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Abstract—Maultilevel Toeplitz linear systems appear in a
wide range of scientific and engineering applications. While
several fast direct solvers exist for the basic 1-level Toeplitz
matrices, in the multilevel case an iterative solver provides
the most general and practical solution. Furthermore, iterative
methods are asymptotically faster than many stable direct
methods even for the 1-level case. This paper proposes several
parallelization techniques that enable an efficient implementa-
tion of the conjugate gradient algorithm for solving multilevel
Toeplitz systems on distributed-memory machines. The two
major differences between this implementation and that for a
general sparse linear solver are (1) a communication-efficient
approach to handle data expansion and truncation and data
transpose simultaneously; (2) the interleaving of matrix-vector
multiplications and vector inner product calculations to reduce
synchronization cost and latency. Similar ideas can be applied
to the implementation of other iterative methods for Toeplitz
systems that are not necessarily symmetric positive definite.
Scaling results are shown to demonstrate the usefulness of the
proposed techniques.
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I. INTRODUCTION

Many scientific and engineering applications give rise
to (multilevel) Toeplitz linear systems. Examples include
solving partial differential equations, integral equations, dig-
ital signal processing, image processing, optimal control,
and stationary time series. A Toeplitz matrix has constant
diagonals. This special structure enables the development of
algorithms that run faster than O(n3), which is the cost of
solving a general, unstructured dense linear system using
a direct method. An extensive literature has been devoted
to the solution of Toeplitz systems (with parallel imple-
mentation), including fast algorithms (such as Levinson-
Durbin [1]-[3] and Bareiss [4], [5]), “superfast” algorithms
using divide-and-conquer strategies (see, e.g., [6]-[12]),
iterative algorithms based on Newton iterations [13], and
algorithms for banded Toeplitz systems (see, e.g., [14], [15]).
Some of the algorithms can be generalized for block-Toeplitz
or Toeplitz-block systems [16].

A multilevel Toeplitz matrix is defined recursively with
respect to the number of levels (sometimes the term “mul-
tilevel” is dropped for convenience if the distinction with
1-level is unimportant). In the simplest case, a 2-level
Toeplitz matrix is a block-Toeplitz matrix where each block
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itself is Toeplitz. A d-level Toeplitz matrix usually comes
from a problem with a d-dimensional regular grid structure.
Compared with the abundance of algorithms for 1-level
Toeplitz systems, algorithms for multilevel Toeplitz systems
are rare. One of the reasons is that extending the above
algorithms to fully utilize the recursive Toeplitz structure is
not straightforward.

Iterative methods (Krylov subspace methods) provide a
flexible set of algorithms for solving general linear sys-
tems. For symmetric positive definite Toeplitz systems, the
conjugate gradient (CG) algorithm with circulant, banded,
or similar preconditioners was primarily studied (see, e.g.,
[17]-[21]). Other Krylov algorithms are also applicable;
for example, MINRES and GMRES can be used to solve
indefinite and unsymmetric Toeplitz systems, respectively
(see [22] for a comprehensive treatment of iterative meth-
ods). Two crucial computational concerns in applying an
iterative method are the efficient multiplication of the matrix
with a vector and the efficient construction and application
of a preconditioner. For multilevel Toeplitz matrices, the
matrix-vector multiplication can be carried out by using
fast Fourier transforms (FFTs), as can the application of the
preconditioner if it is circulant. This technique lays down the
foundation for using iterative methods for solving systems
with an arbitrary number of Toeplitz levels.

This paper discusses the parallelization of CG for mul-
tilevel Toeplitz systems on distributed-memory machines.
The matrix-vector multiplication in this case differs sig-
nificantly from that in the sparse case. A sparse matrix
often arises from discretizations (for example, of differential
operators). By domain decomposition, the communication in
the multiplication is local. On the other hand, the FFT for
multiplying circulant or Teoplitz matrices requires global
communications (all-to-all type) because data transpose is
needed. What complicates this multiplication is that the
Toeplitz matrix and the vector must be expanded in size
(called embedding) before the multiplication, and the results
must be truncated to yield a correct-sized vector after the
multiplication. If not properly implemented, the embedding
and truncation incur extra communications. We propose
interleaving the embedding and truncation with each substep
of the FFT calculation, so that the former can take advantage



of the communications in the latter in order to save the extra
cost.

The second improvement of the proposed implementation
is the handling of vector inner product or norm calculations
(to facilitate presentation, throughout this paper we use
“inner product” to mean either the inner product or the
norm). Inner product calculations are a common bottleneck
in parallel iterative solvers because they require global
synchronizations. Especially for sparse solvers, synchroniza-
tions can constitute over 50% of the overall run time when
the CPU cores grow to over thousands. A focus of modern
sparse solver design is to modify the numerical algorithm
in order to reduce the number of inner product calculations
(see, e.g., [23]-[27]). In our case, it is also beneficial to
consider how to reduce the synchronizations. One will see
that with simple mathematical derivations the inner products
need not be computed affer the matrix-vector products, even
though in the original CG algorithm it appears so. The inner
products can be equivalently expressed by using intermediate
results in the matrix-vector multiplication. Therefore, we can
utilize the all-to-all communications required in the multipli-
cations to simultaneously compute the inner products, thus
eliminating the synchronizations and reducing latency.

