
1

MPI Derived Datatypes Processing on
Noncontiguous GPU-resident Data

John Jenkins,∗ James Dinan,† Pavan Balaji,† Tom Peterka,† Nagiza F. Samatova,∗ Rajeev Thakur†
∗Department of Computer Science, North Carolina State University

jpjenki2@ncsu.edu, samatova@csc.ncsu.edu
†Mathematics and Computer Science Division, Argonne National Laboratory

{balaji, dinan, thakur}@mcs.anl.gov

F

Abstract—Driven by the goals of efficient and generic communi-
cation of noncontiguous data layouts in GPU memory, for which
solutions do not currently exist, we present a parallel, noncontiguous
data-processing methodology through the MPI datatypes specifica-
tion. Our processing algorithm utilizes a kernel on the GPU to pack ar-
bitrary noncontiguous GPU data by enriching the datatypes encoding
to expose a fine-grained, data-point level of parallelism. Additionally,
the typically tree-based datatype encoding is preprocessed to enable
efficient, cached access across GPU threads.

Using CUDA, we show that the computational method outperforms
DMA-based alternatives for several common data layouts as well
as more complex data layouts for which reasonable DMA-based
processing does not exist. Our method incurs low overhead for
data layouts that closely match best-case DMA usage or that can
be processed by layout-specific implementations. We additionally
investigate usage scenarios for data packing that incur resource
contention, identifying potential pitfalls for various packing strategies.
We also demonstrate the efficacy of kernel-based packing in various
communication scenarios, showing multifold improvement in point-to-
point communication and evaluating packing within the context of the
SHOC stencil benchmark and HACC mesh analysis.

1 INTRODUCTION
Considerable interest in the HPC community has centered
on the capabilities of graphics processing units (GPUs) as
inexpensive, many-core accelerators. Evidence of this is
seen in recent Top500 lists of supercomputers [1], where
GPU accelerators are gaining in popularity because of their
effectiveness over a wide range of computational loads and
a favorable FLOPs-to-power ratio.

A number of technical challenges arise from the addition
of a fundamentally different computing architecture to ex-
isting systems. Aside from the cost of developing, porting,
and optimizing codes to run on the GPU, there is a greater
concern about integrating them into algorithms with non-
trivial point-to-point and collective communication patterns.
The currently prevailing GPU accelerator model consists
of discrete graphics processing hardware with memory
separate from the CPU’s RAM. Hence, any communication
operation involving data resident in GPU memory requires
moving data between GPU and CPU memories, effectively
adding another “hop” to the communication graph. Since
the MPI standard [2] does not define MPI’s interaction with
GPU memory managed by, for example, OpenCL [3] or
CUDA [4], the burden of managing distinct memory spaces,

especially of noncontiguous communication, falls on the
application developers.

Enabling MPI to interact directly with data stored in GPU
memory is an important step toward providing transparent
and efficient integration of GPUs into HPC applications.
A challenging problem within this interaction is the com-
munication of noncontiguous data. MPI datatypes enable
such communication for data in CPU memory, allowing
the programmer to define an arbitrary layout for data to
be sent or received (or input/output for MPI I/O operations)
using a single MPI operation. A common use of datatypes in
scientific computing is the transfer of noncontiguous array
slices from GPU to GPU in applications such as stencil
computations, which require array boundary updates (cell
exchange) between processes [5], [6], [7].

For the computational benefit of using the GPU to out-
weigh the cost of data transfer into CPU main memory,
these communication operations must be performed with
minimal overhead. The naive solutions of transferring point
by point and transferring the entire noncontiguous buffer
to the CPU are unacceptable from a performance point
of view, suffering from unacceptably high latencies and
wasted bandwidth, respectively. To achieve a sufficiently
coarse transfer granularity when working with noncontigu-
ous data, one must pack the data into a contiguous buffer
prior to transfer. While effective packing implementations
exist for noncontiguous data residing in CPU memory [8],
there exists no generalized packing methodology for data
residing within GPU memory that takes advantage of GPU
parallelism and memory bandwidth.

In this work, we present the design of an efficient, in-
GPU noncontiguous datatype processing system. We focus
on NVIDIA’s CUDA interface, although the techniques
presented are applicable across accelerator hardware and
programming models. We develop a datatype representation
that exposes fine-grained parallelism, and we utilize a GPU
kernel to leverage this parallelism in order to accelerate
data movement. We demonstrate comparable or better non-
contiguous data packaging compared with CUDA’s built-in
transfer routines, with low overhead compared with hand-
coded packing kernels. We demonstrate up to 700% end-
to-end latency improvement for performing large, noncon-
tiguous vector data communication. In addition, our system



2

supports arbitrary datatypes for which, to our knowledge, no
equivalent exists. We also evaluate the impact of resource
contention for GPU cores and access to the PCIe bus. To
realize these design goals, we identify and address three key
challenges in enabling efficient processing of MPI datatypes
in GPU memory:

1) Datatype Representation in GPU Memory: High
memory utilization on GPUs requires highly reg-
ular, contiguous access patterns exploiting register
memory and the small user-controlled cache. Thus,
as a first step towards building an efficient packing
algorithm, we develop a GPU-optimized serialized
datatype representation for arbitrary MPI datatypes in
GPU memory, separated into a cacheable, constant-
length parameter space, and a variable-length param-
eter space.

2) Parallel GPU Packing Kernel: An efficient datatype
processing algorithm must take advantage of GPU
hardware characteristics, such as a fine degree of par-
allelism and low context-switch overhead. We iden-
tify a fine-grained, dependency-free parallel packing
strategy based on canonical datum identification and a
traversal algorithm based on the packing strategy and
datatype representation.

3) Packing in the Presence of Resource Contention: The
scheduling policy of GPU kernels and PCIe activity
prevents resource sharing to the degree operating
systems and CPUs allow; a packing operation could
starve in the presence of another resource-intensive
kernel. Different communication patterns may neces-
sitate different packing strategies. We identify algo-
rithm patterns for which the packing operation inter-
feres with application performance, and we present
experiments showing the effects.

This paper is organized as follows. In Section 2 we
provide an overview of MPI datatypes and their optimized
processing in CPU memory, as well as necessary concepts
in efficient GPU algorithm design. Section 3 discusses the
optimization of the datatype representation and describes the
packing algorithm, given the GPU datatype representation.
A detailed evaluation of GPU datatype processing is given
in Section 4. In Section 6 we review related work, and in
Section 7 we provide concluding remarks and discussion.

2 BACKGROUND
2.1 MPI Datatypes Specification
The Message Passing Interface (MPI) standard [2] speci-
fies the definition of datatypes, allowing users to portably
communicate noncontiguous data between processes with
minimal effort, while efficiently utilizing network resources.
For instance, a noncontiguous column vector can be defined
by using a vector type, as shown in Figure 1. In this
example, the datatype CS has a stride of five elements and a
blocklength of two elements. The stride encodes the distance
between consecutive blocks, while the blocklength encodes
the number of datatype children per block.

The most powerful aspect of the datatypes specification
is support for composition, layering datatypes to create

Fig. 1. Array slice with a width of two elements, an
MPI vector datatype CS encoding it, and the slice’s
subsequent packed form.

// Specify layout of sender’s buffer, a vector of vectors,
// with base type of double.
// The vector function signature is:
// MPI Type vector(count, blocklength, stride,
// old type, new type).
MPI Datatype CSvec, CS;
MPI Type vector(4, 1, 2, MPI DOUBLE, &CSvec);
MPI Type vector(3, 2, 5, CSvec, &CS);
// commit the type description
MPI Type commit(&CS);
// perform communication, using intermediate packing
MPI Send(buffer, 1, CS, ...);

Fig. 2. Defining and communicating a vector of vectors.

complex selections of data within a simple and concise
API. For instance, the “elements” of CS could themselves
be datatypes such as array subvolumes, and the packing
operation would pack, for each “element” of CS, the data
specified by the datatype. As another example of compo-
sition, Figure 2 shows a code snippet defining a vector of
vectors, each with a unique stride, that cannot be easily
defined by a single datatype. Primitive datatypes, such
as integer and floating-point variables, form the basis for
derived datatypes, such as MPI vectors, which can be
defined in terms of either primitive or other derived types.

