, the discrete Laplace operator applied to the kernel
matrix is equivalent to the Laplacian applied to the kernel function, hence reducing
the condition number of the kernel matrix in a manner that is similar to the case of
a regular grid.

The practical performance of the preconditioning strategies discussed above is
shown by using two example kernels, the Matérn and the power-law kernel, in Sec-
tion 7.

3. Spectrum of Toeplitz matrix in a fixed and finite domain. In the
regular grid case, the kernel matrix Φ is multilevel Toeplitz. There are rich results
about the asymptotics of Toeplitz matrices, one of the most celebrating of which is the
Szegö’s theorem [10] that implies that the distribution of the eigenvalues approaches
the generating function. However, such results are based on the presumption of a
fixed sequence of values that define the matrix. These values are the Fourier coeffi-
cients of the generating function and they are independent of the grid size. In fixed
domain asymptotics, on the other hand, the sequence of values that define the matrix,
{φ(j/n)}j , is clearly dependent on n. To handle this situation, we use the asymp-
totic equivalence of matrices to show equal distribution results. To emphasize the
dependence on n, we use Φn to denote the kernel matrix.

Definition 3.1. Two sets of real numbers {a(n)j }j=1,...,n and {b(n)j }j=1,...,n

are equally distributed in the interval [M1,M2] if for any continuous function F :
[M1,M2] → R,

lim
n→∞

1

n

n∑
j=1

[F (a
(n)
j )− F (b

(n)
j )] = 0.

Definition 3.2. Two sequences of matrices {An} and {Bn} are asymptotically
equivalent (denoted as An ∼ Bn) if

1. An and Bn are both uniformly bounded in 2-norm, that is, when n is suffi-
ciently large, ‖An‖2, ‖Bn‖2 ≤ M < ∞ for some M independent of n, and

2. limn→∞ ‖An −Bn‖F /
√
n = 0.

Remark 3.3. To avoid the handling of Frobenius norm, one can replace condition
2 by a stronger condition limn→∞ ‖An −Bn‖2 = 0.
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We use λ(·) to denote an eigenvalue of a matrix. The following result is proved
in [9].

Lemma 3.4. If {An} and {Bn} are asymptotically equivalent, then {λj(An)} and
{λj(Bn)} are equally distributed.

Remark 3.5. To emphasize the regular grid structure, the lemma still holds
when the indices n and j are replaced by n and j, respectively.

The following is the major result of this section.

Theorem 3.6. Let φ ∈ L1 ∩ L2. Then the set of eigenvalues of Φn/n and the

set {(2π)dφ̂n(2πj/n)/n} are equally distributed, with φ̂n defined in (1.4).

Proof. We repeat the Fourier series (1.7) with (1.3) here, by changing the notation

φ(j/n) to φ
(n)
j for clarity:

φ̂n(ω) =
1

(2π)d

∑
j∈Zd

φ
(n)
j exp(−iωT j) with φ

(n)
j =

∫
[0,2π)d

φ̂n(ω) exp(iωT j) dω.

(3.1)

Then the matrix Φn is defined by the values {φ(n)
j }. We shall construct circulant

matrices C̃n and Cn such that the eigenvalues of Cn are (2π)dφ̂n(2πj/n) and that
Φn/n ∼ C̃n/n ∼ Cn/n. Then the theorem holds.

First, let the (j,k) entry of C̃n be defined as c̃
(n)
j−k with c̃

(n)
j =

∑
k∈Sj

φ
(n)
j+k◦n,

where the index set Sj consists of vectors whose entries are chosen from the following
rule:

k` ∈


{0}, j` = 0

{0,−1}, j` > 0

{0, 1}, j` < 0.

Meanwhile, let the (j,k) entry of Cn be defined as c
(n)
j−k with c

(n)
j =

∑
k∈Zd φ

(n)
j+k◦n.

Using the Fourier series (3.1), it is then clear that the eigenvalues of Cn are (2π)dφ̂n(2πj/n).

Next, we prove that the 2-norms of Φn/n, C̃n/n and Cn/n are uniformly bounded.
For any ω, there exists a constant M such that

1

n
|φ̂n(ω)| ≤ 1

(2π)d
· 1
n

∑
j∈Zd

|φ(n)
j | ≤ M,

when each component of n is sufficiently large, because the kernel φ(x) is absolutely
integrable. Then the 2-norm of Φn/n are bounded by M by using (1.5), and the
2-norms of C̃n/n and Cn/n are bounded by M by using (3.1).

Last, we show that ‖Φn/n− C̃n/n‖2F /n → 0 and ‖C̃n/n− Cn/n‖2F /n → 0 as n
approaches infinity. By definition,

‖Φn − C̃n‖2F =
n−1∑

j=−n+1

[
d∏

`=1

(n` − |j`|)

]∣∣∣∣∣ ∑
k∈Sj\{0}

φ
(n)
j+k◦n

∣∣∣∣∣
2

.
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Then, ‖Φn/n− C̃n/n‖2F /n is upper bounded by

1

n2

n−1∑
j=−n+1

∣∣∣∣∣ ∑
k∈Sj\{0}

φ
(n)
j+k◦n

∣∣∣∣∣
2

≤ 1

n2

n−1∑
j=−n+1

(2d − 1)
∑

k∈Sj\{0}

|φ(n)
j+k◦n|

2

≤ (2d − 1)2

n2

n−1∑
j=−n+1

|φ(n)
j |2.

On the other hand, ‖C̃n/n− Cn/n‖2F /n is upper bounded by

1

n3

n−1∑
j=0

|λj(C̃n)−λj(Cn)|2 =
1

n3

n−1∑
j=0

∣∣∣∣ ∑
|k|≥n

φ
(n)
k exp(−i (2πk/n)T j)

∣∣∣∣2 =
1

n2

∑
|k|≥n

|φ(n)
k |2.

