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U nderstanding physical phe-
nomena at diverse scales has 
always been a great challenge. 

Experimental setups require sophisti-
cated equipment to collect and process 
data at scales ranging from nanome-
ters to kilometers in space, and from 
nanoseconds to days or even months in 
time. In the computational domain, de-
signing mathematical models that can 
accurately predict physics in a multi-
dimensional and parametrically uncer-
tain environment isn’t a trivial task. 
Furthermore, the extremely large num-
ber of degrees of freedom in the analyzed 
system requires the development of 
robust computational algorithms that 
are capable of both extracting the main 
features and of quantifying the possible 
errors in the predicted results. These al-
gorithms also must scale to hundreds of 
thousands of computer processors, and 
might even promote the development of 
specialized hardware. Similar to experi-
mental data, computational simulation 
results must be collected and processed 
with adequate accuracy. Parallel multi-
scale visualization tools are required to 
interactively explore scale interactions.

Molecular dynamics (MD) simu-
lations allow the study of physical 
phenomena at extremely small tem-
poral and spatial scales (below micro-
seconds and micrometers) and are 

computationally expensive. Coarse-
grained MD models, however, such 
as the dissipative particle dynamics 
(DPD) or peridynamics methods, al-
leviate this problem and permit the 
study of systems at much larger scales. 
Employing a continuum-based method 
further extends the range of problems 
that we can simulate.

Multiscale simulations based on the 
coupling of the aforementioned mod-
els can provide better insight into scale 
interactions. For example, multiscale 
modeling can help to understand crack 
formation and propagation, tornado 
formation and progression, and the 
process of platelet aggregation leading 
to blood clot formation. Interfacing an 
atomistic-based model with a continuum-
based model has become necessary to 
simulate many of today’s multiscale 
physical and biological system prob-
lems. Multiscale modeling requires the 
use of multiple mathematical models, 
each describing different scale regimes 
and corresponding codes. Properly 
coupling such heterogeneous descrip-
tions and their implementations is 
currently one of the most dif�cult 
problems in computational physics and 
scienti�c computing. New fundamen-
tal advances in algorithms are needed 
to provide the proper mathematical in-
terface conditions between micro- and 

macroscale systems. These algorithms 
must be capable of accurately capturing 
the problem’s physics and of provid-
ing computational accuracy, stability, 
and ef�ciency. There’s also a need for 
mechanisms to quickly extract and 
exchange data between solvers operat-
ing concurrently at various resolutions 
and on different computer processors. 
Finally, a need exists for quantitative 
data analysis tools that are suitable 
for operating on multiscale data and 
clearly presenting the scale interac-
tions. Such tools are in the early stages 
of development.

Frameworks for coupled multiscale 
simulations are still quite imma-
ture, largely due to the mathemati-
cal and computational complexity 
required. Another limiting factor is 
the availability of resources with suf-
ficient compute capabilities. Even 
with a 10-peta�op computer, capable 
of executing up to 10 quadrillion 
�oating-point operations per second, 
microscale simulations are still limited 
to time intervals of 1 millisecond.

In short, advances are needed on 
mult iple f ronts to enable break-
throughs in multiscale modeling. 
These advances include the following:

•	 accurate mathematical models for 
each scale considered;

Several advances on the mathematical, computational, and visualization fronts have led to the �rst truly 
multiscale simulation and visualization of a realistic biological system.
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•	 robust parallel solvers for each model;
•	 stable interface conditions and par-

allel paradigms for coupling hetero-
geneous solvers;

•	�exibility in using hardware and 
middleware for coupled multiscale 
simulations—for example, con�gu-
rations suitable for use of accelera-
tors by some of the coupled solvers, 
or even use of specialized comput-
ers for some components of coupled 
solvers; and

•	 developing the �eld of interactive 
multiscale visualization.

The latter is important for browsing 
through the data output representing 
billions of unknowns and for drawing 
physical conclusions based on scale 
interactions.

Here, we present a methodology for 
a tightly coupled, multiscale simula-
tion of blood clot formation. Although 
the current study’s scope is limited to 
a speci�c physiological phenomenon, 
the mathematical and computational 
methods we present are applicable to 
many other areas. The main objective 
in this study is to develop new compu-
tational and visualization methodolo-
gies that can be used in a broad range 
of applications.