The datatype encodings provided through MPI are driven
by the data layout of the application. For example, sim-
ulations utilizing arrays commonly use the vector or
subarray types. This allows users to define subsets of
their data in order to communicate to other processes, rather
than manually preparing the data for communication. The
most common datatypes used include a strided vector of
blocks, a subarray defining an n-dimensional subvolume,
an indexed set of location-blocklength pairs with a ho-
mogeneous underlying datatype, and a struct consisting
of location-blocklength-datatype tuples. A block refers to a
contiguous chunk of datatypes, and the blocklength refers
to the number of “child” datatypes that a block contains.

The definition of datatypes is used within MPI applica-
tions to provide a simple interface for the communication
of noncontiguous data to/from both disk and other compute
elements. However, initiating an I/O operation or a network
transfer for each individual piece of data is expensive and
poorly utilizes resources. In order to address this challenge,



3

MPI implementations pack the data into contiguous buffers
prior to performing the network or I/O operation.

For noncontiguous datatype processing to be useful in
large-scale applications, a simple datatype representation
must be provided that allows for fast traversal of the
datatype. Datatype traversal refers to computing offsets in
the input buffer for each primitive defined by the datatype.
While datatypes are formally described as a list of 〈type,
displacement〉 pairs, in practice they are encoded by using
a tree structure, where each node in the tree represents a
datatype. This structure, as well as necessary parent-child
relationships, is captured in the MPICH implementation
of dataloops [8], which records type-specific parameters
and propagates information about datatypes necessary for
a simple traversal. Specifically, the extent and size of child
datatypes drive the processing algorithm, where the extent
is the distance between successive child data types and the
size is the amount of data encoded by the type, if stored
contiguously.

MPICH processes datatypes by unrolling a depth-first
search on the tree structure, using a concise stack-based
representation. Each stack element records type-specific
parameters, such as how many vector blocks have been
traversed. The extent and size at each level of the tree are
used to compute offsets from the raw data into the contigu-
ous buffer, and type-specific optimizations are utilized to
reduce traversal overhead, such as substituting specialized
memory copy functions for vector types.

2.2 GPU Architecture and Programming Model

NVIDIA’s Compute Unified Device Architecture (CUDA)
defines a programming abstraction for general-purpose com-
putation on GPUs (GPGPUs) [4]. For this paper, we focus
on CUDA and NVIDIA GPUs, although the algorithms can
be easily applied to other libraries, such as OpenCL.

CUDA presents the GPU as a CPU-driven coprocessor,
where the CPU issues asynchronous parallel kernels on the
GPU. Kernel launches and memory copies between CPU
memory and separate GPU memory are performed across
the PCIe bus, a high-latency, high-bandwidth operation; and
direct memory access (DMA) enables both kernel calls and
memory operations to be performed asynchronously.

GPUs have multiple streaming multiprocessors (SMs),
each consisting of multiple scalar processors (SPs), giving
hundreds of total available cores for computation at a given
time. The threading model provided is single instruction,
multiple thread, or SIMT, which executes a group of threads
(a warp, typically 32) in lockstep. SIMT, unlike SIMD
(single instruction, multiple data), allows threads to diverge
on branch instructions, where each branch is executed
serially until a convergence point is reached. Threads are
grouped in three-dimensional grids, or thread blocks, where
each block is statically allocated register and cache memory
and scheduled on an SM. Compared with CPU threads, GPU
threads are extremely lightweight and far less powerful but
make up for these limitations in sheer parallelism potential
and extremely low context switch overhead.

The main memory in GPUs are optimized for parallel
access in large chunks (typically 128 B) that are coalesced
by adjacent threads in a warp; if adjacent threads access
adjacent memory, the operations are combined into a single
memory transaction. While the main memory is a high-
latency, high-bandwidth resource with a small L2 cache,
each multiprocessor also contains a fast but small user-
controlled scratch cache, called shared memory.

Given these components, a number of optimization goals
can be defined when devising GPU algorithms. First, PCIe
bus activity should be minimized, because of high la-
tency and transfer rates that pale in comparison with GPU
hardware specifications. Second, memory access patterns
on the GPU should be regular and exhibit locality with
respect to threads. Third, the shared memory space should
be used as much as possible in order to minimize main
memory accesses. Third, GPU algorithms should exhibit
fine-grained parallelism so that the hardware can utilize
context switching to hide main memory access latency and
stalls in the instruction pipeline.

2.3 GPU-GPU Communication in MPI – MVAPICH

Recently, the MVAPICH team has utilized key develop-
ments in recent CUDA frameworks to enable the transparent
MPI communication of buffers in GPU memory [9], [10].
In particular, CUDA Unified Virtual Addressing can dis-
cern whether a pointer references GPU memory, allowing
MVAPICH to provide the same communication interface
for both CPU and GPU buffers. Currently, MVAPICH can
perform two types of communication with data in GPU
memory, relying solely on existing CUDA library functions:
contiguous buffers and strided buffers encodable by CUDA’s
two-dimensional memory copy routine (cudaMemcpy2D).
By contrast, we provide a datatype-processing algorithm
capable of representing and packing arbitrary datatypes. Our
methodology can be integrated into their buffer-pool-based
framework in a simple manner, however.

3 IN-GPU DATATYPE PROCESSING

The communication data flow driving our datatype pro-
cessing is shown in Figure 3, using as an example the
CS datatype from Figure 1. Given a datatype definition,
the data is packed within GPU memory using a kernel,
then transferred to CPU memory to be communicated. To
optimize this flow, we organize the datatype representation
to be efficiently accessed by GPU threads. Furthermore, we
use a packing algorithm that fully utilizes GPU threading
resources, so that each thread reads a noncontiguous element
and places it into contiguous space, free of interthread
dependencies. For illustrative purposes, we assume that CS
is composed of a second vector type CSvec, shown in
Figure 2. In other words, CSvec is a child datatype of CS.

3.1 MPI Datatype Encoding in GPU Memory

As opposed to the dynamic tree structure that the MPI
datatypes specification would imply, GPU best practices



4

Fig. 3. Communication pattern necessitating GPU
packing (unpacking if arrows are reversed).

TABLE 1
MPI datatypes and their fixed- and variable-length

parameters. The “Common” row contains parameters
common to all datatypes in our implementation.

Type Fixed Variable

Common

count
size

extent
child primitives

vector
stride

blocklength

subarray
dimension array sizes

lookaside offset subarray sizes
start offsets

indexed lookaside offset blocklengths
displacements

struct lookaside offset
blocklengths

displacements
child types

suggest storing the type representation contiguously, prefer-
ably loading into shared memory once upon kernel in-
vocation. However, many datatypes have a variable-length
encoding, such as the indexed and struct types. This
presents a problem because hundreds, if not thousands, of
threads may be resident on a single SM, and we cannot
assume that the available shared memory is sufficient to
store the full type representation for types with variable-
length encoding.

Thus, we enforce a cache policy that all GPU threads can
benefit from, caching only the fixed-length parameter space
of the datatype(s). In order to facilitate this, the datatype
representation is separated into fixed- and variable-length
parameter spaces, using a serialization order corresponding
to a preorder traversal of the type tree. With variable-length
datatype fields (such as blocklengths and displacements for
the indexed type) left aside, we observe that the remaining
type tree can be stored in shared memory, as each type
otherwise requires a small amount of fixed-length memory
to encode. This separation creates a cacheable, fixed-length
parameter space and a variable-length parameter space,
both residing in GPU memory. See Table 1 for a listing of
datatypes with their fixed- and variable-length parameters.

Figure 4 shows an example type tree of arbitrary types.
The type tree is preorder-traversed, storing the fixed-length
parameters contiguously. The variable-length parameters are
stored in a separate contiguous buffer, called the lookaside

Fig. 4. Example type tree, serialized into GPU memory.
Branches in trees appear only for struct types.

buffer. For each datatype with a variable-length parameter,
a pointer to the lookaside buffer is included into the type’s
fixed-length parameters. We call this the lookaside offset. In
order to control traversal and remove the explicit encoding
of primitives, a bitfield is used to specify the node type (leaf
vs. nonleaf), encoding the primitive type if the node is a leaf
(e.g., integer, floating point). This bitfield is also included
in the fixed-length parameter space.

Since the type tree is preorder-serialized, a top-down
traversal to a single datum requires no additional linkage
information for nearly every type. The only exception
is when there are struct types with multiple derived
datatype children, requiring additional pointers in the struct
variable-length parameters to differentiate where in memory
the children types are.