II. PRELIMINARIES

A. Circulant Matrices, Toeplitz Matrices and, Matrix-Vector
Multiplications

A circulant matrix C' and a Toeplitz matrix 7', of order
n, are defined in the following forms, respectively:
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We will use a subscript n to emphasize the order when nec-
essary. Since this paper addresses real symmetric matrices,
C and T can be represented solely by their first columns,
c=coy..-,Cn-1] and t = [tg,...,t,—1], respectively. Note
that the Toeplitz matrix 7;, can be embedded into a circulant

matrix Cy, (of twice the size):

T, *

All the elements (except for the diagonal ones) in the two
subblocks denoted by = are well defined. In the vector
representation, this is

t; 1=0,...,n—1,
¢; = { arbitrary i =n,
ton—i i=n+1,....2n—1.

Informally, the first half of c is t, whereas the latter half is
a “flipping” of t except for the first entry.

The multiplication of C' with a vector y utilizes the fact
that C' can be diagonalized by a discrete Fourier transform
(DFT). Specifically, the diagonalization is

UCUH = A,

where A = diag(\y,...,\,) contains the eigenvalues
of C and U is the DFT matrix with entries Uj, =
exp(i2mjk/n)/y/n. Multiplying the vector of all ones on
both sides of the above equation, we obtain

VnUc = A,

where A denotes the vector of all eigenvalues. This means
that the eigenvalues of C are obtained by a DFT of the
first column and a scaling /n. Therefore, the matrix-vector
product v = Cy can be computed by using FFTs; see
Algorithm 1.

Algorithm 1 Circulant matrix times vector
1: Pre-compute X as the FFT of ¢ multiplied by /n
2: Compute z as the FFT of y
3: Compute w as the elementwise product of A and z
4: Obtain the result v as the inverse FFT of w

The multiplication of 7' with a vector y exploits the
circulant embedding of T":

=1 Al

Algorithm 2 shows the steps of computing the matrix-vector
product v = T'y.

Algorithm 2 Toeplitz matrix times vector
1: Embed the matrix 7, into a circulant matrix Cy,,
2: Embed y into a length-2n vector y’ (all remaining entries
being zero)
3: Multiply Cy,, by y’ using Algorithm 1, obtaining v’
4: Truncate v/ (keeping the first n entries) to obtain v

Multilevel circulant matrices are defined recursively with
respect to the number of levels. Thus it suffices to define



the 2-level case. With the form (1), if each ¢; itself is a
circulant block, then the resulting matrix is 2-level circulant.
We use C),,n, to denote such a matrix, where each ¢; has
size ng X no, and there are n; such ¢;’s. We say that Cj,p,
is of order (ng,m1). A 2-level circulant matrix can also be
represented solely by its first column. The first column of
Cpon, consists of n; subvectors of length ng, where each
subvector corresponds to the first column of some c¢;. We
pack these subvectors column by column, obtaining an ng X
ny data tensor c. We formally call c a (data) representation
of Chron,-

If we generalize the number of levels, a d-level circulant
matrix Cp,. n,_, is of order (ng,...,nq—1). It can be
represented solely by its first column, which can then be
reshaped as an ng X - -+ X ng—_; tensor. We always use C to
denote this tensor. Similar definitions and discussions apply
to a d-level Toeplitz matrix T},,...n,_,, Which is represented
by t, an ng X --- X ng—; tensor. To simplify notation, we
always let n =ng---ng_1.

Multiplying a d-level circulant matrix C' with a vector y
can still use Algorithm 1, with minor changes:

o The notation y means an ng X --- X ng_1 tensor, a
reshaped result of y, and similarly for the output.

o The (inverse) FFTs are changed to d-dimensional (in-
verse) FFTs.

The steps of multiplying a d-level Toeplitz matrix 7" with
a vector y are similarly modified from Algorithm 2, except
that the embeddings of 7" and y need more descriptions. It
suffices to show an example in the 2-level case. Recall that
the notation y means an ny X n; tensor. Then the embedding

is
1Y 0
which is of size 2ny x 2n;. That is, the embedding should

expand along each direction of the tensor y. Similarly, the
embedding of t has the form

Cc= s
k* ok

where the blocks denoted by * contain the “flipping” of t.
Formally, for ¢ =0,...,n9 — 1,

tij j:O,...,nl—l,
C;; = { arbitrary j = ng,

tioni—; J=m+1,...,2n; — 1.