Why Simulate 
Blood Clotting?
Blood clot (thrombus) formation is 
a multiscale process involving the 
interaction between platelets, blood 
cells about 2µm in size, and the pro-
teins present in a damaged arterial 
wall endothelium. Blood clotting is a 
protective mechanism that helps seal 
an injured arterial wall; however, un-
der certain pathological conditions 
blood clots can lead to vessel occlusion 
and block blood supply to vital organs.

Under other condit ions, a clot 
could detach and travel with the �ow, 

eventually blocking smaller arteries 
and causing a stroke. Simulations can 
help researchers understand the �ow 
conditions that accelerate clot forma-
tion or lead to clot dissolution, and sug-
gest ways to alter the local blood �ow 
dynamics to prevent or aid such events.

Challenges in Multiscale 
Blood Clot Simulation
Clot formation is a multistep process, 
starting from the slowing of platelet 
motion close to the arterial wall (plate-
let tethering). The platelet tethering 
follows platelet activation, leading to 
�rm binding between the platelets 
and the wall, and binding between 
platelets. In later stages, red and white 
blood cells and �brin �bers become 
part of the clot. The rate at which a 
clot forms also depends on local �ow 
features, such as wall shear stress and 
its spatiotemporal variation, hence the 
need to simultaneously resolve the 
blood �ow and the blood rheology.

Because of the large number of de-
grees of freedom required, it currently 
isn’t feasible to have a multiscale 

simulation of clot formation and 
growth that accurately resolves 
blood f low and blood rheology us-
ing only a continuum or an atom-
ist ic approach. However, we found 
that coupling atomistic descriptions 
to resolve local microscale dynamics 
(such as protein interactions) and con-
tinuum descriptions to resolve large-
scale �ow dynamics helps substantially 
reduce the problem size. With this in 
mind, we created a parallel-comput-
ing paradigm that we developed and 
implemented in a coupled atomistic 
and continuum-based solver that 
now makes such simulations possible.

Multiscale Modeling: 
Mathematical Formulation
We performed a multiscale simula-
tion of blood �ow and blood rheol-
ogy in a patient-speci�c model of 
arteries reconstructed from magnetic 
resonance imaging (MRI) data. The 
model considered in this study in-
cludes the major arteries of the neck 
and brain, and an aneurysm, as Figure 1 
shows. The computational domain is 

Figure 1. Multiscale simulation of the brain’s blood �ow. Vessel geometry is 
reconstructed from 3D magnetic resonance imaging (MRI), and small subdomains 
for solution at an atomistic level are inserted in the aneurysm. Plots at the bottom 
show the computed solution at the continuum and atomistic levels: streamlines 
indicate �ow direction, yellow particles labeled “1” show clot formation at the wall, 
and particles labeled “2” represent a small cluster of platelets detached from the clot.

MRI 3D model

Aneurysm

Aneurysm

Left interior
carotid
artery

RBC

1

2

O(1 cm) O(1 µm)

Basilar

Vertebral

Middle
cerebral

Anterior
cerebral

Right interior
carotid artery

White blood cell

Red blood cell PlateletS
i

m
u
l
a
t
i
o
n

CISE-14-6-CompSims.indd   3 9/29/12   3:57 PM



C O M P U T E R  S I M U L A T I O N S

4 COMPUTING IN SCIENCE & ENGINEERING

decomposed into a number of over-
lapping regions, which can employ 
different descriptions such as MD, 
DPD, or continuum. The solution 
in each region is integrated in-
dependently, while the continu-
ity is established by proper interface 
conditions.

Figure 2 illustrates a setup for a 
coupled atomistic-continuum simu-
lation of platelet aggregation. First, 
the continuum domain ΩC is created. 
Second, the atomistic domain ΩA is 
placed in the area of interest such 
that it completely overlaps with ΩC. 
Third, an additional subdomain ΩS
for the sampling of atomistic data 
is inserted into ΩA. The boundaries 
of ΩA are discretized using 2D ele-
ments (triangles), while the volume 
of ΩS is discretized using 3D ele-
ments (bins). The continuum and 
atomistic solvers run concurrently 
on non-overlapping groups of pro-
cessors, and exchange data required 
for coupling the solutions in ΩC and 
ΩA via message passing. Next, we’ll 
provide more details on the con-
tinuum and atomistic formulations 
integrated in our multiscale solver 
and also review the coupling of the 
two solvers.

Continuum-Based Modeling: 
Spectral Element Method
To model large-scale �ow dynam-
ics, we assume blood to be an 
incompressible Newtonian f luid 
with constant density and viscosity. 
The large-scale �ow dynamics are 
modeled by Navier-Stokes equa-
tions: The �ow problem is de�ned 
in a rigid domain ΩC of the patient-
speci�c arterial network. The do-
main ΩC is bounded by arterial walls 
and is truncated at multiple inlets 
and outlets where �ow and pressure 
boundary conditions are imposed.