For most derived datatypes, the encoding is simple. For
example, the encoding for CS is the fixed parameters in rows
Common and vector in Table 1, followed by the same
parameters encoding CSvec. A single indexed type is
equally simple, although different from an implementation
point of view. It has a similarly small fixed-length storage
size, followed by a potentially large list of blocklengths and
displacements, requiring storage in GPU main memory.

3.2 Parallel GPU Packing Kernel
Technical challenges discourage a straightforward “port” of
current CPU-based datatype processing algorithms to the
GPU. In particular, CPU-side datatype processing imple-
mentations are based on serially filling fixed-size buffers
from noncontiguous data in CPU memory, leaving the pos-
sibility for the coarse-grained parallelism of filling multiple
buffers. This runs contrary to best practices on the GPU,
where a finer grain of parallelism is critical to performance.
Section 3.2.1 addresses the mismatch in parallel packing
strategies, while Section 3.2.2 discusses the algorithm itself,
based on the parallel processing strategy and optimized
datatype representation.

3.2.1 Parallelism via Point-Based Retrieval
To enable a finer degree of parallelism than the coarse-
grained method of filling multiple packing buffers, we en-
rich the datatypes encoding with minimal additional knowl-
edge about child datatypes to produce a dependency-free
parallel traversal. In addition to caching the size and extent
of child datatypes, the number of primitives can be similarly



5

cached, allowing for fine-grained parallelism on a per-
primitive level. When defining types (and thus building the
type tree), the number of primitives encoded by a type gets
propagated upward, so that the parent type (e.g., CS) records
the number of primitives in each instance of the child
datatype (e.g., CSvec). Using this encoding, we can base
the traversal solely on which primitive to fetch, requiring
no additional information besides the type representation.
Without this encoding, the type representation can define
the location of a primitive only with respect to all previous
primitives encoded by the type, which is undesirable for the
level of parallelism we are considering.

3.2.2 GPU Datatype Traversal Algorithm

The datatype representation and the parallel datatype traver-
sal strategy on the GPU yield a straightforward packing
algorithm with two favorable properties: constant per-thread
storage, asides from the shared datatype representation, and
no interthread dependencies.

The traversal algorithm assigns each GPU thread to a
single primitive datum and traverses the type tree in a top-
down fashion, using the datatype’s extent, size, and number
of child type primitives to update read and write offsets.
After the “leaf” derived datatype is encountered, the offsets
point to the locations in memory of both the element to
pack and where to place it. Algorithm 1 shows the general
process. Packing and unpacking can be toggled by merely
switching the direction of the read/write on Line 12. On
Line 17, pointer jumping is necessary only for struct
types with multiple derived children; see Section 3.1. Note
that adjacent threads are implicitly assigned adjacent prim-
itives defined by the datatype, so locality between adjacent
primitives enables coalesced memory operations on them.
Furthermore, on the most common MPI datatypes (vec-
tor, subarray, blockindexed), threads experience no
branch divergence because of a single code path.

The functions inc_read and inc_write are type-
dependent. Fortunately, they are simple to compute for the
contiguous, vector, subarray, and blockindex-
ed types, as each has a very regular structure. All but the
subarray type have an O(1) complexity, and the subarray
type has an O(d) complexity, where d is the number of
dimensions. The inc_read and inc_write functions
for the vector type computation are shown together in
Algorithm 2. The general strategy is to compute the block
that the primitive resides in, update the offsets appropriately,
and then “recurse” on the child type.

For the composite types CS and CSvec, Procedure 3
shows the execution trace of a single thread traversing to its
corresponding primitive. One thread is launched for each of
the four primitives in the datatype. Note that the execution
trace for this type is the same across all threads launched.

For the datatypes with variable-length parameters, such as
indexed, the process is more nuanced. In order to avoid
performing a per-thread linear scan of of the blocklengths,
preprocessing is performed to allow a logarithmic-time
binary search. A prefix-sum is performed on the indexed
type’s list of blocklengths as a preprocessing step. Then,

Algorithm 1: Point-based traversal and packing of
arbitrary datatype.
input : user buffer: buffer with data to pack
input : type: serialized datatype, starting at root
input : ID: element to pack, in canonical order
output : pack buffer: packed buffer

1 // in, out: location in user/packed buffer, respectively
2 in ← 0, out ← 0
3 Load type fixed-length parameters into cache
4 while true do
5 // increment buffer offsets based on datatype
6 in ← in + inc_read(ID, type)
7 out ← out + inc_write(ID, type)
8 // compute element ID w.r.t. child type
9 ID ← ID % type.elements

10 if type is leaf then
11 // finished processing datatypes, perform r/w
12 pack buffer [out] ← user buffer [in]
13 break
14 else
15 // process child type; for non-struct,
16 // translates to type +=sizeof(type)
17 type ← type.child

Algorithm 2: Read/write offset computation for the
vector type.
input : type: vector datatype
input : ID: primitive to pack, in canonical order
output: in inc, out inc: read/write offset increments

1 // offset w.r.t. child datatypes
2 count offset ← ID / type.elements
3 // offset w.r.t. vector blocks
4 block offset ← count offset / type.blocklength
5 // for each block, advance by stride bytes
6 // for each child datatype in block, advance by extent
7 in inc ← block offset ∗ type.stride + type.extent *

(count offset % type.blocklength)
8 // for each child datatype, advance by child size
9 out inc ← count offset ∗ type.size

10 return in inc, out inc

given a count of n and a list of prefix-summed blocklengths
b0, b1, . . . , bn, the terminating condition for thread (primi-
tive) i in the binary search is

bh ≤ i/e < bh+1, (1)

where 0 ≤ h < n and e are the number of elements in the
child datatype. The additional bn term is needed to check
the condition at h = n− 1.

Having observed that all writes are performed into a
contiguous buffer and are thus highly coalesced by adjacent
GPU threads, we have applied one optimization in particular
in order to dramatically improve the packing operation.
Specifically, we enable zero-copy memory transactions on
the GPU. Instead of packing the data into GPU main



6

Trace 3: Execution trace of vector-of-vectors traversal
for a single thread.

input : user buffer: buffer to pack
input : ID: thread/datum ID
output : pack buffer: packed buffer

1 in ← out ← 0
2 Coordinated load of CS, CSvec into shared memory
3 type ← CS
4 Increment in, out using Alg. 2, with ID, type
5 ID ← ID % type.elements
6 Is type a leaf type? (no)
7 Increment type pointer by sizeof (vector type)
8 // type ← CSvec
9 Increment in, out using Alg. 2, with ID, type

10 ID ← ID % type.elements
11 Is type a leaf type? (yes)
12 pack buffer [out] ← user buffer [in]

memory and then performing a bulk copy on the packed
buffer, current-generation GPUs can utilize memory map-
ping of CPU memory into the GPU’s memory space. Then,
the streaming multiprocessors can, in effect, write directly
across the PCIe bus into CPU main memory. Since threads
write exactly once and at the end of their traversal, memory
mapping is a perfect opportunity to obtain additional per-
formance with minimal effort, by avoiding the GPU main
memory and implicitly pipelining the computational and
PCIe loads.

3.3 Packing with Resource Contention

The methodology for packing was discussed with an un-
derlying assumption of resource availability and without
consideration of scenarios where packing could actually be
detrimental to overall performance. For instance, what if a
user initiates a send for data residing on the GPU while
a fully occupant kernel is running? In the worst case, the
scheduling policy of current GPUs—which schedules blocks
to run to completion and allows (for architectural reasons)
only a single kernel to be run on each multiprocessor—can
easily lead to starvation of a packing kernel. This, in turn,
can lead to unacceptably high wait times.

A number of communication patterns could introduce
resource contention, centered on concurrently performing
communication and other operations. At the computational
level, communication can be performed asynchronously in
order to enable computational overlap, causing the packing
operation to coincide with that computation. Furthermore,
PCIe transfers can be occurring while a communication
operation is being performed, such as in CPU-moderated
algorithms that follow an iterative setup-compute-collect
model, that clash with packed data transfer. A combination
of these can also occur, such as when multiple users or
MPI processes are accessing the same underlying hardware.
Communication patterns utilizing global synchronization,
such as in stencil codes, will not run into resource con-
tention, however.

