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Abstract—Distributed, dynamic data flow is an execution
model well-suited for many large-scale parallel applications,
particularly scientific simulations and analysis pipelines run-
ning on large, distributed-memory clusters. In this paper we
describe compiler optimization techniques and an intermediate
representation for distributed dynamic data flow programs.
These techniques are applied to Swift/T, a high-level declarative
language that allows flexible data flow composition of functions
written in other programming languages such a C or Fortran.
We show that compiler optimization can reduce communication
overhead by 70-93% on distributed memory systems, making
the high-level language competitive with hand-coded coordination
logic for certain common application styles.

I. INTRODUCTION

The Swift/T programming system allows parallel compo-
sition of functions and external programs into highly par-
allel, distributed data flow applications for systems ranging
from multi-core workstations to distributed-memory super-
computers with tens of thousands of cores [32]. The Swift/T
implementation compiles a high-level script to lower-level
statements that are executed by many nodes, which coordinate
through a distributed data store and task queue.

The goal of the Swift language is to make implicitly parallel
scripting as easy and intuitive as sequential scripting in, for
example, shell scripts or Python, both of which have been
heavily adopted by computational scientists. The language is
declarative and provides determinism guarantees, while also
offering standard niceties such as high-level control flow state-
ments, mathematical functions, and string manipulation that
make it possible to write the higher-level “glue code” required
to compose library functions into complete applications.

This programming paradigm presents challenges for a lan-
guage implementer. The Swift/T language has high-level,
declarative semantics and asks little of a programmer beyond
expressing data dependencies between functions through nor-
mal composition and variable passing. Thus, data movement,
parallel task management, and memory management are left
entirely to the implementation. Relieving application program-
mers of such concerns opens the door to rapid development of
scalable parallel applications. However, this flexibility comes
at the cost of requiring the language implementer to provide
robust performance for typical application patterns.

Our experience implementing applications with Swift/T
has shown that relying exclusively on runtime approaches
for task and data management would result in unacceptable

overhead in many situations, particularly in the case of large-
scale applications running on thousands of cores, which must
dispatch hundreds of thousands of tasks per second to fully
utilize the machine. For this reason, we have developed and
implemented a range of compiler techniques that enable more
efficient execution of high-level scripts on large clusters and
supercomputers. Using compiler optimization, runtime coor-
dination overhead can be reduced by an order of magnitude,
bringing performance to a level that makes the programming
model viable for many realistic applications. The contributions
of this paper are:

« characterization of the novel compiler optimization prob-
lems that arise in a distributed data flow execution model;

« an intermediate representation for this execution model;

« application of both standard and novel compiler opti-
mizations to reduce coordination cost by an order of
magnitude; and

o characterization of the challenges imposed by memory
management and compiler techniques to address them.

II. MOTIVATION

We illustrate and motivate our work by showing how it
applies to a simple, commonly occuring style of scientific
application: the parameter sweep. The parameter sweep is
a rather simple application pattern that can be expressed
compactly in a high-level parallel programming language.
Nonetheless it requires an efficient and scalable implemen-
tation.

A parameter sweep generally involves running a simulation
or evaluating a function for a large range of input parameters.
The simplest examples can be implemented with nested loops,
for example foreach i in [1:N] { foreach j in
[1:M] { £(i, 3); } }, where f could be a simple func-
tion call or an invocation of a command line application.
Realistic examples involve further complications, such as
conditional execution or manipulation of input parameters, e.g.
if (check(i, 3J)) { £(ix=*2, g(j)) }. A parame-
ter sweep may also simply be a prelude to further processing.
For example, a parameter sweep may perform a coarse grid
search, that is followed by further analysis only in regions of
interest. We may want to overlap phases to improve computer
utilization and reduce time to solution, an approach which is
trivial in a data flow programming model. Figure 1 illustrates
a number of these features.
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1 blob models[], res[][];

2 | foreach m in [1:N_models] {

3 models[m] = load(sprintf ("model%i.data", m));
4

5

6 | foreach i in [1:M] {

7 foreach j in [1:N] {

8 // initial quick evaluation of parameters

9 p, m = evaluate (i, 7J);

10 if (p > 0) {

11 // run ensemble of simulations

12 blob res2[];

13 foreach k in [1:S] {

14 res2[k] = simulate (models([m], i, 3J);
15

16 res[i] [J] = summarize (res2);

17 }

18 }

19 }

20

21 // Summarize results to file

22 foreach i in [1:M] {

23 file out<sprintf ("output%i.txt", 1i)>;
24 out = analyze(res[i]);

25 }

(a) Declarative Swift/T code

evaluate()

summarize()

gmen

- >
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(b) Visualization of parallel execution for M =2 N =25 =3

Fig. 1: An application - an amalgam of several real scientific applications - that runs an ensemble of simulations for many
parameter combinations. All statements in the above code execute concurrently subject to data dependencies. This application
cannot be directly expressed with a static task graph, because simulations are conditional on runtime values. The diagram
shows an optimized translation to runtime tasks and shared variables.