The 3D Navier-Stokes equations 
are solved using the open-source par-
allel code Nektar, developed at Brown 
University. Nektar employs the spectral/
hp element spatial discretization 
(SEM/hp; here h represents the mesh 
and p represents polynomial expan-
sion),1 which provides high spatial res-
olution and is well suited for solving 
unsteady �ow problems in geometri-
cally complex domains. The compu-
tational domain is decomposed into 
polymorphic elements. Within each 
element the solution is approximated 
by hierarchical, mixed-order, semi-
orthogonal Jacobi polynomial expan-
sions.1 Figure 3 illustrates the domain 

decomposition and the polynomial 
basis used in Nektar. The SEM/hp
discretization allows control over the 
accuracy of the solution by perform-
ing mesh re�nement (h-re�nement) 
and by varying the order of polyno-
mial expansion (p-re�nement). The 
h-re�nement is particularly useful in 
regions of high geometric complexity, 
such as arterial junctions, and the region 
of a forming clot. The p-re�nement 
helps to signi�cantly reduce the num-
ber of degrees of freedom (grid points) 
in regions where the solution and 
the geometry are relatively smooth. 
For time integration, Nektar em-
ploys a high-order semi-implicit time-
stepping scheme.2

To simulate moving objects or time-
evolving structures (such as blood 
clots) within a �xed computational 
domain, we use the smooth pro�le 
method (SPM).3,4 SPM belongs to the 
family of immersed boundary meth-
ods, and hence has no requirements 
on the mesh to conform to the bound-
aries of moving objects or structures, 
substantially simplifying computa-
tional procedures.

The patient-specific arterial net-
works considered in our study are very 
large; moreover, to accurately repre-
sent the wall shear stresses (an impor-
tant characteristic of biological �ows), 
a high spatial resolution is required. 
This leads to an extremely large com-
putational problem on the order of 
one billion degrees of freedom. To 
ef�ciently solve such a large problem, 
we employed a multipatch domain de-
composition method.5 This method 
decomposes the full, tightly coupled 
problem into a number of smaller, 
tightly coupled problems (tasks) de-
�ned in subdomains (patches), where 
the global continuity (coupling) is en-
forced by providing proper interface 
conditions. The reconstructed domain 

Figure 2. Coupling of atomistic and continuum descriptions: illustration of 
computational domains and interdomain data exchange. (a) An atomistic domain 
ΩA is inserted into the continuum domain ΩC in the region where platelet 
deposition (the yellow dots) is simulated. Interface velocity conditions are imposed 
at the boundaries ΓA of ΩA. Virtual boundary conditions for velocity are imposed 
inside ΩC using an immersed boundary method. The reference velocity and 
immersed boundary geometry are sampled within the subdomain ΩS placed 
inside ΩA. These data are computed by the atomistic solver and projected onto 
the continuum �eld. (b) An atomistic domain of about 4 mm3 is placed inside 
an aneurysm (ΩC). (A2C stands for atomistic to continuum and C2A stands for 
continuum to atomistic.)
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of brain arteries presented in Figure 1 
(top, right) has been subdivided into 
four overlapping patches shown in dif-
ferent colors. The multipatch method 
reduces the size of the problem solved 
with the semi-implicit method, while 
improving solver scalability and speed. 
Furthermore, this approach is well suited 
to the task-parallel framework that 
we employ in multiscale simulations.

Atomistic-Based Modeling: 
Dissipative Particle  
Dynamics Method
To model blood f low dynamics at 
the atomistic/mesoscopic scale, we 
employ a coarse-grained molecular 
dynamics approach6 using the DPD 
method,7,8 implemented in the code 
DPD-Large-scale Atomic/Molecular 
Massively Parallel Simulator (DPD-
LAMMPS). DPD is a mesoscopic 
particle method, with each particle 
representing a molecular cluster rather 
than an individual molecule. The 
method can be seamlessly applied 
to simulate bonded structures (such 
as polymers or blood cells) and non-
bonded particles (blood plasma). The 
DPD method is used to resolve physi-
ological phenomena at scales coarser 
than the MD method, but it’s suf�-
ciently accurate for a highly detailed 
modeling of blood cell interactions. 
Further advantages of applying the 

DPD method include substantially 
larger time steps and considerably 
fewer degrees of freedom, hence the 
ability to analyze systems over signi�-
cantly larger time intervals, such as 
minutes. The DPD system consists of 
N point particles interacting through 
pairwise conservative, dissipative, and 
random forces. The motion of DPD 
particles is governed by Newton’s sec-
ond law and a modi�ed Verlet scheme 
is employed to advance the solution 
in time.