With resource contention, the best case occurs when we
are working with types such as vector or two- or three-
dimensional subarray. CUDA and OpenCL allow for
the transfer of regularly strided two- and-three-dimensional
subarrays, in addition to contiguous buffers, avoiding multi-
processor usage. While useful for the common case of array
processing on the GPU, it is nevertheless a special case that
cannot be relied on for all applications.

When the datatype is nontrivial and resource contention
s preventing a packing kernel from being run, a number of
methods can be used to get the data onto the CPU. The
two simplest ones are transferring by extent and transfer-
ring point by point, both of which are highly inefficient.
Transferring the extent of a datatype wastes bandwidth and
still requires packing on the CPU end. Transferring point
by point suffers from the high latency of initiating copies
from the CPU. Both have the potential for interfering with
user kernels that rely on host-device transfers. Performing
some combination of the two, similar to data sieving in
the ROMIO MPI-IO implementation [11], would need more
complex processing and memory management on the CPU-
side and would still have the problems of both methods,
albeit reduced in severity. Another option is to devote a
persistent kernel for use by MPI operations and utilize sig-
naling and polling to initiate packing, similar to Stuart and
Owens’s implementation of message-passing on many-core
processors [12]. However, since we show latency costs to be
extremely important when performing the packing operation
and since their method produced an increase in these costs,
we do not consider this approach (see Sections 4.2 and 4.3).

Unfortunately, no way currently exists within the CUDA
or OpenCL interfaces to query the level of resource utiliza-
tion on the GPU asides from high-level utilization (provided
through the NVIDIA driver), complicating the selection
of a globally efficient strategy without application-specific
knowledge. Since the overarching goal of this research is
to provide transparent GPU data management from within
MPI, solutions such as hijacking user kernel calls to collect
statistics and infer utilization are, while interesting, not
addressed by this paper.

4 EVALUATION WITH MICROBENCHMARKS

We evaluate our datatypes processing methodology using
microbenchmarks of packing performance on numerous
MPI datatypes, comparing with CUDA alternatives as well
as optimized type-specific packing kernels. We break down
the costs of our packing algorithm, as well as look at full
context GPU-to-GPU communication through a noncontigu-
ous ping-pong test, comparing with MVAPICH version 1.8.
We also examine the effects of GPU resource contention
on packing and memory copy operations by modifying the
issuing order of packing and other operations. For all tests,
we used North Carolina State University’s ARC cluster, with
nodes containing an AMD Opteron 6128 at 800 MHz and
an NVIDIA C2050 GPU with version 4.1 of CUDA. Each
node is connected by QDR InfiniBand. We pin CPU memory
used in transfers to enable DMA, and we enable zero-copy
for all datatypes but the struct type during packing.



7

4.1 Test Datatypes
To measure kernel overhead and provide an upper bound
on packing performance, we perform a baseline comparison
with the contiguous datatype, which can be satisfied
with a single memory copy call (cudaMemcpy).

To benchmark strided arrays such as column vectors, we
use a vector type, compared with the CUDA alternative of
cudaMemcpy2D. We fix the stride between blocks to 512
bytes, which enables maximum performance of the CUDA
operation; unaligned arrays greatly hamper CUDA’s perfor-
mance in this regard. Furthermore, we vary the blocklength
to experiment the performance implications of block width.
For example, if we wanted to transfer the rightmost two
columns of a two-dimensional matrix, we would set the
blocklength to two doubles, or 16 bytes.

To benchmark array types outside the scope of vec-
tor representation, we use a four-dimensional subvolume
encoded as a subarray type, compared with iterative calls
to cudaMemcpy3D. We fix the containing volume to be
64 × 64 × 64 × 64 and pack/transfer a four-dimensional
hypercube of increasing size.

To benchmark an indexed type, for simplicity, we use
the same data format as in our test vector type. Other
datatypes would be used in practice and be much more
efficient, but this benchmark is a reasonable indicator of
indexed performance; varying blocklengths would cause
less divergence than the uniform blocklength would, and a
regular displacement allows us to control coalescence in a
fine-grained manner. For comparison, we transfer the data
block by block using cudaMemcpy.

We additionally evaluate the indexedblock type (ab-
breviated as idxblock in the experiments), which is
similar to the indexed type but has a uniform blocklength,
rendering the need to perform a binary search unnecessary.
For simplicity, we use the same data format as the indexed
and vector types. For comparison, we transfer the data
block by block using cudaMemcpy.

We also use a struct type to test the effect of thread
divergence on writing. We use a simple C-style struct
consisting of an 8-byte double, two 4-byte ints, and
a character, which amounts to 24 bytes with padding.
For comparison we copy the extent of each struct using
cudaMemcpy. Furthermore, we disable the use of zero-
copy for this type, as the uncoalesced write pattern induced
by thread divergence leads to the issuance of a PCIe
transaction for each struct member, causing significant
performance regression.

4.2 Noncontiguous Packing Performance
For each datatype presented in Section 4.1, we evaluate the
general performance of packing from GPU memory into
CPU memory, with respect to the size of the packed buffer.
Figures 5 shows these experiments compared with their re-
spective CUDA alternatives. Furthermore, we compare with
hand-coded packing routines in order to test the overhead
of our generic packing methodology, shown in Figure 6.

A number of interesting trends can be observed for the
different datatypes. First, since there is a relatively large

gap between command latency and throughput, transfers on
the lower KB level are latency-bound, and thus very small
absolute differences are seen between the CUDA API calls
and the packing kernel. Given the current architecture of
discrete GPUs, little can be done to improve these results,
although combined CPU and GPU architectures, such as
AMD’s Fusion [13], show promise in bridging this perfor-
mance gap in the future. Furthermore, the latency of issuing
kernels is slightly larger than that of issuing memory copies,
adversely affecting our kernelized packing for smaller inputs
(though only on the order of microseconds).

Second, the packing kernel is clearly preferable for
types that do not have a CUDA equivalent (e.g.,
cudaMemcpy2D), because of the latency in initiating each
blockwise memory copy. Blockwise memory copies, such
as for the indexed type, could compete with the packing
kernel only for extremely large block sizes.

For the types that do have a CUDA equivalent, the re-
sults are more nuanced. Aside from latency considerations,
performance is largely a function of the data layout: for
two-dimensional memory copies, each block must be wide
enough to saturate the bus for best performance. For single
columns corresponding to a blocklength of 8 bytes, the two-
dimensional memory copy performs poorly, whereas the
packing kernel performs approximately 20 times faster. For
a larger number of contiguous columns (16 doubles per
stride in Figure 5), the memory copy outperforms the pack-
ing kernel in all cases, especially for small and medium-
sized inputs, because of the additional kernel latency. For
larger-sized inputs, both the copy and the packing kernel
approach the bandwidth limit, so the relative performance
difference begins to converge.

The four-dimensional subarray type, despite being
reasonably mapped to the CUDA API, sees major perfor-
mance improvements when moving to a kernelized packing
operation. Since the three-dimensional memory copies must
be made iteratively to transfer the type, the latency is ag-
gregated through the copies and hurts overall performance.

Compared with type-specific implementations, the
generic packing algorithm performs well, with little
difference in performance. The differences in normalized
performance between the type-specific and generic
algorithms are due to the overhead of loading the type
representation and instruction overhead from supporting
arbitrary type representations. This overhead, however,
amounts to between about two and five microseconds
for most inputs. The differences in the struct
implementations are a result of hard-coding the relative
location of each struct primitive, benefiting from
compiler optimization and greatly simplified traversal logic.

The vector type is one of the more widely used MPI
datatypes, and performance is highly dependent on the
parameterization, so the performance gap in the different
vectors in Figure 5 needs to be further explored. Figure 7
fixes the number of blocks in the vector and compares the
performance of the packing kernel and the two-dimensional
memory copy for varying blocklengths. As seen in the
figure, the performance of CUDA is highly dependent



8

 1

 10

 100

 1000

 10000

64 256 1K 4K 16K 64K256K 1M 4M

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

Packed Buffer Size (Bytes)

CUDA Transfers Time

contig
vector-8

vector-128
subarray

 1

 10

 100

 1000

 10000

64 256 1K 4K 16K 64K256K1M 4M

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

Packed Buffer Size (Bytes)

CUDA Transfers Time

idxblock-8
indexed-8

idxblock-128
indexed-128

struct

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

64 256 1K 4K 16K 64K 256K 1M 4M

N
o

rm
a

liz
e

d
 T

im
e

Packed Buffer Size (Bytes)

Packing Kernel Time Relative to CUDA Transfers

contig
vector-8

vector-128
subarray

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

64 256 1K 4K 16K 64K256K 1M 4M

N
o

rm
a

liz
e

d
 T

im
e

Packed Buffer Size (Bytes)

Packing Kernel Time Relative to CUDA Transfers

idxblock-8
indexed-8

idxblock-128
indexed-128

struct

Fig. 5. Time-to-CPU packing time using the CUDA API, and corresponding relative performance of packing kernel.