Then, for j =0,...,2n; — 1,

tij 1=0,...,n9—1,
Cij = | arbitrary ¢ = ny,
t2n0—i,j i:n0+1,...,2n0—1.

B. Conjugate Gradient with Toeplitz Systems

The standard CG algorithm [22] for solving a linear
system Ax = b using a preconditioner M ~ A is shown in
Algorithm 3. It requires an initial guess y. The CG iteration
(the for-loop) is run until the residual 7,1, is sufficiently
small. At such a step j, the algorithm returns x;4, as the
approximate solution.

Algorithm 3 CG
1 7o = b— Azg, z0 = M1y, po = 2o
2: for j =0,1,..., maxit do
3 oy =(r,2)/(Ap;,p;)

4 Tjp1 =T+ a;p;

S: Tjt1 =Tj — OéjApj

6

7

8

if [|7;41]|/]|b]| < rtol then return
Zjt+1 = Mﬁl’l"j+1
2 B =(ris1 zip)/(r4, 25)
9 Pit1 = Zjt1+ 5P,
10: end for

When A is 1-level Toeplitz, several choices of a cir-
culant preconditioner exist. These preconditioners all help
the CG algorithm converge superlinearly [17]. Although the
superlinear convergence property is lost in the multilevel
case [28], the corresponding multilevel circulant precondi-
tioners yield sufficiently good performance in practice [17].
In this paper we consider T. Chan’s preconditioner [19].

Using the notation in the preceding subsection, let the
ng X --- X ng—1 tensors a and m represent the matrices
A and M, respectively. In the 1-level case (d = 1), the
preconditioner is defined as

mj=((n—j)aj+jany)/n, j=0,...,n—1.

Informally, m is a weighted averaging of a and its flipping,
and the weights are defined with respect to the locations of
the entries. Then, in the general d-level case, the averaging
is done along each dimension. Algorithm 4 summarizes
this averaging procedure (in the subscript notation such as
“o.. 0 9,---7, 4 is the ith index).

Algorithm 4 Constructing preconditioner M
I: Assign m < a
2: for i =0,...,d—1 do
3 for j=0,...,[n;/2] —1do

4 M e (M G) M o] M )
5: M. py—g,ee S M G

6: end for

7. end for

C. Parallel Multidimensional FFT

Multidimensional FFTs are needed to apply a multilevel
circulant preconditioner M to vectors. More important, mul-
tidimensional FFTs are required to multiply the multilevel



Toeplitz matrix A with vectors. We use z to mean a general
ng X --- X ng—1 data tensor in the complex field. A d-
dimensional FFT on z is equivalent to d consecutive 1-
dimensional FFTs along each dimension of z.

For parallel implementation, two data partitioning meth-
ods are the most popular. The first method is to cut z
along the first dimension. An example of this approach
is implemented in the FFTW library [29]. Fixing the first
index, all the data are local, residing within one processor.
Therefore, a (d—1)-dimensional FFT is first performed along
the 2nd to the dth dimension. Then, a transpose is carried
out so that data along the first dimension becomes local. A
remaining 1-dimensional FFT is performed to complete the
whole transform.

This method has two drawbacks. First, the maximum
number of processors is restricted by the size of the first
dimension. Second, the transpose operation requires global
communication using all processors on the whole data.

In order to overcome these drawbacks, the second method
is to use a d’-dimensional grid of processors (d’ < d) and
to partition the data z along d’ dimensions. A simplified
example of this approach is implemented in the P3DFFT
library [30], which handles 3-dimensional data using a 2-
dimensional grid of processors. In the most general setting,
without loss of generality we assume that z is partitioned
along the 1st to the d’th dimension. The transform is carried
out by first performing a (d—d’)-dimensional FFT along the
(d’ + 1)-th to the dth dimension. Then, to facilitate presen-
tation, we combine the dimensionality of these dimensions
and regard them as one dimension only; we call it the “last
dimension.” Next, the procedure continues with a loop that
iterates through the first d’ dimensions. For the loop index 4
from d’ down to 1, a transpose is performed between the ith
and the (i + 1)-th dimension (so that the data along the ith
dimension become local), followed by a 1-dimensional FFT
along the ith dimension. Note that if i = d’, the (i + 1)-
th dimension is the “last dimension” instead of the original
(d’ 4+ 1)-th dimension. When the loop finishes, the whole
transform is complete.

An obvious advantage of this method is that the number
of processors can maximally scale to the product of the size
of the first d’ dimensions. More important, within the loop
each transpose requires the participation of only subgroups
of processors. For example, at the ¢th iteration, the subgroup
of processors along the ¢th dimension participate in the
transpose, but different subgroups are independent. This
reduces the data size in the all-to-all type of communications
and is more desirable when z has many dimensions.