The atomistic problem is de�ned 
in a �xed nonperiodic domain ΩA. 
The domain boundaries ΓA are 
discretized into triangular elements 
T, where velocity and �ux boundary 
conditions are imposed. The velocity 
vector computed by the continuum 
solver is interpolated on the center 
of each T. The particles are inserted 
through T with the rate and direc-
tion corresponding to the continuum 
data. Particles crossing T are deleted 
if the direction of the �ow computed 
by the continuum solver points out-
side the atomistic domain.

Coupling Atomistic 
and Continuum Solvers
A framework for coupling atomis-
tic and continuum formulations for 
the simulation of steady �ows has 
been described in previous work.9

The MD, DPD, and continuum for-
mulations were coupled by imposing 
interface conditions (Dirichlet veloc-
ity conditions) at the boundaries of 
overlapping domains. The solvers 
were employed sequentially and the 
interface conditions were based on the 
velocity �elds statistically averaged 
over long time intervals. The method 
was later reformulated for multiscale 
simulations of unsteady �ow in com-
plex geometries.10

Blood �ow in a cranial arterial tree 
and particularly within an aneurysm is 
highly unsteady, which imposes obvi-
ous restrictions on the length of time 
over which the atomistic data can be 
averaged. One way of improving the 
statistical average of nonstationary 
�elds is to replicate the computational 
domain where identically de�ned �ow 
problems are solved. The variation 
of solutions obtained in each domain 
replica is due to the generation of ran-
dom variables in the DPD equation 
with distinct seed values. In simula-
tions using hundreds of thousands of 
processors, such statistical averaging 
techniques become prohibitively ex-
pensive. To overcome this dif�culty, 
we employ the window proper orthog-
onal decomposition (WPOD)-based 
method.10 This method computes the 
deterministic component of the non-
stationary �eld by decomposing it into 

Figure 3. The leftmost graphical element is a schematic of the unstructured surface grid and the polynomial basis employed 
in Nektar. The computational domain is decomposed into non-overlapping elements (shown as a red prism). Within each 
element the solution is approximated by mixed-order, semi-orthogonal Jacobi polynomial expansions. The shape functions 
associated with the vertex, edge, and face modes for a fourth-order polynomial expansion are de�ned on triangular and 
quadrilateral elements (shown top center and top right).
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orthogonal modes and reconstructing 
the velocity from modes character-
ized by a high correlation length. The 
modes corresponding to the short 
correlation length represent ther-
mal �uctuations and are �ltered out. 
Figure 4 demonstrates the effective-
ness of using the WPOD method to 
process atomistic data in a simula-
tion of a pulsatile pipe �ow. The plots 
clearly show that WPOD substan-
tially improves the solution’s accuracy 
when reconstructing the determinis-
tic components of an unsteady �ow 
�eld, as well as its derivatives.

To set up a multiscale problem with 
heterogeneous descriptions, we must 
de�ne length and time scales. In prin-
ciple, the choice of spatiotemporal 
scales might be �exible, but it’s lim-
ited by various factors such as method 
applicability (such as stability and �ow 
regime) and problem constraints (for 
example, temporal resolution and 
microscale phenomena). To properly 
couple these different domains, we 
consistently nondimensionalize the 
time and length scales, and match 

nondimensional numbers character-
izing the �ow.

Platelet Aggregation Model
Each platelet is modeled by a single 
DPD particle with a larger effective ra-
dius11 than that of the plasma particle, 
and is coupled to the plasma through 
the DPD dissipative interactions. 
The model of platelet aggregation is 
adopted from previous work,12 where 
platelets can be in three different 
states: passive, triggered, and acti-
vated. In the passive state, platelets are 
non-adhesive and interact with each 
other through the repulsive DPD 
forces that provide their excluded 
volume interactions. Passive platelets 
might be triggered if they’re in close 
vicinity to an activated platelet or to an 
injured wall. When a platelet is trig-
gered, it still remains non-adhesive 
during the so-called activation de-
lay time, which is chosen randomly 
from a speci�ed time range. After the 
selected activation delay time, a trig-
gered platelet becomes activated and 
adhesive. Activated platelets interact 

with other activated particles and ad-
hesive sites, which are placed at the 
wall representing an injured wall sec-
tion, through the Morse potential.