 10

 100

 1000

64 256 1K 4K 16K 64K256K 1M 4M

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

Packed Buffer Size (Bytes)

Type-specific Packing Kernels Time

contig
vector-8

vector-128
subarray

 10

 100

 1000

64 256 1K 4K 16K 64K256K 1M 4M

T
im

e
 (

M
ic

ro
s
e

c
o

n
d

s
)

Packed Buffer Size (Bytes)

Type-specific Packing Kernels Time

idxblock-8
indexed-8

idxblock-128
indexed-128

struct

 0.8

 1

 1.2

 1.4

 1.6

 1.8

64 256 1K 4K 16K 64K 256K 1M 4M

N
o

rm
a

liz
e

d
 T

im
e

Packed Buffer Size (Bytes)

Packing Kernel Time Relative to
Type-specific Packing Kernels

contig
vector-8

vector-128
subarray

 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

64 256 1K 4K 16K 64K256K 1M 4M

N
o

rm
a

liz
e

d
 T

im
e

Packed Buffer Size (Bytes)

Packing Kernel Time Relative to
Type-specific Packing Kernels

idxblock-8
indexed-8

idxblock-128
indexed-128

struct

Fig. 6. Hand-coded packing kernel times and relative generalized pack performance.

on the blocklength. Blocklengths that are multiples of 32
bytes perform best, but all others experience significant
performance regression. Similar performance characteristics
are seen when varying the stride parameter, although this
is not shown in the paper. Note that an intelligent MPI
datatype processing implementation can easily check for
these cases, given information about the type and hardware
configuration.

For three-dimensional arrays, a single vector type can
be used to send each face of the array: the fully contiguous
X-Y face, the contiguous-per-row X-Z face, and the noncon-
tiguous Y-Z face. Together, these operations represent the
communication step of a variety of matrix algorithms, such
as stencil computation. Table 2 shows the transfer rate of
each face for different array sizes, using the packing kernel
and CUDA’s two-dimensional memory copy. The results
largely agree with those previously presented; contiguous
chunks of data are more effectively transferred by using
built-in CUDA copies (though there is only an approxi-

 10

 100

 1000

32 64 96 128 160 192 224 256

P
a

c
k
in

g
 T

im
e

 (
M

ic
ro

s
e

c
o

n
d

s
)

Blocklength (Bytes)

Vector Pack Time (1K Number of Blocks)

Type-specific Packing Kernel
Packing Kernel

cudaMemcpy2D

Fig. 7. vector pack performance vs. cudaMemcpy2D,
with varying blocklengths.

mately 10–15% difference), while packing is dramatically
better for getting noncontiguous data. Note that the CUDA
memory copy seems to degrade in performance for the X-
Z plane transfer in the 512 × 512 × 512 case. We cannot
currently explain this behavior.



9

TABLE 2
Two-dimensional plane transfer to CPU versus

cudaMemcpy2D.

Throughput (MB/s)
Size Face Pack CUDA

64× 64× 64
X-Y 923 1062
X-Z 937 1097
Y-Z 865 186

128× 128× 128
X-Y 2573 2854
X-Z 2554 2868
Y-Z 2131 209

256× 256× 256
X-Y 4567 4842
X-Z 4553 4845
Y-Z 3728 216

512× 512× 512
X-Y 5790 5841
X-Z 5792 1645
Y-Z 4816 218

4.3 Noncontiguous Packing Performance by Com-
ponent

The performance metrics in Section 4.2 leaves out some key
information about our packing methodology. For instance,
what are the costs of PCIe transfers? What is the effect of
memory layout on the overall performance? To answer these
questions, Figure 8 shows packing performance under three
contexts: the full context as presented in Section 4.2, the
completion time of packing into GPU memory (avoiding
PCIe transfers), and the datatype traversal time. Note that
the packing operations for small messages are latency
bound, meaning the issuing of the packing kernel is the
dominant cost.

For medium-sized and large-sized messages, the effi-
ciency of the traversal operation is largely dependent on the
complexity of the type used. For instance, the vector and
contiguous types, when only traversing the type, com-
plete quickly because of the simplicity of the traversal logic.
The subarray type, however, suffers in performance due
to the additional logic and integer computation compared
with types such as vector necessary to represent and pack
a subarray of arbitrary dimension. For cases such as a four-
dimensional subvolume, however, multiple vectors would
have to be used, which would reduce performance, so one
cannot merely replace the types and get higher performance.

For types with variable-length parameters, such as in-
dexed, the problem becomes memory-bound with respect
to the input type and sees less performance on the traversal.
The indexed type, performing a binary search, must ac-
cess GPU main memory for every point retrieved, although
coalescence between adjacent threads in the search helps
reduce the cost. Note that the worst case for indexed oc-
curs with a large set of approximately uniform blocklengths,
maximizing the size of the variable-length parameter space
as well as branch divergence in the search. Similar trends
are seen in the struct type, although to a higher degree
because each block is a separate datatype (see Table 1). The
cost of performing the binary search for these types can
be seen by comparing the indexed and indexedblock
types. Specifically, the binary search implementation of
indexed type traversal causes significant overhead, al-

though for packed buffer sizes less than 64 KB the absolute
overhead is no more than 9 microseconds.

The impact of the read/write stage of packing on per-
formance is determined by the encoded data layout. The
best example is shown in the indexed and vector
types. With a small blocklength and thus high noncontiguity,
reading the values is the bottleneck of the datatype process-
ing. With a large blocklength and thus a higher degree of
contiguity, the reading is an efficient process because of the
much higher degree of coalescence. If the type has variable-
length parameters, then the traversal is the primary cost,; but
significant overhead can still be seen when packing highly
noncontiguous data, such as with the indexed type with
8-byte blocks.

Adding the PCIe bus activity into the packing adds
overhead and ultimately bottlenecks the faster packing
operations for larger buffer sizes. Zero-copy keeps the
overhead small for medium-sized buffers. As mentioned in
Section 4.1, zero-copy is not used in the struct type,
causing a higher relative performance degradation than seen
in the other types because of the serialization of the packing
and PCIe operations.

4.4 Full Evaluation: GPU-to-GPU Communication
We now assess the packing performance within the context
of MPI point-to-point communication. Because of the inef-
ficient performance of CUDA-based methods on irregular
data (e.g., indexed, struct), for this benchmark we
consider only the packing of a vector type of varying
blocklength; an MPI Send where data is packed at the rate
of 4 MB per second will not perform well. Furthermore,
we do not consider the use of GPUDirect for our method,
a kernel patch that allows both InfiniBand and CUDA to
pin the same block of memory (it is used by MVAPICH,
however). This will be the focus of further research and
evaluation, although the integration of it will equally benefit
the packing algorithm and CUDA alternatives. Figure 9
shows the completion time of a GPU-to-GPU ping-pong
benchmark. The sender packs the vector data from GPU
memory into contiguous CPU memory, immediately fol-
lowed by a send operation, while the receiver unpacks the
vector into GPU memory. This process is then repeated
back to the original sender.

The efficiency of the communication is again dependent
on the data layout. A small blocklength and large buffer
size, which favors the packing operation, cause a large
relative performance increase compared with using the two-
dimensional memory copy. A larger blocklength causes
the memory copy to be largely equivalent to the packing
operation. For small message sizes, GPU-to-CPU latency is
the primary cost, which in this benchmark is felt four times
over. Network latency, by comparison, was much lower. For
medium- to large-sized messages, the measured network
bandwidth of 2.0 GB/s formed the bottleneck, which is
much lower than the packing and memory copy throughput.