Note that the first method can be considered a special
case of the second method (by letting d’ = 1). In this
paper we compare the performance of 1- and 2-dimensional
partitioning on 3-dimensional data in experiments.

III. SKELETON OF THE ALGORITHM

Based on the preceding section, the mathematically ori-
ented Algorithm 3 is now rewritten as Algorithm 5 that is
tailored for Toeplitz systems and parallel implementations.
The major changes are twofold:

o The eigenvalue calculation of the embedding of A and
that of M as a preprocessing step is brought to the
front. This step can be separated from the main CG
iteration for the case of multiple right-hand sides.

o Several intermediate variables (7; and o;) are intro-
duced to facilitate computer implementation and further
improvements (see Section V).

Algorithm 5 CG for multilevel Toeplitz systems
/I The following can be separated out for multiple b’s
1: Call TOEP-EMBED-EIGVAL(A, A1) to obtain eigenval-
ues A; of the multilevel circulant embedding of A
2: Construct multilevel circulant preconditioner M
3: Compute eigenvalues Ao of M
4: Call TOEP-MULT(A1, g, yYo) to obtain yg = Axg

/I Work for each b
5.y = [|b]]
6: 7o =b— Yo
7: po = [|7oll
8: if po/v < rtol then return
9: Compute zg = M~ 'rq using A;*

10: 09 = (To, Z())

11: po = 2o

12: for 5 =0,1,..., maxit do

13: Call TOEP-MULT(A4, pj, v;) to obtain v; = Ap;
4 7 = (v5,p;)

15: Q5 = Uj/Tj

16: Tj11 = Tj+ a;p;

17: Tj+1 =T — Q05

18 pip1 = [l7j4all

19: if pj+1/7 < rtol then return

20: Compute 211 = M~ 1r;;; using Ayt
21: Oj+1 = (T‘j+1,Zj+1)

22: Bj:Uj+1/Uj

28 Pit1 = Zjp + Bipj

24: end for

Let us examine the algorithm line by line. First, the sub-
routines TOEP-EMBED-EIGVAL and TOEP-MULT compute
eigenvalues of the embedding of a Toeplitz matrix and the
Toeplitz matrix-vector product, respectively. They require
special treatments, and they will be discussed in detail in
the next section. We skip the lines with these subroutines
here.

Line 2 constructs the preconditioner, following Algo-
rithm 4. Since a is partitioned along one or more of the
dimensions, when looping over these dimensions transposes



have to be performed so that data along these dimensions
become local. This procedure follows the same idea of
parallel FFT, where there is a loop containing transposes.
At the end, the data partitioning of m is different from what
it started with. Then, m needs to be transposed back so that
the partitioning agrees with that of a.

Line 3 computes the eigenvalues of a multilevel circulant
matrix, which simply requires a multidimensional FFT with
a scaling (line 1 of Algorithm 1). In fact, the scaling can be
removed because it does not affect the convergence behavior
of CG.

Lines 9 and 20 multiply a circulant matrix with a vec-
tor, following Algorithm 1 (from line 2 to the end), with
modifications for multilevels as discussed in Section II-A.

The remaining lines involve scalar or vector operations,
and the implementation is straightforward.

IV. PARALLEL TOEPLITZ MATRIX-VECTOR
MULTIPLICATION

One difficulty of naively using Algorithm 2 (even with
the modifications for multilevels) for multiplying a Toeplitz
matrix with a vector is that the embedding is expensive.
The reason is that the embedding along certain dimensions
that are partitioned by processors requires interprocessor
communications. As an example, consider a 2-level Toeplitz
matrix 7. Its representation is a 2-dimensional data tensor
t. Then the embedding is in the form

[

Suppose t is partitioned horizontally by using two proces-
sors. In order that c is similarly partitioned, one needs to fill
the lower part of c. Furthermore, one needs to redistribute
the data (for example, the upper part of ¢ is now held by only
one processor). Communication is inevitable if one wants to
construct the embedding c explicitly.

To avoid this communication, one can combine the steps
of the embedding and the FFT, since the embedding can
take advantage of the transposes in the FFT for data redis-
tribution. The details are best explained by walking through
Figure 1(a), which showcases the situation that the data is
partitioned along only one dimension. The flowchart mainly
demonstrates the steps of the multiplication; however, the
first phase of the flow can also be used to compute the
eigenvalues of the embedding of the Toeplitz matrix. The
correctness of the embedding and the multiplication will be
shown later.

To compute v = T'y, we need to embed y into a larger
data tensor by padding zeros. The first step is to embed along
the 2nd to the dth dimensions, shown in the figure as “row-
plane embedding.” After the embedding, we immediately
perform a (d — 1)-dimensional FFT on these dimensions.
Next, a transpose between the 1st dimension and the 2nd
to dth dimensions is carried out, so that data along the

1st dimension become local. Then, we perform a further
embedding (zero-padding) along the 1st dimension, followed
immediately by a 1-dimensional FFT along this dimension.
This in fact completes the d-dimensional FFT on the full
embedding of y. The result is denoted by z.