Because the kernel φ(x) is square integrable, the rightmost terms in the above two
formulas vanish when n approaches infinity.

4. Discrete Laplace operator on a regular grid. Consider a matrix L that
has (n1 − 2) × · · · × (nd − 2) rows and n1 × · · · × n2 columns. For row indices
i = 1, . . . ,n− 2 and column indices j = 0, . . . ,n− 1, the entries are defined as

Lij =


n2
p if j = i± ep for p = 1, . . . , d

−2
∑d

p=1 n
2
p if j = i

0 otherwise.

(4.1)

An example of L for a 6× 4 grid is the following, where a = −104, b = 36 and c = 16:

c b a b c
c b a b c

c b a b c
c b a b c

c b a b c
c b a b c

c b a b c
c b a b c


.

Define, and denote by D, the discrete Laplace operator on a grid for an arbitrary
function f :

D f

(
k

n

)
:=

d∑
p=1

n2
p

[
f

(
k + ep

n

)
+ f

(
k − ep

n

)
− 2f

(
k

n

)]
.

It is clear that L is the matrix form of D for a finite grid. It can then be easily
verified that the matrix LΦLT is multilevel Toeplitz and has entries (LΦLT )ij =
D2 φ((i− j)/n) for i, j = 1, . . . ,n− 2.

To generalize the above observation, let L[s], s > 0, be a matrix with (n1 − 2s)×
· · ·×(nd−2s) rows and (n1−2s+2)×· · ·×(nd−2s+2) columns. Its entries are defined
in (4.1), with row indices i = s, . . . ,n−s−1 and column indices j = s−1, . . . ,n−s,
where s is the vector with all entries being s. Define the matrix

Φ[2s] = L[s] · · ·L[1]ΦL[1]T · · ·L[s]T (4.2)
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for s = 1, 2, . . . . In addition, let Φ[0] ≡ Φ. Then by induction the (i, j) entry of Φ[2s]

is D2s φ((i− j)/n). We further extend the definition of Φ[·] as

Φ[s](i, j) := Ds φ((i− j)/n) (4.3)

for all integers s ≥ 0. This definition is consistent with (4.2) when the number in the
superscript of Φ is even. Then we have a similar relation to (1.3):

Ds φ(k/n) =

∫
(−π,π]d

φ̂[s]
n (ω) exp(iωTk) dω (4.4)

where

φ̂[s]
n (ω) ≡

[
−4

d∑
p=1

n2
p sin

2
(ωp

2

)]s
φ̂n(ω). (4.5)

The following is the major result of this section.

Theorem 4.1. If all the partial derivatives of φ of order up to 2s + 1 belong to

L1 ∩ L2, then the set of eigenvalues of Φ
[s]
n /n and the set {(2π)dφ̂[s]

n (2πk/n)/n} are

equally distributed, with φ̂
[s]
n defined in (4.5).

Proof. Following a similar argument to the proof of Theorem 3.6, it suffices to
show that both

1

n

∑
k∈Zd

|Ds φ(k/n)| and
1

n

∑
k∈Zd

|Ds φ(k/n)|2

are finite as n approaches infinity; then the theorem holds. In turn, it suffices to show
that for all 1 ≤ j ≤ s,

lim
n→∞

1

n

∑
k∈Zd

|Dj φ(k/n)−∆jφ(k/n)| = 0, (4.6)

since when taking j = s this implies

lim
n→∞

1

n

∑
k∈Zd

|Ds φ(k/n)| = lim
n→∞

1

n

∑
k∈Zd

|∆sφ(k/n)| =
∫

|∆sφ| < ∞

and

lim
n→∞

1

n

∑
k∈Zd

|Ds φ(k/n)|2 = lim
n→∞

1

n

∑
k∈Zd

|∆sφ(k/n)|2 =

∫
|∆sφ|2 < ∞.

We show (4.6) by induction.

Observe that for any three times differentiable function f , the Taylor expansion
at k/n with a remainder term gives

D f(k/n)−∆f(k/n) =

d∑
p=1

[
∂3
pf((k + ξ1pep)/n)

6np
−

∂3
pf((k − ξ2pep)/n)

6np

]
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where ξ1p, ξ
2
p ∈ (0, 1) are both dependent on k. Then

lim
n→∞

1

n

∑
k∈Zd

|D f(k/n)−∆f(k/n)|

≤ lim
n→∞

1

n

∑
k∈Zd

d∑
p=1

1

6np

(
|∂4

pf((k + ξ1pen)/n)|+ |∂4
pf((k + ξ2pen)/n)|

)

= lim
n→∞

d∑
p=1

1

6np

∑
k∈Zd

1

n
|∂3

pf((k + ξ1pen)/n)|+
∑
k∈Zd

1

n
|∂3

pf((k + ξ2pen)/n)|

 = 0.

(4.7)

The last equality to zero is because the limit of the term inside the square bracket
as n → ∞ is 2 times the integral of |∂3

pf |, which is finite. This shows the induction
basis of (4.6), j = 1. Furthermore, for any 1 < j ≤ s,

Aj := lim
n→∞

1

n

∑
k∈Zd

|Dj φ(k/n)−∆jφ(k/n)| ≤ D(Aj−1) +Bj

with

Bj := lim
n→∞

1

n

∑
k∈Zd

|D∆j−1φ(k/n)−∆∆j−1φ(k/n)|.

Based on the induction assumption Aj−1 = 0, we have D(Aj−1) = 0. Using (4.7),
Bj = 0. Hence, Aj = 0, completing the induction.