Compared with MVAPICH, our packing methodology
performs roughly equivalently for small-sized and medium-
sized buffers and begins to outperform MVAPICH’s vector



10

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Contiguous

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Vector (8B Blocks)

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Vector (128B Blocks)

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

4D Subarray

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K
P

a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Blockindexed (8B Blocks)

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Blockindexed (128B Blocks)

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Struct

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Indexed (8B Blocks)

Comp+Mem+Xfer
Comp+Mem

Comp

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Indexed (128B Blocks)

Comp+Mem+Xfer
Comp+Mem

Comp

Fig. 8. Packing time, by component. “Comp”: traversing the type, computing input/output offsets. “Mem”:
performing the read/write operation at the end of the traversal operation. “Xfer”: sending the packed data across
the PCIe bus.

 10

 100

 1000

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Vector Ping-Pong Time (8-byte Blocks)

Kernel
CUDA

MVAPICH

 10

 100

 1000

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Vector Ping-Pong Time (32-byte Blocks)

Kernel
CUDA

MVAPICH

 10

 100

 1000

64 256 1K 4K 16K 64K 256K

P
a
c
k
in

g
 T

im
e
 (

M
ic

ro
s
e
c
o
n
d
s
)

Packed Buffer Size (Bytes)

Vector Ping-Pong Time (128-byte Blocks)

Kernel
CUDA

MVAPICH

Fig. 9. GPU-to-GPU ping-pong test, on the vector type with 8-, 32-, and 128-byte blocks, compared with
cudaMemcpy2D. The vector stride is aligned to maximize CUDA performance.

communication algorithm for large-sized buffers. MVA-
PICH uses a specialized communication routine for vectors,
performing a two-dimensional memory copy into GPU
memory and then transferring the now-contiguous data to
the CPU. While this avoids poor PCIe utilization from
narrow vector blocklengths as seen from two-dimensional
copying directly to the CPU, the approach is more memory
intensive, using two sets of memory operations. Further-
more, no overlapping of PCIe and packing activity is
performed. Through our use of zero-copy, both of these
problems are overcome.

4.5 Resource Contention Effects on Packing

To induce the contention scenarios discussed in Section 3.3,
we use a few simple operations to stress the resource in
question. We call these the application (app) operations. For

both directions of PCIe activity, we merely issue a memory
copy. For SM contention, we utilize a vector add operation.
The reason we do so is to tie it closely to a packing operation
(using the vector type), with packing time similar to the
application operation time.

As a baseline, we time each operation in isolation. To
measure contention effects on the pack/copy operation, we
initiate the application operation and then initiate and time
the noncontiguous pack/copy. To measure contention effects
on the application operation, we initiate the pack/copy op-
eration and then initiate and time the application operation.
Regardless of the operation, we measure the amount of time
it takes to finish both, in order to see the degree of overlap
occurring in the operations. This methodology is based on
the first-in, first-out nature of the CUDA scheduler.

The parameter space for an experiment of this variety
is enormous, so we have chosen a representative exemplar



11

that best highlights the contention trends. For each of the
following experiments, we used a vector of total size 16
MB and defined the vector datatype to have a count of
262,144, a blocklength of 8, and a stride of 64 bytes. Rather
than choosing more realistic parameter sets (these cover the
entire buffer), we chose these values so that each operation
has a similar run time, in order to simplify analysis. Since
the trends are based on GPU schedule operation, we expect
similar results for other datatypes and operations, although
on differing scales.

Table 3 shows this exemplar. For the SM experiment,
the order of initiation is critical. When using the packing
kernel, either operation, when initiated after the other, gets
starved out, starting only when SMs are available. The
two-dimensional memory copy, avoiding the SMs entirely,
does not suffer this problem and sees no degradation in
performance. In other words, the direct memory access
(DMA) engine handles the copy operation, leaving the
GPU’s SMs untouched.

For the GPU-to-CPU PCIe experiment, both the appli-
cation operation and the pack/memory copies suffer, since
both must use the same lane of the bridge. In the app-
then-pack case, however, the scheduling mechanism seems
to treat the SM-issued bus transactions (through zero-copy)
more favorably. Using CUDA memory copies instead of the
pack does not overlap at all with the application memory
copy and vice versa, since the transfers are completely
serialized on the CPU end (regardless of using different
CUDA streams).

For the CPU-to-GPU PCIe experiment, while we would
expect an insignificant degree of contention because of the
operations using different PCIe lanes (PCIe is full duplex),
we actually see some degradation in the time taken, although
the totals for issuing both concurrently are much less than
that for the completely serial case. We cannot explain this
behavior with absolute certainty, but we hypothesize it to be
an artifact of the scheduler or a small degree of contention
with respect to transferring kernel parameters.

More complex contention scenarios, such as mixed
PCIe/SM loads and multiple users, are not shown because of
the countless possibilities they entail, although we can make
a few observations. For algorithm patterns that interleave
PCIe transfers and kernels, the scheduler has more flexibility
to insert other operations between them. Therefore, the
starvation would not be as strict as that occurring in some of
the cases in Table 3. Perhaps, in future GPU architectures,
advanced schedulers will be able to enable resource sharing
on a finer-grained level, increasing the fairness with respect
to performance of multiple application contexts hitting on
the same hardware.

5 EVALUATION WITH APPLICATIONS

5.1 Stencil Computation
To evaluate our packing methodology on a publicly avail-
able, commonly used application kernel, we modified the
parallel, two-dimensional, nine-point stencil code from the
Scalable Heterogeneous Computing (SHOC) benchmarking
suite [14]. Specifically, the original halo exchange consists

TABLE 4
SHOC stencil double-precision (DP) and

single-precision (SP) mean GFLOPS per node, using
both CUDA DMA and kernelized packing to perform

the halo exchange.

Per-Node Size DP GFLOPS SP GFLOPS
w/CUDA w/Pack w/CUDA w/Pack

128x128 3.76 3.84 3.80 3.87
256x256 13.79 13.81 15.12 15.14
512x512 40.05 40.82 46.87 47.80

1024x1024 88.34 87.35 125.82 124.88
2048x2048 130.63 130.97 213.73 214.72

of up to two contiguous exchanges (with the “north” and
“south” neighbors) and up to two strided exchanges (with
the “east” and “west” neighbors). The GPU stencil bench-
mark copies all halo regions into CPU memory, performs the
halo exchange, and transfers all results back to the GPU. We
replace the noncontiguous GPU copying code, which relies
on CUDA DMA, with our packing methodology.

Table 4 shows mean stencil GFLOPS for four nodes for
varying per-node problem sizes and for single- and double-
precision floating-point data. As is shown, the time using
a packing kernel is nearly equivalent to that using CUDA
DMA. We attribute the likeness in performance to the ratio
of computation to communication in the overall stencil cost
as well as to the fact that half of the transfers performed
are over contiguous data.

5.2 Analysis Code
The next application benchmark is taken from the analysis
of cosmological simulations. The HACC [15] cosmology
code is a framework for N-body particle simulations of dark
matter tracer particles. Some analysis tasks such as iden-
tifying cosmological voids are enabled by the conversion
of raw particle data to a Voronoi tessellation [16], which
converts a point cloud to a polyhedral mesh. When executed
in a spatially decomposed data-parallel manner, each MPI
process computes the following data structure:

struct vblock_t {
int num_verts, num_cells;
int num_cell_verts, num_complete_cells;
int num cell_faces, num_face_verts;
int num_orig_particles;
float mins[3], maxs[3];
float *vertices, *sites;
float *areas, *vols;
int *cells, *face_verts;
int *num_cell_faces, *num_face_verts;

};

When writing and reading results from parallel storage
using MPI-IO, the above data are accessed by using a
single custom MPI datatype by each MPI process. This
is a packing challenge because it contains a combination
of integer and floating-point scalars and vectors, together
with pointers that need to be followed in order to access
the actual data members. Each process contains a different



12

TABLE 3
User workloads in contention with the pack kernel and CUDA API calls, using the vector type, in milliseconds.

Type Proc.: time between initialization of the packing/CUDA operation and it’s completion.

SM PCIe (CPU→GPU) PCIe (GPU→CPU)
Workload Order User Type Proc. Total User Type Proc. Total User Type Proc. Total Time
Serialized (Pack) 1.00 2.55 3.55 3.34 2.55 5.89 2.56 2.55 5.11
Serialized (CUDA) 2.96 3.96 2.97 6.31 2.97 5.53
User→Pack - 3.52 3.55 - 3.65 4.08 - 3.18 5.09
User→CUDA - 3.00 3.03 - 3.66 4.06 - 5.53 5.54
Pack→User 3.53 - 3.56 4.08 - 4.11 5.08 - 5.11
CUDA→User 1.03 - 3.00 4.05 - 4.07 5.53 - 5.53

TABLE 5
HACC analysis structure packing times in milliseconds

by rank. CPU Ref.: reference CPU packing time.
CUDA DMA: GPU-to-CPU packing time using memory

copies for each GPU buffer. Kernel : GPU-to-CPU
kernelized packing time.