Our experience indicates that even such seemingly trivial ap-
plications often require a large degree of language flexibility. A
high level language is perhaps the most intuitive and powerful
way to support this flexibility. Ultimately, what many users
want is a scripting language that lets them quickly develop
scripts that compose high performance functions implemented
in a compiled language such as C or Fortran. For single-node
execution, dynamic languages such as shell scripts, Perl, or
Python address this need. However, this paradigm breaks down
when parallel computation is desired. With current sequential
scripting languages, the logic must be rewritten and restruc-
tured to fit in a paradigm such as message-passing, threading
or MapReduce. In contrast, Swift/T natively supports parallel
and distributed execution while retaining the intuitive nature
of sequential scripting, in which program logic is expressed
directly with loops and conditionals. In the above example,
a Swift/T implementation can take care of assigning function
calls such as simulate and analyze to different available
processors for execution.

Executing even fairly simple applications efficiently is chal-
lenging in a distributed environment. For example, in some
representative science applications, the simulate function
in Figure 1 might be implemented in C and have a long-
tailed runtime distribution with mean 0.1s. One instance
of the application might be a massively parallel run with
M % N %S ~ 10, while another might have M x N xS =~ 106,
with the above code inside another sequential loop that uses
analysis results to decide on a new round of simulations to
run. In these scenarios, irregular parallelism and unpredictable
task runtimes require dynamic, high performance load balanc-
ing. The need to rapidly dispatch short-running tasks places
high demands on runtime systems. Large input, output, and

intermediate data sets require intelligent management of data
movement and locality.

Intelligent algorithms and engineering of runtime systems
can help deal with thse challenges, but ahead-of-time com-
piler optimization, we believe, is essential for this high-level
programming model to be viable for applications that demand
high performance.

ITII. SWIFT PROGRAMMING LANGUAGE

We work with a variant of the Swift programming lan-
guage [30]. Swift was originally designed for expressing work-
flows of command-line applications producing and consuming
file data. The language is easily generalized to support direct
calling of functions written in other languages with in-memory
data. These external functions or command-line applications
are treated in the language as typed leaf functions. The
programming model assumes that fine-grained parallelism and
computationally intensive code are contained in leaf functions,
leaving coarser-grained parallelism for Swift.

The language is implicitly parallel. There is no sequential
dependency between consecutive statements, so the order of
execution of statements is constrained only by data flow, and
when necessary, by control structures including conditionals
and explicit wait statements that execute code only once input
data is ready. Two loop structures are available: foreach loops,
which express iteration over integral ranges or arrays with
independent iterations, and for loops, where iterations are
ordered and each iteration can pass data to subsequent iter-
ations. The Swift/T implementation also supports unbounded
recursion.

A Swift implementation can execute language statements
sequentially when no speedup is likely to be gained from



parallelism, for example in the case of builtin arithmetic and
string operations and simple data store operations.

A. Data structures in Swift

Swift provides several primitive data types. Most standard
data types are monotonic, that is, they cannot be mutated in
such a way that values are overwritten. A monotonic variable
starts off containing no information, then incrementally accu-
mulates information until it is finalized, whereupon it cannot
be further modified. It is possible to construct a rich variety
of monotonic data types [8], [13]. The simplest in Swift is
a single-assignment I-var [16], which starts off empty and is
finalized upon the first assignment. All basic scalar primitives
in Swift are semantically I-vars: ints, floats, booleans, and
strings. Files can also be treated as I-vars. More complex
monotonic data types can be incrementally assigned in parts,
but not overwritten.

Use of monotonic variables allows Swift programs to pro-
duce deterministic results, despite the non-deterministic order
of statement execution. The language provides referential
transparency for monotonic variables in R-value expressions
(expressions not on the left hand side of an assignment).
This means that if a deterministic function f is applied to
a monotonic variable, z, then the expression f(z) always
evaluates to the same value anywhere that x is in scope. Given
an assignment y = f (x), y and f(z) have the same value
and are interchangeable.