5. Bilinear form in a subspace. The continuous operator ∆s maps any poly-
nomial P (x) of order at most 2s− 1 to zero. In parallel, this section shows that the
discrete operator Ds maps the gridded signal P (k/n) to a zero signal. This result then
implies that for any vector p with entries pk = P (k/n), L[s] · · ·L[1]p = 0. Therefore,
for any u, the vector

a = L[1]T · · ·L[s]Tu

satisfies aTp = 0. Such vectors a form a subspace. Then the bilinear form

aTΦa = uTΦ[2s]
n u

is always bounded if φ̂
[2s]
n is bounded, even though the norm of the original matrix

Φn may not be.

One may wish some equal distribution results for Φ
[2s]
n as in the preceding section.

However, a difficulty is that when φ does not admit a Fourier transform, the essential
ingredient in the proofs of Theorems 3.6 and 4.1—the Fourier series (3.1)—can not

be established. Nevertheless, the growth of the condition number of Φ
[2s]
n does reduce

empirically when s increases. The analysis probably needs a different argument, and
it is not given in this paper.

Theorem 5.1. For any polynomial P of order at most 2s − 1 and all integer
vectors k and n, Ds P (k/n) = 0.
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Proof. Write

P (k/n) =
2s−1∑
j=0

∑
s1+···+sd=j

c(s1, . . . , sd)

(
k1
n1

)s1

· · ·
(
kd
nd

)sd

,

where {c(·)} is a set of coefficients. Then for any p where sp ≥ 2,

DP

(
k

n

)
= P

(
k + ep

n

)
+ P

(
k − ep

n

)
− 2P

(
k

n

)
=

2s−1∑
j=0

∑
s1+···+sd=j

c′(s1, . . . , sd)

(
k1
n1

)s1

· · ·
(
kp
np

)sp−2

· · ·
(
kd
nd

)sd

,

where {c′(·)} is another set of coefficients. When sp < 2, the term (kp/np)
sp−2 is

replaced by zero. Hence, the operator D reduces the order of P by 2. Then, after
applying the operator s times, the result is zero.

Theorem 5.2. Denote by Pd
t the space of polynomials of d variables of degree at

most t. The space

A1
t :=

a ∈ Rn

∣∣∣∣∣∣
∑

0≤k≤n−1

akP (k/n) = 0, ∀P ∈ Pd
t

 ,

has dimension n−
(
t+d
d

)
when n >

(
t+d
d

)
, and the space

A2
s :=

{
L[1]T · · ·L[s]Tu

∣∣∣ u ∈ R(n1−2s)···(nd−2s)
}

has dimension (n1 − 2s) · · · (nd − 2s).
Proof. The number of monomials of d variables of degree at most t is

t∑
j=0

(
j + d− 1

d− 1

)
=

(
t+ d

d

)
,

which is thus the dimension of Pd
t . Then the entries of a have a degree of freedom

n−
(
t+d
d

)
.

The dimension of A2
s is equal to the number of rows of L[s] · · ·L[1], since the latter

matrix has full row rank.
Remark 5.3. In fact, A2

s is a subspace of A1
2s−1 when n >

(
2s−1+d

d

)
.

6. Discrete Laplace operator on a finite element mesh. This section con-
cerns generalizing the Laplace operator for a set of scattered points. For a twice
differentiable u, the objective is to approximate ∆u(x) by a linear combination of
the u(xi)’s for a set of xi’s that surround x. For this, we assume that a mesh of the
points can be constructed, so that neighboring information for every point is avail-
able. In what follows, by “mesh” we refer to a finite element mesh which consists of
a triangulation of X. Hence, the points X are the mesh vertices. In Rd, each finite
element E of the mesh is a d-simplex, defined as the convex hull of d + 1 vertices
xi1 , . . . ,xid+1

∈ X in a non-degenerate position, that is, the vertices do not lie on
any subspace of Rd with a lower dimension. The union of E is the closed domain
Ω̄ = Ω ∪ ∂Ω, where ∂Ω is the boundary.
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For a twice differentiable u and a continuously differentiable v, consider the
Green’s identity ∫

Ω

(v∆u+∇v · ∇u) =

∮
∂Ω

v (∇u · n)

where n is the outward unit normal of ∂Ω. Here, we reuse the notation n because
its original meaning of the grid dimension is useless in this section. Discretizing the
Green’s identity requires a set of basis functions to represent u and v. For each vertex
xi, let vi : Ω̄ → R be a piecewise polynomial that is 1 at xi and 0 at all other vertices.
The simplest case is to let vi be linear in each E, and we consider only this case. The
span of the vi’s is the space of piecewise linear functions on the mesh. We can then
approximate u and ∆u as

u(x) ≈
n∑

i=1

u(xi) vi(x), ∆u(x) ≈
n∑

i=1

∆u(xi) vi(x).

We also approximate ∇u as

∇u(x) ≈
n∑

i=1

u(xi)∇vi(x).

Note that ∇vi is not well defined for x ∈ [(
⋃

E ∂E)\∂Ω] ∪ X, which is the set of
locations that are adjacent to two or more elements. However, this set has a measure
of zero in Rd, and thus does not contribute to the integral over Ω. For our purpose
we can arbitrarily define, for example,

∇vi(x) =
1

|{E 3 x}|
∑
E3x

∇vi(E), x ∈ [(
⋃

E ∂E)\∂Ω] ∪X,

where ∇vi(E) = ∇vi(x) is the constant gradient for all x ∈ E\∂E.
Based on the above approximation, for every v = vk, the Green’s identity is then

discretized as

n∑
i=1

[∫
Ω

vkvi

]
∆u(xi) +

n∑
i=1

[∫
Ω

∇vk · ∇vi

]
u(xi) ≈

n∑
i=1

[∮
∂Ω

vk (∇vi · n)
]
u(xi).