The procedure for obtaining the eigenvalues A\ of the
embedding of t is similar, except that the “zero-padding” is
changed to “flipping.” Corresponding to the figure, the first
flipping is to embed each row-plane to a larger data tensor
such that it represents a (d — 1)-level circulant matrix, and
the second flipping is to embed each column to a longer
column such that it represents a 1-level circulant matrix.

With z and A ready, an elementwise multiplication is
performed, resulting in w. The final step is to perform a d-
dimensional inverse FFT and the truncation simultaneously,
in order to obtain the final result v. This, in fact, is the reverse
procedure of obtaining z, and it corresponds to the second
phase of Figure 1(a). We perform a 1-dimensional inverse
FFT along the 1st dimension, followed by a truncation that
rids the latter half of the data along this dimension. Next, a
transpose is performed so that the data is cut along the 1st
dimension. Then, a (d — 1)-dimensional inverse FFT along
the 2nd to dth dimensions is carried out, and the data is
truncated to half along each of these dimensions. The result
is the data v of dimension ng X --- X ng—_1, the desired
matrix-vector product.

It is important to show that the combination of embedding
and FFT (also the combination of inverse FFT and trunca-
tion) yields correct results, because the former is not fully
done before the latter happens. The proof is simple. For zero-
padding, the FFT of zeros is zeros, so the embedding along
the 1st dimension can be delayed until the data along this
dimension becomes local. Similarly, flipping the data entries
after FFT is equivalent to first performing FFT, then flipping
the FFT result. Furthermore, the truncation of data along any
dimension can be done at any time as long as FFT along this
dimension has been done. Therefore, the truncations along
all dimensions need not be done all at once at the end. This
completes the proof of the correctness of Figure 1(a).

Similar ideas apply to the situation where the data is par-
titioned along more than one dimension. Figure 1(b) shows
an example of 3-dimensional data partitioned along the first
two dimensions. The procedure begins with embedding and
FFT along the unpartitioned dimension(s), then iteratively
performing transposes so that each time the data along a
new dimension becomes local; thus, embedding and FFT
are done along this dimension. After the iterative loop,
both z and A are ready, so an elementwise multiplication
is performed, resulting in w. Then, w goes through the
reverse procedure (inverse FFT and truncation), and the
matrix-vector product v is obtained. The correctness of the
procedure follows the arguments for the case of Figure 1(a).

The discussions are summarized in Algorithm 6. This
algorithm is a parallel improvement of Algorithm 2. The key
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(b) 2-dimensional partitioning

Figure 1. Flowcharts of computing Toeplitz matrix-vector product v = T'y. This procedure corresponds to the subroutine TOEP-MULT(A, y, v) in
Algorithm 5, where A contains the eigenvalues of the embedding of 7. The first phase of each chart also shows the steps of performing the subroutine
TOEP-EMBED-EIGVAL(T), A).



of the improvement lies in the interleaving of embedding and
FFT (also inverse FFT and truncation) along each dimension.

Algorithm 6 Toeplitz matrix times vector, parallel version

1: function TOEP-EMBED-EIGVAL(T, A)

2: Embed t and compute d-dimensional FFT of the
embedding simultaneously (corresponding to the first
phase of Figure 1(a)/1(b); embedding means “flipping”).

3: Obtain A by scaling the above result by /n.

4: end function

5: function TOEP-MULT(A, y, v)

Embed y and compute d-dimensional FFT of the
embedding simultaneously (corresponding to the first
phase of Figure 1(a)/1(b); embedding means “zero-
padding”). Let the result be z.

Compute w as the elementwise product of A an z.

Compute d-dimensional inverse FFT of w and trun-
cate the FFT result simultaneously (corresponding to the
second phase of Figure 1(a)/1(b)). The end result is v.

9: end function

It is interesting to count the number of transposes and
the involving data size in order to complete one matrix-
vector multiplication (excluding the precomputation of the
eigenvalues )\). We need only to count the most general
case: d-dimensional data with d’-dimensional partitioning.
Let the grid of processors have a size pg X p1 X -+ X pgr—1,
and let p be the total number of processors. After the first
embedding, the data size becomes (ng X -+ X ng_1) X
(2ng X+ -x2ng_1) = 24~ . Then a transpose between the
d'th dimension and the “last dimension” (see Section II-C)
is performed. Therefore, there are p/py 1 all-to-alls occur-
ring simultaneously, and each all-to-all involves a group of
par—1 processors with data size 274 n/(p/pa_1). After the
transpose, data embedding is done along the d’th dimension,
so the total data size doubles. Repeatedly doing this analysis,
one easily concludes that there are d’ transposes in the first
phase. For each transpose, the data size of each all-to-all and
the number of all-to-alls are listed in the following table:

ith transp.  size each all-to-all  # concur. all-to-alls
1 297 pyr 1 -n/p p/par—1
2 24744 py o n/p p/Par—2
d' 247 po - n/p p/Po

The analysis of the second phase reverses the numbers
listed in the table.