Arrays in Swift are dynamically sized monotonic vari-
ables that may be sparse. The value can be assigned all at
once (e.g. int A[] = £();), or in imperative style, by
assigning individual array elements (e.g. int A[]; A[i]
= a; A[]j] = Db;).Referential transparency means that any
operation that queries the array state must always return the
same value. The array lookup operation A[i] is defined to
either return the single value inserted into the array A at index
i, or eventually fail if nothing is ever inserted at A[i]. A
pending array lookup does not stall execution of the program,
as other statements in a block can execute concurrently with
the pending lookup. Functions of the whole array are defined
based on the final value of the array. For example, size (A)
is the final size of the array once no more elements can be
added.

Such semantics allow programmers to express intricate data
dependency patterns without any risk of non-determinism or
need to manually implement synchronization logic. However, a
consequence is that the language implementation must handle
a range of complicated synchronization cases automatically.
The implementation must automatically detect when an array
is finalized, i.e. when it is no longer possible that new data
will be inserted into it. The implementation is also responsible
for memory management.

IV. COMPILER IMPLEMENTATION

The rest of the paper describes the implementation of STC,
an optimizing compiler for Swift. The compiler translates
high-level implicitly parallel Swift code into a lower-level
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Fig. 2: Task and data dependencies in dynamic data flow.
The tasks, together with spawn dependencies, form a spawn
tree rooted at task a. Data dependencies resulting from shared
variables defer execution of tasks until shared data is available.

execution model, (Section IV-A). An intermediate represen-
tation is used to capture the execution model program (Sec-
tion IV-C), to which optimization techniques for synchroniza-
tion, shared data and reference counting are applied (Sec-
tions IV-D, IV-E, IV-F) that reduce communication without
loss of useful parallelism (Section IV-B).

STC currently generates code in the Tcl scripting language
that calls runtime libraries that are implemented in C. MPI is
used for interprocess communication. Using Tcl allows rapid
development, and easy implementation of extension functions.
For current applications, interpreting Tcl has not been a major
bottleneck, but this may change in future with finer-grained
parallelism. For that reason, STC is retargetable by design.

A. Distributed Dynamic Data flow

Swift/T’s runtime implements a distributed dynamic data
flow execution model that supports data-driven task paral-
lelism. As a program executes, the runtime maintains a set
of tasks running on computational resources, a set of queued
tasks that are ready to execute, and a set of tasks that are wait-
ing for input data. This model of task-parallel computation,
can expose more parallelism for many applications than less
flexible models such as fork-join [27]. In our specific version
of the model, tasks are not preemptible by other tasks and,
once running, cannot block waiting for data or other tasks.

Each task can spawn child tasks that execute asyn-
chronously, so a spawn tree of tasks is formed, as shown in
Figure 2. Parent tasks can pass data to their child tasks at
spawn time, such as references to shared data, or small values
such as numbers or short strings.

A shared data store provides a global address space in
which shared variables can be read or written by any task. This
feature allows flexible coordination patterns: for example, a
task can spawn two tasks, passing both a reference to a shared
variable, which one task reads and the other writes. Unlike a
fork-join model of task-parallel computation, parent tasks do
not wait for child tasks to finish. Thus, data dependencies are
the only way to manage inter-task dependencies. Once a task
is spawned, it can only execute after all data dependencies are
finalized. The data dependencies of a pending task must be
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Fig. 3: Runtime architecture, illustrating how different services
are distributed across many distributed processes.

fulfilled by other tasks writing the corresponding variables.
Tasks are free to write, or not write, any data they hold
a reference to, so the identity of the writer task may be
undetermined until runtime.

In constrast to the high-level Swift/T language, the dynamic
data flow execution model provides no protections against
accessing non-finalized state (e.g., the size of a non-finalized
array), so determinism is not guaranteed. Thus, Swift/T must
compile to a deterministic subset of possible programs in this
execution model. A naive compilation strategy would directly
translate each program variable to a runtime shared variable,
and each function call or operation to an asynchronous task,
with runtime dependencies on all data read by a task. This
approach guarantees correctness, but at high runtime cost.
In many cases program variables need not be implemented
as shared variables, runtime data dependency checks can be
safely elided, and operations can execute synchronously.

Figure 3 illustrates a scalable, distributed implementation
of the execution model. An arbitrary number of server pro-
cesses implement a distributed data store and task queue with
dynamic load balancing. Two different classes of processes
execute worker and control tasks. The control processes also
have local task queues [15], [31].