If we define the square matrices (row indexed by k and column indexed by i)

M =

[∫
Ω

vkvi

]
, L =

[
−
∫
Ω

∇vk · ∇vi

]
, B =

[∮
∂Ω

vk (∇vi · n)

]
, (6.1)

then the above formula can be written in the matrix form:

M ·
[
∆u(xi)

]
≈ (B + L) ·

[
u(xi)

]
. (6.2)

Note that we overload the notation L here; it is different from the one in the regular
grid case (4.1). All the discussions of L in this section refers to the one defined in (6.1).
In finite element analysis, the matrix −L is the stiffness matrix, and the matrix M is
the mass matrix. Roughly speaking, the linear transformation M−1(B + L) acts like
a Laplacian on u, in a discrete sense, but this is not the discrete Laplace operator we
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shall define. Properties of the matrices M , L and B are studied in the next subsection
before we propose a formal definition of the discrete Laplace operator.

The 1D case needs a special treatment. In R1, the Green’s identity is nothing but
the formula of integration by parts:∫ xn

x1

vu′′ = vu′
∣∣∣xn

x1

−
∫ xn

x1

v′u′,

where we assume that the vertices x1, . . . , xn are ordered increasingly. Then following
a similar argument as above, we see that the discretization of the formula also leads
to (6.2), using the same definition of M and L, with the matrix B slightly modified
to

B =

[
vkv

′
i

∣∣∣xn

x1

]
.

6.1. Formulas and properties of M , L and B. The computation of M and
L is well known. For the sake of completeness we briefly derive the formulas. These
formulas are important to the definition of the discrete Laplace operator.

To simplify notation, we assume without loss of generality that the vertices of an
element E are x1, . . . ,xd+1. Define

Q =

[
x1 x2 · · · xd+1

1 1 · · · 1

]
∈ R(d+1)×(d+1).

Then the measure of E is

meas(E) =
|det(Q)|

d!
. (6.3)

Let Ri denote the matrix by replacing the component xi in Q by x. Then the basis
function

vi(x) =
det(Ri)

det(Q)
, for x ∈ E,

with partial derivatives ∂jvi = (Q−1)ij . Therefore∫
E

∇vk · ∇vi =
|det(Q)|

d!

d∑
j=1

(Q−1)kj(Q
−1)ij . (6.4)

In R1, with simple algebraic calculations we have∫
E

vkvi =
|det(Q)|

6
k 6= i,

∫
E

vkvk =
|det(Q)|

3
in 1D.

In high dimensions, without lost of generality we assume that k = 2, i = 3. We
consider the linear transformation

T (x) = [x2 − x1, · · · ,xd+1 − x1]
−1(x− x1)

that maps the points x1,x2, . . . ,xd+1 to 0, e1, . . . , ed, where each ei is the i-th column
of the identity matrix. We call the simplex defined by the latter set of points the
canonical element, and denote it by T (E). Then by a change of variables,∫

E

v2v3 = |det(T−1)|
∫
T (E)

ṽ2ṽ3,
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where ṽ2 is the piecewise linear function that is equal to 1 at e1 and 0 at other
vertices of T (E), and similarly ṽ3 is the piecewise linear function that is equal to 1
at e2 and 0 at other vertices of T (E). It is easy to verify that the integral

∫
T (E)

ṽ2ṽ3
is equal to 1/(d + 2)!. When k = i, say both are equal to 2, then applying the
same transformation T the integral becomes

∫
T (E)

ṽ2ṽ2, which can be verified to be

2/(d+ 2)!. Since |det(T−1)| is equal to |det(Q)|, we thus conclude that∫
E

vkvi =
|det(Q)|
(d+ 2)!

k 6= i,

∫
E

vkvk =
2 |det(Q)|
(d+ 2)!

. (6.5)

This formula is consistent with the case d = 1.
Last, we consider the boundary integral

∮
vk (∇vi · n) on E ∩ ∂Ω. Since it is

possible that E ∩ ∂Ω contains more than one face of E, we use Es to denote each
individual face, and let xi′ be the only vertex that belongs to E but not Es. Observe
that ∇vi · n is a constant; thus,∮

Es

vk (∇vi · n) = (∇vi · n)
∮
Es

vk, xk ∈ Es.

Furthermore, the normal n is equal to −∇vi′/‖∇vi′‖, and
∮
Es

vk is equal to meas(E)

divided by the distance from xi′ to Es, which is meas(E) · ‖∇vi′‖. Therefore,∮
Es

vk (∇vi · n) = −∇vi · ∇vi′

‖∇vi′‖
·meas(E) · ‖∇vi′‖ = −|det(Q)|

d!

d∑
j=1

(Q−1)i′j(Q
−1)ij .

(6.6)
One can show that (6.6) is also valid for the case d = 1.

In summary, the matrices L, M and B are computed based on (6.4), (6.5)
and (6.6) respectively, followed by an assembly of all the quantities computed on each
element E or element face Es on the boundary. By investigating the bilinear forms
with respect to L and M , it is clear that both are symmetric positive semi-definite.
Further, M is non-singular because of the first item of the following theorem.

Theorem 6.1. The matrices M , L and B have the following properties.
(i) For every k,

2
∑
i 6=k

Mki = Mkk =
2

d(d+ 1)

∑
E3xk

meas(E).

Furthermore, the condition number of M is upper bounded by

3 ·
maxk{

∑
E3xk

meas(E)}
mink{

∑
E3xk

meas(E)}
.