The Morse potential interactions 
are implemented between every acti-
vated platelet or adhesive site if they’re 
within a de�ned potential cutoff ra-
dius rd. The Morse interactions con-
sist of a short-range repulsive force 
when r < r0, and of a long-range at-
tractive force for r > r0 such that r0
corresponds approximately to a plate-
let’s effective radius. Finally, activated 
platelets can become passive again if 
they didn’t interact with any activated 
platelet or adhesive site during a �nite 
recovery time.

Coupled Multiscale Solver: 
Parallelization Strategies
From the viewpoint of parallel com-
puting, coupled multiscale/multiphysics 
solvers can be characterized as a col-
lection of interacting heterogeneous 
tasks. The heterogeneity is due to dif-
ferent mathematical formulations, 
solvers, programming models, and 
workloads associated with each task. 
The parallel implementation of our 
coupled solver is based on hierarchical 
task (functional) and data parallelism. 
The key idea of the multiscale solver 
design is to place heterogeneous tasks, 
such as solving an atomistic or a con-
tinuum problem, on non-overlapping 
groups of processors, while minimiz-
ing the data exchange rate between 
these tasks. Data parallel decomposi-
tion is performed then within each 
task independently. The data within 
each task is handled to support ei-
ther distributed or shared memory 
or a hybrid parallel model. Additional 
�ne-grain parallelism is achieved by 
employing hardware optimizations, 
such as use of Streaming SIMD Ex-
tension (SSE) or Quad Processing 

Figure 4. Processing data from a dissipative particle dynamics (DPD) simulation  
of unsteady �ow in a pipe: plot (a) shows the averaged solution (streamwise  
velocity component) computed with a standard averaging over 50 time steps;  
plot (b) shows the averaged solution processed with the window proper orthogonal 
decomposition (WPOD) method, based on the correlation of a number of �elds  
(snapshots), each averaged more than 50 time steps. Here, the data is reconstructed 
using the �rst two POD modes; plot (c) shows the exact solution; plots (d, e,  
and f) show the gradients of the velocity �eld’s streamwise component.

(a) (b) (c)

<u> uexactWPOD(<u>)

r[<u>] r[WPOD(<u>)] r[uexact]

(d) (e) (f)
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Extension (QPX) instructions for 
CPUs. Use of accelerators such as GPUs 
and Intel’s Many Integrated Cores 
(MIC) architecture is also an option.

To better load balance the coupled 
solver, the number of processors exe-
cuting each task is set according to the 
computational load put on each task. 
Speci�cally, the solver’s performance, 
such as time-to-solution and strong 
scaling within each task, dictate the 
required compute power. Although 
the solvers are tightly coupled—that 
is, they exchange a signi�cant amount 
of data required for the interface 
conditions—this data exchange oc-
curs once every 10 to 100 time steps 
and presents a negligible computa-
tional overhead.

The schematic representation of 
functional decomposition of the cou-
pled solver is presented in Figure 5. At 
the top level, two tasks are identi�ed—
the solution of continuum and atom-
istic problems. The continuum solver
consists of 1D and 3D solvers. The 1D 
solver provides a closure for pressure 
and �ow-rate relations at the outlets 
of the truncated arterial domains and 
typically runs on 1 CPU. The 3D 
solver employs overlapping multi-
patch domain decomposition5—that 
is, solutions in each patch are computed 
concurrently on different nonoverlap-
ping groups of processors. Solution 
continuity is achieved by interpatch 
conditions, requiring bidirectional 
data exchange between the overlap-
ping patches. Dealing with interpatch 
conditions and data can also be seen 
as an additional subtask and handled 
by a small group of processors. Such 
additional task parallelism allows a si-
multaneous exchange of data between 
different interfaces, and it also lets us 
perform computations and even block 
communications within each subtask 
concurrently.