Rank CPU Ref. CUDA DMA Kernel
0 0.96 0.43 0.35
1 0.40 0.25 0.16
2 1.68 0.65 0.57
3 1.53 0.61 0.53
4 0.92 0.42 0.34
5 0.26 0.19 0.11
6 0.83 0.39 0.31
7 0.55 0.29 0.20

number of particles, hence different lengths of buffers that
need to be fetched. Traversing the datatype results in a set
of contiguous pieces combined in a noncontiguous fashion.

To assess the performance of packing this datatype, we
first logged the memory accesses of the CPU packing done
by MPI for a test run of 32,768 dark matter tracer particles
converted to a Voronoi mesh using eight MPI processes.
Each process produced a trace that logged the base type,
quantity, and starting address associated with fetching each
structure member.

We then regenerated the identical memory access pattern
in our benchmark and compared the performance of three
versions of datatype packing. Table 5 shows those results.
“CPU Ref.” is the time to pack the original MPI data type
using the CPU only. The “CUDA DMA” column is the time
to manually pack a single buffer using a sequence of GPU-
to-CPU copies, one for each struct field solely using
cudaMemcpy. The “Kernel” column is our GPU packing
kernel version. Our results show a 13–43% reduction in
time-to-CPU by using packing, with a median reduction of
20.8%. We attribute these results to the reduced latency costs
in issuing a single kernel versus multiple copies.

6 RELATED WORK

A number of efforts have been undertaken to integrate GPU
functionality into an HPC environment, with modifications
at the application, programming model, and library levels
to account for a discrete GPU main memory space.

At the application level, algorithms that use both MPI
and GPUs, such as Jacobsen et al.’s flow computation algo-

rithm [17], are modified to allow efficient GPU computation,
such as changing the problem space partitioning to bene-
fit GPU access patterns. MPI datatypes differ from these
specialized data structures in that the datatypes efficiently
encode a subset of the data structures used, for use in
communication and I/O routines.

At the programming model level, the Asymmetric Dis-
tributed Shared Memory model (ADSM) provides a single
GPU address space across a cluster, while leaving GPUs
aware of only their local memory space [18]. The con-
sistency model is designed for and allows operating and
processing on the shared address space in contiguous chunks
with memory coherence; it would have to become more
complex in order to enable the transfer and consistency
of noncontiguous data or partial data within a contiguous
buffer.

Zippy [19] combines the message-passing and shared-
memory models (based on Global Arrays) and provides
a single address space for all GPUs in the cluster, using
MPI as its backend. Zippy works specifically on multidi-
mensional array-based data, so our work is applicable both
to representing an area that needs to be transferred (such
as noncontiguous array boundaries) and to subsequently
packaging that data efficiently.

At the library level, Distributed Computing for GPU
Networks (DCGN) [12] extends MPI and utilizes signal-
ing/polling mechanisms to allow for GPU-sourced commu-
nication. It also uses existing MPI libraries as a backend,
meaning our work can directly benefit theirs. Unfortunately,
given the current architectural constraints, the signaling and
polling operations are cycle-consuming and lead to high
latencies in GPU-sourced communication routines.

Similarly, cudaMPI works on top of MPI, focusing on
performance implications of different memory configura-
tions, such as pinned vs. not pinned. Specifically, Lawlor
[20]. focuses on the application of the latency/bandwidth
performance model, which comes into play when doing
anything GPU-related that tends toward high-latency, high-
bandwidth operations. Additionally, Lawlor briefly discusses
noncontiguous memory transfer onto the CPU, but only as
an application-specific column-vector transfer, and does not
take into consideration MPI datatypes in general. Similar to
our method, however, he issues a kernel to pack this data;
our work thus directly applies to his framework.



13

7 CONCLUDING REMARKS

Since GPUs are expected to continue evolving in order
to be capable of more general-purpose computations, they
need to be integrated into widely used libraries in the HPC
community, such as MPI. We have presented one important
aspect toward this end: the processing of arbitrary, noncon-
tiguous GPU-resident data. We show that kernelizing the
packing operation leads to huge performance improvements
in datatypes that describe two nonexclusive data layouts:
highly noncontiguous data and irregularly located data.
These cases are particularly important as GPUs continue
to branch out in terms of the complexity of operations
performed on them; algorithms could have local access
patterns that differ from global communication patterns, and
if there is efficient packing available, applications could
focus more on optimizing the local patterns.

Overall, we view our method as complementing the
goal of robust integration of GPU technology into high-
performance data movement frameworks such as MPI, as
well as a baseline for future MPI library implementations.
A complete solution to GPU data movement within MPI
not only would minimize internal memory copies and fully
utilize current/future versions of GPUDirect but also would
be able to flexibly determine the best methodology for
transferring the data, especially noncontiguous data.

This determination would ideally take into account the de-
gree of noncontiguity of the data, the availability of higher-
performing type-specific kernels or CUDA alternatives, and
awareness of competing operations for limited GPU re-
sources. For example, CUDA DMA can be used in place
of the generic packing algorithm for a single vector type
(e.g., CSvec) by merely analyzing the strides/blocklengths
for CUDA-optimized parameters.

Furthermore, while we did not explore pipelining the
communication process (our benchmarks were bottlenecked
by PCIe latency for small messages and network bandwidth
for large messages), our packing methodology can provide
such capability in future work. Given a pipeline unit of an
arbitrary size, we can modify the point-to-thread mapping
by simply offseting the elements to read based on the
amount of pipelined data read. Given the existing datatype
encoding, computing the number of elements to fit in a
pipeline unit can be easily done on the host, in a style similar
to Algorithm 1. This functionality is important for systems
with increasingly high network capabilities, and our design
is capable of performing pipelining with little change to the
underlying methods.

Furthermore, through experiments on resource contention,
we have shown the need, for more complex resource
scheduling and management on the GPU. Currently, a user
can do little to prevent resource contention, other than
fine-tuning and organizing the code to explicitly minimize
contention. Fortunately, the MPI Standard allows hints in the
form of attributes to be passed to datatypes, which were used
in the recent MPI-ACC work [21] to eliminate the overhead
of using CUDA UVA. While there may be no way to avoid
resource contention, at least the user can have some say in
handling it. In order to enable a wider range of applications

to efficiently use the GPU, providing scheduling capabilities,
such as a priority-based scheduler for performance critical
workloads such as packing, will become an increasingly
important aspect of overall GPU adoption and use.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of
Energy under contract DE-AC02-06CH11357, and addition-
ally by the National Science Foundation under Grant No.
0958311.

REFERENCES

[1] “Top 500 supercomputing sites,” http://www.top500.org.
[2] MPI Forum, “MPI-2: Extensions to the message-passing interface,”

Univ. of Tennessee, Knoxville, Tech. Rep., 1996.
[3] Khronos OpenCL Working Group, The OpenCL Specification Version

1.1. Khronos Group, 2011, http://www.khronos.org/opencl/.
[4] NVIDIA, “NVIDIA CUDA compute unified device architecture,”

http://developer.nvidia.com/category/zone/cuda-zone.
[5] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: An

implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers,” in Proc. of the 2011
ACM/IEEE Int’l Conf. for High Performance Computing, Networking,
Storage and Analysis, 2011.

[6] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-
d blocking optimization for stencil computations on modern CPUs
and GPUs,” in Proc. of the 2010 ACM/IEEE Int’l Conf. for High
Performance Computing, Networking, Storage and Analysis, 2010,
pp. 1–13.

[7] A. Schafer and D. Fey, “High performance stencil code algorithms
for GPGPUs,” in International Conference on Computational Science
(ICCS), 2011.

[8] R. Ross, N. Miller, and W. Gropp, “Implementing fast and reusable
datatype processing,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, ser. Lecture Notes in Computer
Science, J. Dongarra, D. Laforenza, and S. Orlando, Eds., vol. 2840.
Springer Berlin / Heidelberg, 2003, pp. 404–413.