(ii) For every k,
∑

i Lki = 0, and for every xk /∈ ∂Ω,
∑

i Lki xi = 0.
(iii) For every k,

∑
i Bki = 0, and for every xk /∈ ∂Ω, Bki is zero for all i.

(iv) For every k,
∑

i(B + L)ki xi = 0.
Proof. The first formula of Property (1) is obvious in light of (6.3) and (6.5). Then

the bound of the condition number of M is a direct consequence of the Gershgorin’s
circle theorem.

For any element E and any point x ∈ E\∂E,∑
xi∈E

∇vi(x) = 0,
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because
∑

xi∈E vi is the constant function with value 1. Therefore,∑
xi∈E

∫
E

∇vk · ∇vi = 0,

which proves the first equation of Property (2). The same technique also proves
Property (3) by directly applying the definition of B.

For a specific j, the vector
∑

xi∈E(xi)j∇vi consists of the first d entries of the

j-th row of QQ−1, the identity matrix. Therefore,
∑

xi∈E(xi)j∇vi = ej . Hence,

∑
xi∈E

(∫
E

∇vk · ∇vi

)
(xi)j =

∫
E

∇vk ·

(∑
xi∈E

(xi)j∇vi

)
=

∫
E

(∇vk)j

and thus ∑
xi∈E

(∫
E

∇vk · ∇vi

)
xi =

∫
E

∇vk = meas(E)∇vk.

Let a face Es be defined by all the vertices of E but xk. Then Es has a unit normal
nEs pointing outward, and further, meas(E)∇vk = −1/d ·meas(Es)n

Es . Thus,∑
i

Lki xi =
1

d

∑
E3xk

meas(Es)n
Es . (6.7)

When xk is not on the boundary of the mesh, all the elements E that contain xk

form a polytope
⋃

E3xk
E with boundary

⋃
E3xk

Es. Then the above summation
(effectively a closed surface integral of unit normal) is zero. This proves the second
equation of Property (2).

When xk is on the boundary of the mesh, the boundary of the polytope
⋃

E3xk
E

consists of two parts,
⋃

E3xk
Es as defined above, and

⋃
E3xk

E∩∂Ω. Using a similar
idea as above, fixing an element E, for each Es ⊂ E ∩ ∂Ω,∑

xi∈E

[∮
Es

vk (∇vi · n)
]
xi = n

∮
Es

vk =
1

d
·meas(Es)n.

Note that the normal n here is orthogonal to Es and pointing outward. Therefore,∑
i

Bki xi =
1

d

∑
E3xk

meas(Es)n
Es .

Then together with (6.7) and using once again the fact of zero surface integral, we
see that for any xk on the boundary,∑

i

(B + L)ki xi = 0.

Further, since the k-th row of Bki is zero for xk not on the boundary, then using the
second equation of Property (2), we complete the proof of the non-boundary case and
conclude Property (4).

Corollary 6.2. If the configuration of the points X is not degenerate, that is,
there does not exist a nonzero vector b such that xi · b are the same for all i, then the
dimension of the null space of B + L is at least d+ 1.
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Proof. The d + 1 linearly independent vectors mapped to zero by B + L are the
vector of all 1’s and the vectors of the j-th component of the xi’s, j = 1, . . . , d.

Remark 6.3. We conjecture that the dimension of the null space is exactly d+1.
A proof of the conjecture will need to verify that for any function u that is not affine,
B + L will not map the vector [u(xi)] to zero. A proof is unclear for d > 1; however,
the conjecture can be proved for the case d = 1 using a different technique. The
argument uses the fact that the top and the bottom row of B + L are zero, and the
rest of the rows form a tridiagonal structure. Hence it is clear that the dimension of
the null space of B + L is 2.

6.2. Discrete Laplace operator. Using Property (1) of Theorem 6.1, we have∑
k

Mki∆u(xi) ≈
∑
k

3

2
Mkk∆u(xk),

because Mki is nonzero only when xi is connected to xk, that is, ∆u(xi) ≈ ∆u(xk).
This leads to

M ·
[
∆u(xi)

]
≈ M ′ ·

[
∆u(xi)

]
, (6.8)

where M ′ is a diagonal matrix with

M ′
kk = 3Mkk/2. (6.9)

Then combining (6.2) and (6.8), we have

M ′ ·
[
∆u(xi)

]
≈ (B + L) ·

[
u(xi)

]
.

If we are only interested in ∆u for the xi’s not on the boundary ∂Ω, we can remove
in the above formula, the rows and columns of M ′, the entries of the vector [∆u(xi)],
and the rows of B+L, that correspond to the points on ∂Ω. Denoting by M̃ ′, B̃ and
L̃ the smaller matrices after the removal, we have[

∆u(xi)
]
xi /∈∂Ω

≈ (M̃ ′)
−1

(B̃ + L̃) ·
[
u(xi)

]
.

Note that B̃ is empty because of Property (3) of Theorem 6.1. Then, the matrix

(M̃ ′)
−1

L̃ is the linear transformation that approximately maps [u(xi)] to [∆u(xi)].
As a matter of formality, we introduce notation because boundary points are

removed every time a Laplacian is applied. Let Ω̄[0] ≡ Ω̄, ∂Ω[0] ≡ ∂Ω and X [0] ≡ X.
Recursively for s = 1, 2, . . . , we define X [s] = X [s−1]\{xi ∈ ∂Ω[s−1]}, the set of points
not on the boundary of Ω̄[s−1], and let Ω̄[s] be the domain defined by the sub-mesh of
the point in X [s], and ∂Ω[s] be the boundary of Ω̄[s]. Then we arrive at the following
definition.