B. Optimization for Distributed Data flow

The distributed data flow execution model presents distinct
challenges for an optimizing compiler. The goal is to com-
pile highly parallel coordination code so as to: a) preserve
parallelism in the script where task granularity is sufficient
to allow parallel speedup; b) optimize for scalability, e.g., by
partitioning parallel loops to assist with load balancing; and
¢) optimize for efficiency and minimize runtime overhead.

In this paper we focus primarily on the first and third
objectives: maintaining parallelism while reducing runtime
overhead. Most inefficiency and coordination overhead is due
to synchronization and communication. Reads and writes of
shared data, along with task management, generally require
interprocess communication, and the latency of sending a
message and receiving a response in a distributed environment
is orders of magnitude greater than primitive operations within
a task. Therefore, our compiler optimizations are largely
targeted at reducing the number of non-local task and data
operations in the generated code.

C. Intermediate Representation

The STC compiler uses a a single intermediate represen-
tation (IR) that captures the distributed dynamic data flow

STC Compiler
IR-2 |R-2| Post-processing:
Optimization Ref. Counting & Distributed
Value. Passing Executor
Normalization ‘ IR-3
IR=1 % Tel Script
‘ Swift/T Script }» Frontend Code Generator w/ runtime
library calls

Fig. 4: STC Compiler Architecture showing frontend, inter-
mediate representations, and code generation. IR-1 is first
normalized to produce IR-2. Optimization passes are applied
to produce successively more optimized IR-2 trees. Finally,
post-processing adds inter-task data passing and read/write
reference counting information to produce IR-3, which is
directly used by the code generator.

1 () @main ()#waiton[] {

2 vars: { int n, $int v_n, int f }

3 CallExtLocal argv [ v_n 1 [ "n" ] // get argument
4 StoreInt n v_n

5 Call fib [ £ 1 [ n ] closed=[true]

6 wait (f) { // print result once available

7 vars: { $int v_f }

8 LoadInt v_f f

9 CallExtLocal printf [ ] [ "fib(%i)=%i" v_n v_f ]
10

11 }

12

13 (int o) @fib (int i)#waiton[i] { // wait until i final
14 vars: { $int v_i, S$boolean tO }

15 LoadInt v_i i

16 LocalOp <eqg_int> t0 v_i 0

17 if (£0) {

18 StoreInt o 0

19 } else {

20 vars: { $boolean t2 }

21 LocalOp <eqg_int> t2 v_i 1

22 if (t2) {

23 StoreInt o 1

24 } else {

25 vars: { $int v_il, $int v_i2, int il, int i2,
26 int f1, int f2 }

27 LocalOp <minus_int> v_il v_i 1

28 StoreInt il v_il

29 Call fib [ £f1 ] [ i1 ] closed=[true]

30 LocalOp <minus_int> v_i2 v_i 2

31 StoreInt 12 v_i2

32 Call fib [ f2 1 [ i2 ] closed=[true]

33 AsyncOp <plus_int> o f1 f2

34 }

35 }

36 }

Fig. 5: Optimized IR-2 for recursive Fibonacci calculation

execution model just described. The IR makes it straightfor-
ward to optimize distributed code where execution crosses
process boundaries. Three variants are used in different stages
of compilation: IR-1, IR-2, and IR-3. IR-1 is generated by the
compiler frontend. IR-2, used by the optimizer, is a normalized
version of IR-1 in which all variables within a function are
assigned unique names. IR-3 augments IR-2 with information
required for code generation: explicit annotations for reference
count manipulation and for variable passing from parent to
child tasks. Figure 4 puts these different forms in context.
Figure 5 provides an illustrative example of intermediate
representation for a parallel, recursive Fibonacci calculation.
Figure 6 present partial pseudocode for an IR-2 interpreter, in
order to illustrate IR structure and semantics, particularly how
block instructions are executed in sequence while tasks are



INTERPRET(main_func, worker_rank)

1 if worker_rank ==0

2 SPAWNTASK (0, main_func. block, INITENV())
3 while (task = GETREADYTASK())

4 EXECBLOCK (task. env, task. block)

EXECBLOCK (enw, block)

1 foreach var € block.vars

2 INITVAR(env, var)

3 foreach inst € block. instructions

4 EXECINSTRUCTION(env, inst)

5 foreach cont € block. continuations

6 EXECCONTINUATION(env, cont)

7 foreach cleanup € block. cleanups

8 EXECINSTRUCTION(cleanup. env, instruction)

INITVAR (env, var)