V. ELIMINATING ALL-REDUCTION

A common bottleneck in parallel iterative solvers is the
inner product calculations, because each calculation requires

an all-reduction operation to sum the local inner products
held in each processor in order to obtain the global result.
The all-reduction incurs a global synchronization, and there
are several such synchronizations within each iteration.

The idea of removing these repeating synchronizations
is to hide the latency in other global communications (in
this algorithm, the all-to-alls for transposing data). If the
data is partitioned along only one dimension, all processors
participate in the all-to-all. Thus, if the data for all-reduction
is available at the time of transpose, then the all-reduction
can be equivalently carried out by first performing a local
(partial) sum, then transmitting the partial sum by all-to-all,
followed by a summation of the gathered partial sums. The
implementation is straightforward.

On the other hand, if the data is partitioned along more
than one dimension, the participants of each all-to-all consist
of only a subgroup of processors, and several all-to-alls are
needed to complete one multidimensional FFT. Therefore,
the calculation of the sum will be completed only after the
all-to-alls are done along every dimension of the processor
grid. It suffices to show an example of a 2-dimensional grid
of processors. We use (4, ) to indicate a grid location. To
sum the number a;; held in each processor, the first batch of
all-to-alls exchanges a;; along the rows of the processor grid
so that each processor in the ¢th row has a partial sum a; =
> ; ij- Then the second batch of all-to-alls exchanges a;
along the columns of the processor grid. Thus each processor
has the final sum a = )", a;.

It is, however, not obvious in Algorithm 5 why the data
for all-reduction is ready when transpose is being carried
out. For example, in the algorithm one seems to need to
obtain v; = Ap; before the inner product 7; = (v;, p;) can
be computed. To compute the two terms simultaneously, we
derive a mathematically equivalent inner product for ;.

To express terms in general, we consider the Toeplitz
multiplication v = T'y and the inner product o = (y,v).
Let y’ be the embedding of y, and let C = U¥ AU be the
diagonalization of the embedding C' of 7. Then the essence
of computing v consists of the following steps:

1) z = Uy’ (first phase of Figure 1(a)/1(b));

2) w=Az;

3) v/ = UPw, and v is the truncation of v’ (second

phase of Figure 1(a)/1(b)).

Then, the inner product can be equivalently expressed in the
following way:

(y,v) = (¥, v') = (w, 2).

The first equality results from the fact that y is embedded
into ¢y’ with zeros, and the second equality is because U is
unitary. Therefore, o can be computed as the inner product
of w and z, which are readily available before step 3.
Incorporating this idea into the CG iteration, we in-
troduce two new subroutines, TOEP-MULT-AND-DOT-



PROD(A, y,v,0) and CIRC-MULT-AND-DOT-PROD-AND-
CONVG-TEST(A, y, v, 0, tol). The former subroutine com-
putes the Toeplitz matrix-vector product v = Ty and
the inner product ¢ = (y,v) simultaneously. The latter
subroutine first computes p = ||y||. If p < tol, it returns with
the indication of convergence of the CG iteration. Otherwise,
it computes the circulant matrix-vector product v = C'y and
the inner product o = (y, v) simultaneously.

The implementation of TOEP-MULT-AND-DOT-PROD has
been clear from the preceding discussions. The same idea is
used in implementing CIRC-MULT-AND-DOT-PROD-AND-
CONVG-TEST(A, y, v, o, tol). To be specific, the essence of
computing v = Cy consists of the following steps (where
C is diagonalized as U AU):

1) z=Uy;

2) w=Az;

3) v=UHw.
Therefore,

o= (y,v) = (w,2),

and thus its computation is inserted into step 3. Furthermore,
the computation of p = ||y| is inserted into step 1. If
p < tol, CIRC-MULT-AND-DOT-PROD-AND-CONVG-TEST
returns indication of convergence, and steps 2 and 3 are
skipped.

These two new subroutines are summarized in Algo-
rithm 7. Using these subroutines, Algorithm 8 is the final
algorithm of this paper.

Algorithm 7 Subroutines eliminating all-reduction
1: function CIRC-MULT-AND-DOT-PROD-AND-CONVG-
TEST(A, y, v, o, tol)
2: Compute d-dimensional FFT of y and p = |y
simultaneously. Let the FFT result be z.