Definition 6.4. The discrete Laplace operator D on an infinite mesh (without
boundary) for an arbitrary function f is

D f(xk) =
∑
i

2Lki

3Mkk
f(xi),

where L and M are defined in (6.1). In the finite case, for s = 1, 2, . . . , L[s] is the
matrix representation of the operator D with entries (L[s])ki = 2

3Lki/Mkk for all k
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and i where xk ∈ X [s] and xi ∈ X [s−1]. The preconditioned kernel matrix Φ[2s] is
defined by reusing (4.2) that was originally used for the regular grid case.

The following result is parallel to Theorem 5.1 for the regular grid case. It is an
immediate consequence of Property (2) of Theorem 6.1.

Theorem 6.5. For any affine function P and mesh vertices xk, DP (xk) = 0.

6.3. Example. In R1, let hi = xi+1 − xi denote the spacing between adjacent
points and further let gi = hi−1 + hi. The modified stiffness matrix and the modified
mass matrix are, respectively,

L̃ =


1/h1 −g2/(h1h2) 1/h2

1/h2 −g3/(h2h3) 1/h3

. . .
. . .

. . .

1/hn−2 −gn−1/(hn−2hn−1) 1/hn−1


and

M̃ =



g2/3 h2/6

h2/6 g3/3
. . .

. . .
. . .

. . .

. . .
. . . hn−2/6

hn−2/6 gn−1/3


.

Then, for the kernel function φ(x) = |x|3,

Φ[2] = L[1]ΦL[1]T

=
8

9



2/g2 h2/(g2g3)

h2/(g2g3) 2/g3
. . .

. . .
. . .

. . .

. . .
. . . hn−2/(gn−2gn−1)

hn−2/(gn−2gn−1) 2/gn−1


.

(6.10)

Theorem 6.6. The condition number of Φ[2] with φ(x) = |x|3 is upper bounded
by

√
2 + 1√
2− 1

· max{gi}
min{gi}

.

Proof. Consider the matrix in the square bracket of (6.10). If we multiply a diago-
nal matrix diag(

√
gi) to its both sides simultaneously and denote the resulting matrix

A, then the condition number of Φ[2] is upper bounded by κ(A) ·max{gi}/min{gi}.
The sum of the two off-diagonal elements on a row of A is

hi−1√
gi−1gi

+
hi√
gigi+1

≤
√
hi−1√
gi

+

√
hi√
gi

=

√
hi−1 +

√
hi√

hi−1 + hi

≤
√
2.

Note that A has a constant diagonal 2. Therefore, using the Gershgorin’s circle
theorem, the condition number of A is bounded by (2 +

√
2)/(2−

√
2).
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6.4. Analysis. Standard results of finite element analysis can be borrowed to
characterize the difference between the continuous Laplacian ∆ and the discrete
Laplace operator D defined in Definition 6.4. Let hE and ρE denote the diameter
of an element E and the supremum of the diameters of the spheres inscribed in E,
respectively. Denote by h the maximum of hE over all E, and by σh an upper bound
of hE/ρE . A family of finite element meshes characterized by h is said to be con-
forming if σh is bounded away from infinity when h is sufficiently small. We have the
following theorem.

Theorem 6.7. Given any w ∈ C3(Ω) that vanishes on ∂Ω and any u ∈ C4(Ω),
if all the partial derivatives of w and u are finitely bounded, then for a family of
conforming finite element meshes on Ω̄ with vertices {xk} and characterized by h,
there exists a constant C independent of h (when h is sufficiently small), such that
the M ′-inner product∣∣∣∣∣〈[w(xk)], [∆u(xk)−Du(xk)]

〉
M ′

∣∣∣∣∣ ≤ C · tr(M ′) · h,

where M ′ is the positive definite diagonal matrix defined in (6.9).

Proof. The inner product (without the absolute sign) is equal to

∑
xk /∈∂Ω

3

2
Mkkw(xk)∆u(xk)−

∑
xk /∈∂Ω

3

2
Mkkw(xk)Du(xk)

which can be rewritten as F +G+H where

F =
∑

xk,xi∈Ω̄

Mkiw(xk)∆u(xk)−
∫
Ω

w∆u

G = −
∫
Ω

∇w · ∇u+

∫
Ω

∑
xk∈Ω̄

w(xk)∇vk

∑
xi∈Ω̄

u(xi)∇vi


H =

∑
xk,xi∈Ω̄

Lkiw(xk)u(xi)−
∑
xk∈Ω̄

3

2
Mkkw(xk)

∑
xi∈Ω̄

2Lki

3Mkk
u(xi),

because the combination of the second term of F and the first term of G vanishes by
the Green’s identity, and the combination of the second term of G and the first term
of H vanishes by the definition of L. It is clear that H is zero. By the definition of
M , the first term of F is equal to

∫
Ω

∑
xk∈Ω̄

w(xk)∆u(xk)vk

∑
xi∈Ω̄

vi

 =

∫
Ω

∑
xk∈Ω̄

w(xk)∆u(xk)vk.

For any function f we shall denote by f the piecewise linear approximation which
agrees with f at all the xk’s. Then

F =

∫
Ω

(
w∆u− w∆u

)
and G =

∫
Ω

(
∇w · ∇u−∇w · ∇u

)
.
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Standard error analysis in conforming finite elements (see, e.g., [7]) states that there
exists constants C1 and C2 that are independent of h such that

sup
Ω

|w∆u− w∆u| ≤ C1h
2 · sup

Ω
|∂2(w∆u)|,

sup
Ω

|∇w −∇w| ≤ C2h · sup
Ω

|∂2w|,

and similarly for ∇u−∇u. Then, absorbing C1, C2 with the supremums of the second
order partial derivatives (because they are finite), we have for some constants C̃1, C̃2

and C̃3 independent of h,

|F | ≤ C̃1 ·meas(Ω) · h2 and |G| ≤ C̃2 ·meas(Ω) · h+ C̃3 ·meas(Ω) · h2.