The atomistic solver can be ap-
plied in one or more domains ΩAi , i=
1, 2, …. Because there’s only indirect 
coupling between the solution in each 
ΩAi through the solution in the con-
tinuum domain, two or more atomistic 
solvers perform embarrassingly 
parallel simulations. To obtain bet-
ter statistics, each ΩAi can be further 
replicated, and each domain replica 
can be mapped to different groups of 
processors. Communication between 
the processors assigned to each rep-
lica is required to handle interface 
boundary conditions and compute 
statistics. Figure 5 shows how the 
atomistic solver creates two tasks to 
solve the problems de�ned in ΩA1
and ΩA2

; each ΩAi is replicated three 
times so that a total of six atomistic 
solvers are running in parallel. The 
solver limits neither the number of 
ΩAi nor the number of replicas. In a 
coupled atomistic-continuum simula-
tion of platelet aggregation in an an-
eurysm (performed on about 300,000 

processors on the IBM Blue Gene/P 
computer), three atomistic domains 
were placed inside the aneurysm (see 
Figure 1), and each ΩAi  was repli-
cated four times. The total number of 
DPD particles in the 12 replicas was 
about 10 billion. At the same time, the 
continuum domain was divided into 
four overlapping patches, and only 
one of the patches was interacting 
with the atomistic domains.

Synchronization between the atom-
istic solver and the continuum solver 
is based on imposing interface condi-
tions. Data between related domains 
or groups of processors is exchanged 
directly—that is, no explicit data 
manager or master CPU is required. 
Direct data exchange removes unnec-
essary communication overhead as-
sociated with a data manager (which 
can be quite substantial on peta�op 
computers).

Table 1 presents the scaling of the 
coupled solver in simulations of platelet 
aggregation in patient-speci�c brain 

Figure 5. A schematic representation of task parallelism in the coupled solver. 
The continuum domain is partitioned into N overlapping 3D patches Ω ,Ci

 which 
exchange data via interpatch communicators. Each ΩCi

 has multiple inlets and 
outlets, each of which can be connected to a 0D or a 1D arterial network model to 
model boundary conditions (BCs) for inlets and outlets. Two atomistic domains ΩAi

 
are placed inside Ω

1C . Each ΩAi
 can be replicated several times to reduce statistical 

error. Each ΩAi
 is linked to a Ω

1C  via two interfaces: a 2D interface that considers 
the boundaries of ΩAi

 and uses data computed in Ω
1C  as BCs, and a 3D interface 

that’s tailored to the immersed boundary method. The Ω
1C  uses an external force 

�eld computed in ΩAi
. (IPI stands for inter-patch interface.)

1D
closure1D

closure1D
closure

3D
patch 2

C2A (2D) interface

A2C (3D) interface

Continuum
(Nektar)

3D
patch N

3D
domain3D

domain3D
domain

Atomistic
(DPD-LAMMPS)

3D
domain3D

domain3D
domain

Fluid

Structure

3D
patch 1

Multi-patch domain
decomposition

C2A (2D) interface

A2C (3D) interface

C2A

A2C ΩC

ΩA

ΩS

ΓA

IPIIPI …

CISE-14-6-CompSims.indd   7 9/29/12   3:57 PM



C O M P U T E R  S I M U L A T I O N S

8 COMPUTING IN SCIENCE & ENGINEERING

vasculature with an aneurysm. An 
excellent strong scaling is observed. 
The coupled Nektar-DPD-LAMMPS 
solver shows strong scaling in coupled 
blood �ow simulation in the domain 
of Figure 1 (but with one atomistic 
domain). Ncore is the number of cores 
and CPU time is the time required 
for 4,000 DPD-LAMMPS time steps. 
The total number of DPD particles 
is 823,079,981. Ef�ciency is computed 
as a gain in CPU-time divided by the 
expected gain due to an increase in 
Ncore with respect to a simulation with 
lower core-count. Simulations were 
performed on the IBM Blue Gene/P 
computers at Argonne National Labo-
ratory and the Jülich Supercomputing 
Centre in Forschungszentrum Jülich 
(FZJ), and on the Cray XT5 comput-
ers at Oak Ridge National Labora-
tory and the US National Institute 
for Computational Sciences.

With these results, it’s apparent 
that our parallel paradigm makes it 
feasible to have full-scale simulations 
for arterial blood �ow in the human 
body at the continuum level with local 
microscale resolution re�nement in a 
few regions of interest for petascale 
supercomputers.

Multiscale Visualization
Scientif ic data v isualizat ions are 
a highly effective exploratory and 

communication tool and can be of-
fered as both evidence and proof in 
research. The visual representation 
of multiscale atomistic-continuum 
simulation data computed with bil-
lions of degrees of freedom is often 
the only manageable way to gain in-
sight into a complex physical phenom-
ena. The major challenges posed by 
multiscale atomistic-continuum vi-
sualizations are the following:

•	 how to represent the solution as-
sociated with point particles as a 
continuum;

•	 how to represent scale interactions 
by simultaneously presenting data 
from atomistic and continuum solv-
ers; and

•	how to rapidly process terabyte 
datasets stored in different formats.