3: Return with indication of convergence if p < tol.
Compute w as the elementwise product of A an z.
5: Compute d-dimensional inverse FFT of w, the result
being v. Meanwhile, compute ¢ = (w,z), which is

equivalent to the inner product of y and v.
6: end function

7: function TOEP-MULT-AND-DOT-PROD(A, y, v, 0)
Embed y and compute d-dimensional FFT of the

embedding simultaneously (corresponding to the first
phase of Figure 1(a)/1(b); embedding means “zero-
padding”). Let the result be z.

9: Compute w as the elementwise product of A an z.

10: Compute d-dimensional inverse FFT of w and trun-
cate the FFT result simultaneously (corresponding to the
second phase of Figure 1(a)/1(b)). The end result is v.
Meanwhile, compute o = (w, z), which is equivalent to
the inner product of y and v.

11: end function

Algorithm 8 Improved implementation of Algorithm 5

/I The following can be separated out for multiple b’s
1: Call TOEP-EMBED-EIGVAL(A, A1) to obtain eigenval-
ues A; of the multilevel circulant embedding of A
2: Construct multilevel circulant preconditioner M
3: Compute eigenvalues Ay of M
4: Call TOEP-MULT(A1, xg, yo) to obtain yg = Axg

// Work for each b

5: v = |1b]|

6: tol =~y - rtol

7. ro =b—1yo

8: Call CIRC-MULT-AND-DOT-PROD-AND-CONVG-

TEST(A; ', 70, 20, 00, tol) to obtain zg = M ~'ry and
oo = (o, z0) simultaneously. Return if converged.

9: Po = 20

10: for j =0,1,..., maxit do

11: Call TOEP-MULT-AND-DOT-PROD(A1, pj, v;, 7;)
to obtain v; = Ap; and 7; = (v;, p;) simultaneously

12: Q= O'j/Tj

13: Tjt1 = Ty + Q;Pj

14: Tj+1 =Tj; — Q;V;

15: Call CIRC-MULT-AND-DOT-PROD-AND-CONVG-
TEST(AZ_I, Tjt+1,Zj+1505+1, tol) to obtain Zj+1 =
M='r;11 and 0j41 = (rj41,2j4+1) simultaneously.
Return if converged.

16: 5j:0j+1/0j

170 Pt = Zj41 + B5p;

18: end for

VI. EXPERIMENTAL RESULTS

In this section, we show several experiments to demon-
strate the effectiveness of the parallelization strategies dis-
cussed in the preceding sections. The programs were im-
plemented in C, compiled with MVAPICH2 and GCC.
The in-processor serial FFTs were called from the FFTW
library [29]. The experiments were performed on a cluster
with 2,560 computing cores and an InfiniBand QDR net-
work. We note that the combinatorial choice of FFT libraries,
MPI implementations, C compilers, and machine architec-
tures might have a significant impact on the performance
of the overall program, because it has been shown that the
scaling of multidimensional FFT is sensitive to both software
and hardware. However, obtaining the optimal performance
of multidimensional FFT is not the ultimate goal; rather, we
show the usefulness of the ideas presented in this paper given
a decent FFT environment. The all-to-alls were implemented
by directly using MPI_Alltoall(v).

The linear systems in the experiments were all 3-level
Toeplitz thus the data was 3-dimensional. Therefore, parti-
tioning of the data could be performed along one dimension
or two dimensions. We call these 1D and 2D partitionings,



respectively. The performances of the solver were signifi-
cantly different under the two partitioning schemes, as will
be shown.

The Toeplitz matrix was generated from the Matérn kernel
that is positive definite for all dimensions [31]-[33]:

2ur)YK, (V2vur
o) = DRI,

where K, is the modified Bessel function of the second kind
of order v, I' is the Gamma function, and r is elliptical
distance

@)

(©))

between two d-dimensional points = and y and for a
set of scale parameters /1,...,¢;. The Matérn kernel is
widely used in spatial statistics, and the solution of the
respective linear system is required in numerous statistical
analysis tasks, such as regression and maximum likelihood
estimation [31]-[34]. In our case, given a 3-dimensional grid
in the physical domain [0, L1] x [0, L] x [0, L3], the matrix
entry with respect to a pair of grid locations  and y is
defined by using (2) and (3). Therefore, the resulting matrix
is 3-level Toeplitz. In fixed-domain asymptotics, the matrix
is increasingly ill-conditioned as the grid becomes denser
and denser [35]. Parameters used in the experiments of this
paper were v = 0.5, {1 = 7, {o = 10, {3 = 13, and
Ly = Ly = Ly =100.