[9] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K.
Panda, “MVAPICH2-GPU: Optimized GPU to GPU communication
for infiniband clusters,” in International Supercomputing Conference
(ISC ’11), 2011.

[10] H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur,
and D. K. Panda, “Optimized non-contiguous MPI datatype com-
munication for GPU clusters: Design, implementation and evaluation
with MVAPICH2,” in IEEE International Conference on Cluster
Computing (Cluster ’11), 2011.

[11] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O
in ROMIO,” in Proceedings of the 7th Symposium on the Frontiers
of Massively Parallel Computation (FRONTIERS ’99. Washington,
DC: IEEE Computer Society, 1999, pp. 182–189. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795668.796733

[12] J. A. Stuart and J. D. Owens, “Message passing on data-parallel
architectures,” in Proc. of the 23rd IEEE International Parallel and
Distributed Processing Symposium, May 2009.

[13] N. Brookwood, “AMD fusion family of APUs: Enabling a superior,
immersive PC experience,” Insight, vol. 64, pp. 1–8, 2010.

[14] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The Scalable
Heterogeneous Computing (SHOC) benchmark suite,” in Proc. of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units GPGPU ’10. New York: ACM, 2010, pp. 63–74.
[Online]. Available: http://doi.acm.org/10.1145/1735688.1735702

[15] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic,
“The Universe at Extreme Scale: Multi-Petaflop Sky Simulation on
the BG/Q,” ArXiv e-prints, Nov. 2012.

[16] T. Peterka, J. Kwan, A. Pope, H. Finkel, K. Heitmann, S. Habib,
J. Wang, and G. Zagaris, “Meshing the universe: Integrating anal-
ysis in cosmological simulations,” in Proc. of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT, 2012.

http://www.khronos.org/opencl/
http://developer.nvidia.com/category/zone/cuda-zone
http://dl.acm.org/citation.cfm?id=795668.796733
http://doi.acm.org/10.1145/1735688.1735702


14

[17] D. A. Jacobsen, J. C. Thibault, and I. Senocak, “An MPI-CUDA
implementation for massively parallel incompressible flow computa-
tions on multi-GPU clusters,” in Proc. of the 48th AIAA Aerospace
Sciences Meeting, 2010.

[18] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W. mei
W. Hwu, “An asymmetric distributed shared memory model for
heterogeneous parallel systems,” in ASPLOS ’10 Proc. of the fifteenth
edition of ASPLOS on Architectural Support for Programming Lan-
guages and Operating Systems, 2010, pp. 347–358.

[19] Z. Fan, F. Qiu, and A. E. Kaufman, “Zippy: A framework for com-
putation and visualization on a GPU cluster,” Computer Graphics
Forum, vol. 27, no. 2, pp. 341–350, 2008.

[20] O. Lawlor, “Message passing for GPGPU clusters: CudaMPI,” in
IEEE Cluster PPAC Workshop, 2009, pp. 1–8.

[21] A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, W.-c. Feng, K. R.
Bisset, and R. Thakur, “MPI-ACC: An integrated and extensible
approach to data movement in accelerator-based systems,” in 14th
IEEE International Conference on High Performance Computing and
Communications, Liverpool, UK, June 2012.

John Jenkins is a Ph.D. candidate at North
Carolina State University. His research in-
terests include parallel runtime data man-
agement, accelerator architecture and algo-
rithms, and scientific data analysis. John re-
ceived his B.S. in Computer Science from
Lafayette College in 2010.

James Dinan is the James Wallace Givens
postdoctoral fellow at Argonne National Lab-
oratory. He received his Ph.D. and M.S. de-
grees in computer science from the The
Ohio State University, in Columbus, Ohio. He
received his B.S. degree in computer sys-
tem engineering from the University of Mas-
sachusetts, Amherst. His research interests
include parallel programming models, high-
performance runtime systems, distributed al-
gorithms, scientific computing applications,

and computer architecture.

Pavan Balaji holds appointments as a com-
puter scientist and group lead at the Argonne
National Laboratory, as a research fellow of
the Computation Institute at the University
of Chicago, and as an institute fellow of the
Northwestern-Argonne Institute of Science
and Engineering at Northwestern University.
His research interests include parallel pro-
gramming models and runtime systems for
communication and I/O, modern system ar-
chitecture (multicore, accelerators, complex

memory subsystems, high-speed networks), cloud computing sys-
tems, and job scheduling and resource management. He has nearly
100 publications in these areas and has delivered nearly 120 talks
and tutorials at various conferences and research institutes. He is
a recipient of the U.S. Department of Energy’s Early Career Award.
He has also received several other awards including the Director’s
Technical Achievement award at Los Alamos National Laboratory, an
Outstanding Researcher award at the Ohio State University, and five
best-paper awards. He serves as the worldwide chairperson for the
IEEE Technical Committee on Scalable Computing (TCSC). He has
also served as a chair or editor for nearly 50 journals, conferences,
and workshops and as a technical program committee member in
numerous conferences and workshops. He is a senior member of the
IEEE and a professional member of the ACM.

Tom Peterka is an assistant computer scien-
tist at Argonne National Laboratory, a fellow at
the Computation Institute of the University of
Chicago, and an adjunct assistant professor
at the University of Illinois at Chicago. His
interests are in large-scale parallelism for sci-
entific visualization and analysis of scientific
datasets. He has contributed to three best-
paper awards and numerous publications in
ACM and IEEE conference and journals. Tom
earned his Ph.D. in computer science from

the University of Illinois at Chicago, where he was a James Schol-
arship and University Fellowship winner.

Nagiza F. Samatova is an Associate Pro-
fessor in Computer Science Department of
North Carolina State University and a Senior
Research Scientist in Computer Science and
Mathematics Division of Oak Ridge National
Laboratory. She received the B.S. degree
in applied mathematics from Tashkent State
University, Uzbekistan, in 1991 and her Ph.D.
degree in mathematics from the Comput-
ing Center of Russian Academy of Sciences
(CCAS), Moscow, in 1993. She also obtained

an M.S. degree in Computer Science in 1998 from the University
of Tennessee, Knoxville, USA. Dr. Samatova specializes in High
Performance Data Analytics, Data Management, Scientific and High
Performance Computing, Graph Theory and Algorithms, Bioinfor-
matics, Systems Biology, and Machine Learning. She is the author
of over 150 publications in peer-reviewed journals and conference
proceedings.

Rajeev Thakur is the deputy director on the
Mathematics and Computer Science Division
at Argonne National Laboratory, where he is
also a senior computer scientist. He is also
a senior fellow in the Computation Institute
at the University of Chicago and an adjunct
professor in the Department of Electrical En-
gineering and Computer Science at North-
western University. He received his Ph.D. in
computer engineering from Syracuse Univer-
sity. His research interests are in the area of

high-performance computing in general and particularly in parallel
programming models, runtime systems, communication libraries, and
scalable parallel I/O. He is a member of the MPI Forum that defines
the Message Passing Interface (MPI) standard. He is also co-author
of the MPICH implementation of MPI and the ROMIO implementation
of MPI-IO, which have thousands of users all over the world and
form the basis of commercial MPI implementations from IBM, Cray,
Intel, Microsoft, and other vendors. MPICH received an R&D 100
Award in 2005. Rajeev is a co-author of the book ”Using MPI-2:
Advanced Features of the Message Passing Interface” published by
MIT Press, which has also been translated into Japanese. He was
an associate editor of IEEE Transactions on Parallel and Distributed
Systems (2003-2007) and was Technical Program Chair of the SC12
conference.

. The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.


	Introduction
	Background
	MPI Datatypes Specification
	GPU Architecture and Programming Model
	GPU-GPU Communication in MPI – MVAPICH

	In-GPU Datatype Processing
	MPI Datatype Encoding in GPU Memory
	Parallel GPU Packing Kernel
	Parallelism via Point-Based Retrieval
	GPU Datatype Traversal Algorithm

	Packing with Resource Contention

	Evaluation with Microbenchmarks
	Test Datatypes
	Noncontiguous Packing Performance
	Noncontiguous Packing Performance by Component
	Full Evaluation: GPU-to-GPU Communication
	Resource Contention Effects on Packing

	Evaluation with Applications
	Stencil Computation
	Analysis Code

	Related Work
	Concluding Remarks
	References
	Biographies
	John Jenkins
	James Dinan
	Pavan Balaji
	Tom Peterka
	Nagiza F. Samatova
	Rajeev Thakur