To address these cha l lenges, 
we developed several mathemati-
cal tools and computational meth-
ods. For example, we employed the 
WPOD to project the atomistic 
data associated with each particle to 
the continuum representation on a 
�nite-element mesh. To work with 
the data and maintain spectral accu-
racy throughout the post-processing 
phase, we developed a custom paral-
lel visualization tool based on Nek-
tar and ParaView, an open source, 

multiplatform data analysis and visu-
alization application.

Because we work with data struc-
tures and �le formats that are opti-
mized for simulation performance, 
the data needs to be converted to for-
mats that are appropriate for visual-
ization. This process can be costly in 
terms of I/O overhead and disk usage. 
To ef�ciently visualize the continuum 
data, we developed a parallel, coupled 
ParaView-Nektar code. This code 
uses ParaView’s parallel visualization 
algorithms and image-rendering ca-
pabilities while leveraging Nektar’s 
parallel data-processing capabilities. 
Key advantages of using this coupled 
code is that it reads the Nektar data 
in its native spectral element format, 
it performs all necessary data con-
versions on the �y, and it passes the 
transformed data on to the ParaView 
pipeline, thereby bypassing expensive 
I/O. Furthermore, we can use Nek-
tar’s utilities to process the data with 
high-order spectral accuracy, which 
means that interpolation, integration, 
and differentiation are performed 
on a Gaussian quadrature consistent 
with the simulation resolution. Thus, 
derived quantities such as vorticity 
are computed using high-order opera-
tors, resulting in a more accurate rep-
resentation of the results. Computed 
data are interpolated on a new grid, 
with resolution controlled by the user. 
Nektar’s capabilities can also be used 
to extract boundary geometry, which 
represents the arterial wall, and to cal-
culate additional quantities, such as 
wall shear stress, taking into account 
the vessel curvature (see Figure 6).

There are two types of data com-
puted by our atomistic solver: quan-
tities associated with each particle, 
such as particle type, coordinate 
and velocity vectors, and activa-
tion level for particles representing 

Table 1. Scaling of the coupled solver in simulations of platelet aggregation 
in patient-speci�c brain vasculature with an aneurysm.

Blue Gene/P computer (4 cores/node)

Ncore CPU time (in seconds) Ef�ciency

32,768 3580.34 1.00

131,072 861.11 1.04

262,144 403.92 1.07

294,912 389.85 0.92

Cray XT5 computer (12 cores/node)

Ncore CPU time (in seconds) Ef�ciency

21,396 2194 1.00

30,036 1177 1.24

38,676 806 1.10

97,428 280 1.07

190,740 206 0.68
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platelets; and an ensemble 
average velocity and density 
computed using the WPOD 
method.10,13,14

Typical DPD simulations 
of blood �ow include particles 
representing the plasma, red 
blood cells (RBCs), platelets, 
glycocalyx, and so on, which 
might have different proper-
ties. Moreover, some blood 
cells (RBCs and glycocalyx) 
must be represented by a col-
lection of particles with �xed 
connectivity. The number of 
particles in blood �ow simula-
tions can be extremely large, 
affecting not only the I/O 
complexity and size of the 
data �les, but also the visual-
ization. Fortunately, the ma-
jority of DPD particles in the 
simulations considered here 
represent the blood plasma, 
and their visualization can 
be substituted by presenting 
the �ow �eld as the contin-
uum, rather than as discrete 
particles (see Figure 7).

For example, the large-scale 
f low features can be presented 
using cutting planes (Figure 7b) 
and streamlines (Figure 7c), 
which show the direction the 
�uid will travel at a particular 
point in time, calculated from 
continuum data. Individual 
particles, or a subset of them, can be 
represented using glyphs. Glyphs are 
geometric primitives that are used 
to represent point data, where the 
object’s location is dictated by the 
particle’s coordinates, while other 
graphical attributes such as size, col-
or, and orientation are dictated by 
other aspects of the data. For example, 
Figure 7d shows platelet particles 
colored by velocity. A substantially 

smaller number of particles can be 
used to illustrate the small-scale fea-
tures, such as RBC membrane folding 
(Figure 7e), which can be presented by 
showing a surface representing each 
RBC membrane, constructed from a 
collection of particles.