The proof of the theorem is thus complete by noting that tr(M ′) = 3
d meas(Ω).

7. Example kernels. Two kernels are shown as examples in this section. The
spectrum of the kernel matrices and the growth of the condition number are studied
to empirically validate the preceding analysis.

7.1. Matérn kernel. The Matérn kernel [12, 6, 16] is one of the most popular
kernels for data interpolation, for its flexibly in modeling the local smoothness of
spatial/temporal data. Parameterized by ν, ` > 0, the Matérn kernel is defined as

φ(x) =
1

2ν−1Γ(ν)

(√
2ν‖x‖
`

)ν

Kν

(√
2ν‖x‖
`

)
,

where Γ is the Gamma function and Kν is the modified Bessel function of the second
kind of order ν. The kernel is infinitely differentiable everywhere except at the origin
(where it is only d2ν−1e times differentiable). The kernel admits a Fourier transform
that is dimension dependent:

φ̂(ω) =
(2ν)νΓ(ν + d/2)

πd/2`2νΓ(ν)

(
2ν

`2
+ ‖ω‖2

)−(ν+d/2)

.

The transform φ̂ is positive, and hence the kernel matrix Φ is always positive definite.
Figure 7.1(a) plots the sorted eigenvalues (blue) of Φn for n = [32; 32], ν = 3 and ` =

0.1. Overlaped with the eigenvalues are the sorted values (red) of {(2π)dφ̂n(2πj/n)}.
For computational convenience, the computation of φ̂n based on (1.3) truncates the
infinite series and sums over−3 ≤ l ≤ 2 only. One clearly sees the similar distributions
of the two sets.

The Fourier transform φ̂ is asymptotically equivalent to (1+ ‖ω‖)−(2ν+d). When
d = 2 and ν = 3, Theorem 4.1 implies that applying the discrete Laplace operator

once yields the equal distribution between {λj(Φ
[s]
n )/n} and {(2π)dφ̂[s]

n (2πj/n)/n} for
s = 1, 2. To illustrate, Figure 7.1(b) plots the sorted values of the two sets (without

the concurrent scaling by n) for the case s = 1. Note that when s 6= 0, φ̂
[s]
n (0) = 0,

which means that one of the red dots cannot be displayed.
Theorem 4.1 does not apply for s > 2. Nevertheless, one can arbitrarily increase

s and the spectrum of Φ
[s]
n is of interest. Figure 7.1(c) and (d) show the two sets of

values (just like (a) and (b)) for s = 3, 4. One observes that except for a few outliers
the majority of the two sets overlap. In other words, these plots seem to suggest equal
distributions for s > 2.
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Fig. 7.1. Sorted eigenvalues of Φ
[s]
n (blue) and sorted values of (2π)dφ̂n(2πj/n) (red) for

Matérn kernel.

To investigate the trend of the conditioning, Figure 7.2(a) plots the condition

number of Φ
[s]
n versus n. For simplicity, we set the two components of n to be

equal in the computation. The two extreme eigenvalues of Φ
[s]
n were estimated by

using the standard Lanczos algorithm. The triangles correspond to values that are
not sufficiently accurate. The accurate values are strictly larger than the estimated
values. Comparing the cases s = 0, 1 and 2, one sees that applying the discrete Laplace
operator significantly reduces the condition number and suppresses its growth. Then
for s = 3, 4, the condition number tends to be finitely bounded. The case s = 4 makes
2s match 2ν+d, the exponent of ‖ω‖ in φ̂, and thus the bounded result is guaranteed
according to [14].

For the purpose of preconditioning, the discrete Laplace operator is applied to

both sides of the kernel matrix simultaneously. Hence, only Φ
[s]
n for even s can be

obtained through linear transformations from Φn. According to the above results,
s = 4 gives the optimal preconditioning performance.

To demonstrate the effectiveness of the discrete Laplace operator on a finite ele-
ment mesh, we consider a grid deformed from the regular grid (centered at the origin)
by scaling the y-coordinates of the grid points by a quadratic function, which is 1 in
the middle of the range of x and 0.5 at the extremes. Hence the deformed grid has an
olive shape. The grid was used in [5] to model nonstationary stochastic processes and
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(b) deformed grid

Fig. 7.2. Condition number of Φ
[s]
n by varying n. Matérn kernel, ν = 3.

it is not repeated here. To obtain a triangular mesh, for each grid cell the northeast
and the southwest corners are connected.

Figure 7.2(b) plots the condition number of Φ[s] versus n, for s = 0, 2, 4. One
observes that the discrete Laplace operator helps significantly reduce the condition
number. Comparing with the regular grid case, the curves for s = 0, 2 look close to
those shown in plot (a). The curve for s = 4 also shows a similar trend as that in plot
(a); in particular, this curve seems finitely bounded as n increases.

So far, we have shown examples for ν = 3, whereby there exists an integer s such
that 2s = 2ν + d, where a bounded condition number is expected for regular grid. In
Figure 7.3 we plot the cases ν = 1.5 and 2. We experimented with the choices of s
such that the maximum is round(ν + d/2). For plot (a), the curve of s = 2 clearly
shows the preconditioning effect and possible bounded result. For plot (b), using s = 2
yields a much smaller condition number for the grid sizes we have experimented, but
according to the trend, it is unclear if the curve of s = 2 will always stay under the
one of s = 4. Nevertheless, both curves show reduction on the condition number as
the grid size increases, and the reduction will be significant.
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Fig. 7.3. Condition number of Φ[s] by varying n. Matérn kernel; deformed grid.
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7.2. Power-law kernel. The power-law kernel [6, 13], parameterized by α > 0,
is

φ(x) =

{
Γ(−α/2)‖x‖α, α/2 /∈ N
2(−1)α/2+1

(α/2)! ‖x‖α log ‖x‖, α/2 ∈ N.