Figure 2 shows the strong and weak scalings for one
CG iteration. The dashed lines indicate perfect scaling. For
each scaling trend in plot (a), the leftmost marker indicates
the use of the minimum number of cores such that all the
solver data can be fit into the main memory. Because of
hardware limitations, the maximum number of cores used in
the experiments was 1,024. We observe the following. First,
2D partitioning offers clear advantages over 1D partitioning.
For the former, not only is the running time shorter, but also
it scales better. (Moreover, 2D partitioning can utilize more
processors to further reduce the running time.) Second, plot
(a) shows a satisfactory behavior of the strong scaling in
the 2D partitioning case. For the first three variations in
the core numbers, the drop of running time is close to the
perfect scaling decrease, despite the fact that the scaling
starts to deteriorate when more cores are used. In plot (b),
the overall trend for 2D partitioning is favorable.

The fact that 2D partitioning is superior over 1D parti-
tioning is further demonstrated in Figure 3, which shows
the proportions of computation time and communication
time. The left plot corresponds to the scenario of a fixed
grid size, whereas the right plot corresponds to a fixed
grid size per core. One sees that as the number of cores
increases, in both partitioning schemes the proportion of
communication time increases. However, the increase for
2D partitioning is far slower than that for 1D partitioning.

In fact, even though the proportion of communication time
in 1D partitioning is smaller at the beginning, it catches up
quickly and constitutes a majority part of the overall run
time.

To demonstrate the effectiveness of the elimination of all-
reductions in the solver, we show in Figure 4 the ratio of
the run time per iteration when the solver is implemented
by interleaving the inner product calculations with matrix-
vector multiplications (cf. Algorithm 8), over the running
time when the inner products are calculated by using all-
reduction. Clearly, a ratio less than 1 shows the advantage of
the proposed algorithm. Only the results of 2D partitioning
are shown because we have demonstrated that it is superior
over 1D partitioning. Both plots in the figure show that as the
number of cores increases, the ratio decreases. For example,
in plot (a), the savings by eliminating all-reductions are more
than 15% with 1,024 cores. This is expected because the
synchronization cost and the variance of time for processors
entering the synchronization point is high. We project that
the savings will be more significant as the number of cores
increases.

All the above figures were drawn with respect to one
iteration. On closing this section, we show the scalings of the
overall run time of the solver; see Figure 5. Again, only the
results of 2D partitioning are shown. Plot (a) shows strong
scaling, which looks similar to Figure 2(a), as expected.
Plot (b) shows weak scaling. Since the increase of the grid
size causes the respective linear system to be increasingly
ill-conditioned (even with the use of a multilevel circulant
preconditioner), the variation in the iteration counts becomes
an undesired factor in the weak scaling test. To improve
the solver, we used a filtering technique proposed in [35]
to further reduce the condition number. In fact, when the
Matérn order v is 0.5, a Laplacian filter suffices to make the
condition number upper bounded by a constant independent
of the grid size. Therefore, with this technique, the number
of iterations varies only slightly. In plot (b), the numbers of
iterations for the solver to converge to a relative tolerance of
10~ are 15, 12, 13, 15, 13, 14, 15, respectively. Note that
when the grid sizes along each dimension are the same (e.g.,
256 x 256 x 256 at 16 cores), the number of iterations is
slightly larger than that when the grid sizes are not the same
along each dimension (e.g., 512 x 256 x 256 at 32 cores).
One sees an interesting pattern that for every three problem
sizes the numbers of iterations vary roughly in a periodic
manner. Then in plot (b) one observes a similar pattern for
every three consecutive markers. In general, we conclude
that the iterative solver scales well in the weak scaling test.

VII. CONCLUSION

Solving a large-scale linear system with respect to a
multilevel Toeplitz matrix is required in various science and
engineering applications. An iterative Krylov solver provides
a principled framework for the solution of such a linear
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system. We have proposed a parallel implementation of the
CG algorithm and shown its effectiveness in an example
Toeplitz kernel that is popularly used in spatial statistics. The
implementation addresses the reducing of communication
cost and latency, by designing the Toeplitz matrix-vector
multiplication such that data embedding and truncation are
injected into each substep of a multidimensional FFT, and
by interleaving the matrix-vector multiplications with inner
product calculations to eliminate all-reduction synchroniza-
tions. The general idea of the parallel strategies can be used
in implementing Krylov solvers other than CG for solving
Toeplitz linear systems that are not necessarily symmetric
positive definite.

Because the FFT is a major computational component
of the solver, and because all currently known implemen-
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tations of the multidimensional FFT heavily rely on all-to-
all communications in distributed memory computers, the
solver will eventually be communication intensive as the
number of processors increases. Thus, the scalability of all-
to-all communications is critical. What partially alleviates
the burden is the flexibility to use a higher dimensional grid
of processors so that only a subgroup of them participate
in one all-to-all. We have seen in the experiments that for
3D data, the 2D partitioning yields far better performance
than does 1D partitioning. We project that for d-dimensional
data (for example, spatiotemporal data has three dimensions
in space and one dimension in time), a (d — 1)-dimensional
partitioning may yield the optimal performance.
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