The methods and software de-
scribed here have been used to visu-
alize multiscale data from coupled 
atomistic-continuum simulations of 

platelet deposition in an aneu-
rysm. Having the capability to 
visualize data of dramatically 
different scales from within 
a single v isualizat ion envi-
ronment is extremely impor-
tant for understanding how 
events happening at one end 
of the spectrum are impacted 
by those occurring at the other. 
Here, the continuum data com-
puted by Nektar reveal the 
complex large-scale f low fea-
tures such as �ow direction, 
recirculation regions, and swirl-
ing �ow. These are represented 
as streamlines in Figure 8a. 
Visualization of the atomistic 
data computed with the DPD 
method—particularly that of 
activated platelets—illustrate the 
platelet deposition, along with 
the detachment of small platelet 
clusters due to high shear �ow, 
which could not be detected 
without visualization. This is 
depicted by the yellow spheres 
in Figure 8a, which represent 
active platelet particles.

In addition to enabling sci-
entists to explore and gain sci-
enti�c insight from multiscale 
simulation data, visualization 
is also a useful tool for verify-
ing the computed results. For 
example, ensemble average 
velocity �elds computed with 

the WPOD method help to verify the 
correctness of the coupling between 
Nektar and the DPD-LA MMPS 
simulations. In Figure 8b, the data 
computed by Nektar and DPD-
LAMMPS are compared by plotting 
the velocity vector �elds extracted 
along the slice intersecting the con-
t inuum and atomist ic domains. 
The solution inside the overlapping 
region depicted by the rectangle 

Figure 6. Visualization generated using the Nektar-
ParaView tool. The small arrows on the surface of 
the artery indicate the direction of the wall shear 
stress, while the color of the artery indicates the 
pressure on the arterial wall.

Figure 7. (a) Visualization of atomistic data, with 
representations from (b and c) continuum data,  
and from (d and e) individual or small collections  
of particles.

(a)

(b) (c) (d) (e)
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(outlined in black) was calculated by 
DPD-LAMMPS and by the continu-
um solver Nektar, while the outside 
region was calculated by Nektar only. 
This visualization shows that good 
correlation exists between the veloc-
ity �elds computed by the two coupled 
solvers.

The use of multiscale and multi-
physics modeling to examine the 

complex processes of materials, �uids, 
plasmas, and biological systems could 
lead to many discoveries in a broad 
range of research domains, including 
new alternative energy, therapeutic 
interventions in medicine, and climate 
science. At the same time, such mod-
eling presents substantial challenges 
to computational scientists, mathema-
ticians, and researchers alike.

Multiscale modeling requires the 
use of mult iple codes and corre-
sponding mathematical models that 
can describe different scale regimes. 
Properly coupling such heterogeneous 
descriptions and their implementa-
tions, however, is one of the most 
dif�cult problems in computational 
mathematics and scienti�c computing 
today. Multiscale visualization—an 
indispensable companion of multiscale 

solvers—similarly requires the de-
velopment of new methodologies and 
computational techniques.

Here, we presented several ad-
vances on the mathematical, compu-
tational, and visualization fronts that 
enabled us to perform what we believe 
is the �rst truly multiscale simulation 
and visualization of a realistic biologi-
cal system. Our approach is general 
and can be used in many other �elds, 
thereby shifting the computational 
paradigm in large-scale simulation 
from one based on a monolithic sin-
gle code to a more �exible approach 
where multiple heterogeneous codes 
are integrated seamlessly. This fur-
ther opens up the possibilities for 
exploring multiscale phenomena and 
investigating long-range interactions 
in an effective way.

The availability of computational 
resources will continue to play an es-
sential role in computational model-
ing. However, the potential of modern 
peta�op and future exa�op machines 
can be effectively utilized only through 
the use of fast and scalable algorithms.

Considering the ever-increasing 
number of cores in multicore architec-
ture designs, the purely message pass-
ing interface (MPI)-based application 
is likely to suffer from lower memory 

per core availability. Speci�cally, the 
high memory demands in simulations 
with billions of degrees of freedom 
might not �t the distributed memory 
paradigm. Additionally, the scalability 
of codes that are based on the message 
passing model is also uncertain.

Hence, there’s a pressing need to 
develop hybrid MPI-OpenMP appli-
cations. We’ve observed up to a three-
fold speedup in simulations running a 
hybrid MPI-OpenMP code as com-
pared to pure MPI code running on 
the same number of compute nodes.

New computational paradigms for 
concurrent computing on multicore 
CPUs and acceleration devices such 
as GPUs and the coming Intel MIC 
also should be explored and integrated 
for multiscale simulations.
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