The coefficients in front of ‖x‖ alternate signs whenever α/2 crosses an integer value.
The kernel is so defined such that for any vector a with entries satisfying the condi-
tion (2.4), the expression (1.2) is valid with

φ̂(ω) =
2α

πd/2
Γ

(
α+ d

2

)
‖ω‖−α−d,

which is positive. Since the polynomial P in the condition (2.4) is required to have
a degree at most t = bα/2c, it is expected that Φ[s] with s being even and s > t is
positive definite. In fact, in the regular grid case, as long as s > t (not necessarily
being even), Φ[s] is definite; it switches between positive and negative definiteness
whenever s increases by 1. When s ≤ t, Φ[s] has −2s + 2t + 1 negative eigenvalues
(the rests are positive) if s is even, and Φ[s] has −2s+2t+1 positive eigenvalues (the
rests are negative) if s is odd.

Figure 7.4 shows a series of plots of the sorted set {λj(Φ
[s]
n )} (blue) overlapped

by the sorted set {(2π)dφ̂[s]
n (2πj/n)} (red), for a fixed grid n = [32; 32] but different

parameters α = 2, 3 and various s values. The sets of values are sorted in their
increasing order, but since the vertical axis of the plots is in the log scale, the absolute
values are plotted instead. So one should expect a “V” shape in each plot, with one
side of “V” being extremely narrow since there are only −2s + 2t + 1 such values.

One sees that a majority of the eigenvalues {λj(Φ
[s]
n )} are distributed similarly with

{(2π)dφ̂[s]
n (2πj/n)}. In plots (a) and (b), it is expected that there are 3 blue dots at

the upper-left corner, corresponding to 3 negative eigenvalues. Two eigenvalues are
close and they overlap so visually one sees only two blue dots.

In Figure 7.5(a) and (b) plot the growth of the condition number of Φ
[s]
n as n

increases. We varied s from 0 to round((α + d)/2), so that the maximum of 2s

approximately agrees with the exponent in φ̂. One sees that as s increases, the
growth of the condition number is progressively reduced. In the case α = 2 and s = 2
(such that 2s = (α+ d)/2), the condition number is finitely bounded.

In Figure 7.5(c) and (d) plot the growth of the condition number for Φ[s] on the
deformed grid. In this case, Φ[s] is defined for only even s. One observes that the
plots look similar to (a) and (b), which shows the effectiveness of the discrete Laplace
operator for preconditioning.

8. Discussion and conclusion. We have studied preconditioning kernel ma-
trices by consecutively differentiating the kernel. The spectrum of the matrix in the
regular grid case is revealed and the effect of applying the discrete Laplace operator
on the matrix is analyzed. The Laplacian preconditioning technique is generalized
to scattered points without a regular grid structure, and a discrete Laplace operator
for this case is derived and analyzed. Numerical results confirm the preconditioning
effect by applying the operators.

One shortcoming of the operator is that it reduces the size of the matrix, because
there is not sufficient information to approximate the derivatives of the boundary



22 J. CHEN

−200 0 200 400 600 800 1000 1200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

(a) α = 2, s = 0

−200 0 200 400 600 800 1000 1200
10

−6

10
−4

10
−2

10
0

10
2

10
4

(b) α = 3, s = 0

−200 0 200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

10
4

(c) α = 2, s = 1

−200 0 200 400 600 800 1000 1200
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(d) α = 3, s = 1

−200 0 200 400 600 800 1000 1200

10
4.3

10
4.4

10
4.5

10
4.6

10
4.7

(e) α = 2, s = 2

−200 0 200 400 600 800 1000 1200
10

2

10
3

10
4

10
5

(f) α = 3, s = 2

Fig. 7.4. Sorted eigenvalues of Φ
[s]
n (blue) and sorted values of (2π)dφ̂n(2πj/n) (red) for

power-law kernel. Absolute values are plotted since the vertical axis is in log scale.

points. For some applications such as in statistics, this means some boundary infor-
mation is discarded. With increasingly fine discretizations/dense sampling, statistical
estimates from the remaining information may be asymptotically as efficient as those
from the original information. Therefore, reducing the size of the kernel matrix is ac-
ceptable. Nevertheless, in the future we plan to investigate effective preconditioners
that are full rank linear transformations.
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Fig. 7.5. Condition number of Φ[s] by varying n. Power-law kernel.
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[10] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, American Mathematical
Soc., 1984.

[11] M. L. Stein, Fixed-domain asymptotics for spatial periodograms, Journal of the American



24 J. CHEN

Statistical Association, 90 (1995), pp. 1277–1288.
[12] , Interpolation of Spatial Data: Some Theory for Kriging, Springer, 1999.
[13] , Equivalence of gaussian measures for some nonstationary random fields, Journal of

Statistical Planning and Inference, 123 (2004), pp. 1–11.
[14] M. L. Stein, J. Chen, and M. Anitescu, Difference filter preconditioning for large covariance

matrices, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 52–72.
[15] J. Stewart, Positive definite functions and generalizations, an historical survey, Rocky Moun-

tain J. Math, 6 (1976), pp. 409–434.
[16] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2005.
[17] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large

structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–
1411.

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (“Argonne”) under
Contract No. DE-AC02-06CH11357 with the U.S. Department of
Energy. The U.S. Government retains for itself, and others acting
on its behalf, a paid-up, nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display publicly, by
or on behalf of the Government.