1 if var. storage == LOCAL

2 2z = ALLOCATELOCAL(var. type)

3 if var. storage € {SHARED, SHAREDALIAS }
4 2z = ALLOCATELOCALREFTO(var. type)
5 if var. storage == SHARED

6 ALLOCATESHAREDDATA(z, var. type)

7 BIND(env,var. name, )

EXECINSTRUCTION(enwv, inst)

1 // Instructions can lookup and modify variables in enwv,
2 // access and modify shared datastore, and spawn tasks
3 switch (inst)

4 case LOCALOP(builtin_opcode, out, in)

5 // execute local builtin op

6 case ASYNCOP(builtin_opcode, out, in)

7 // spawn task to execute async builtin op

8 case LOADINT(val, shared_var)

9 // Load value of shared_var

10 case STOREINT(shared_var, val)

11 // Store val into shared_var

12 case AINSERT(builtin_opcode, arr,i, var)
13 // Immediately assign arr[i] = var

14 // etc...

EXECCONTINUATION (env, continuation)

switch (continuation)
case WAIT(wait_vars, target, block)
SPAWNTASK(wait_vars, block, CHILDENV (env))
case IF(condition, then_block, else_block)
if (condition) EXECBLOCK(CHILDENV (env), then_block)
else EXECBLOCK(CHILDENV (env), else_block)
case FOREACH (array, mem_var, block)
foreach = € array
SPAWNTASK((, block, CHILDENV(env, mem_var = x))
10 case RANGELOOP(start, end, step, iz_var, block)
11 for i = start to end by step
12 SPAWNTASK(), block, CHILDENV(env, iz_var = 1))

O 00O\ W LN —

Fig. 6: Pseudocode for simple parallel interpreter for STC IR-
2. Support for data-dependent execution of tasks is assumed.
SPAWNTASK (wwv, b, env) spawns a task dependent on the
variable set wv.

spawned off for asynchronous, data-driven execution. Table I
lists primitive IR operations.

Figure 7 describes the type system used in the IR, with
distinct types to represent task-local variables and data store
shared variables. Reference types add an extra level of indi-
rection to shared variables. For example, string xx is a
shared variable storing a reference to a string variable.

D. Adaption of traditional optimizations

We first adapted a standard suite of compiler optimizations
for our intermediate representation.

TABLE I: Opcodes for IR instructions. Some opcodes are
omitted that support struct and file data types, mutable vari-
ables and memory management within tasks.

Opcodes Description

LocalOp, Execute builtin operations, e.g. arithmetic. The local

AsyncOp variant operates on local values and executes imme-
diately in the current task context. The async. variant
operates on shared variables and spawns a task.

CallExt, Foreign function calls, with async. and local versions

CallExtLocal analogous to above.

Call, CallSync, Swift function calls, distinguished by execution

CallLocal mode

Load(prim-type),
Store (prim-type)

Load/store values of shared vars

LoadRef, StoreRef

Load and store reference variables

CopyRef Copy shared var handle to create alias
Deref(prim-type) Spawn async. task to dereference e.g. *int to int
{Incr|Decr} Reference counting operations for shared vars
{ReadRef|WriteRef}
AGet, Array lookups. A and AR variants operate on ar-
AGetImm, rays/references to arrays respectively. Future variants
AGetFuture, take shared vars, which may not be finalized, for
ARGet, indices. AGetImm performs the lookup immediately,
ARGetFuture and fails if the index is not present. All other
operations can execute asynchronously.

Alnsert, Array inserts, following same convention as before
AlnsertFuture,
ARInsert,
ARInsertFuture
ANestedImm, Create nested array at index if not present. Required
ANestedFuture, to support automatic creation of nested arrays
ARNested,
ARNestedFuture

(type) | (I-var) | (local-valy | (ref) | (array)

(I-var) | (prim-type)

(local-val) = § (prim-type)
(refl) £ * (type)
(array) = (type)ll
(prim-type) = int | bool | float | string | blob | file

Fig. 7: BNF grammar for IR type system. All types but
(local-val) are shared variables. Omitted are struct and mutable
types. The Swift type system is distinct but overlaps.

Constant folding/propagation. Compile-time evaluation of
many built-in operations including arithmetic and string oper-
ations such as concatenation is supported.

A forward data flow analysis propagates values and infor-
mation about variable finalization forward in a block and into
descendant blocks. A global value numbering scheme is used
that assigns unique identifiers to values within a block. This
method is effective at eliminating redundant computations,
and particularly for eliminating data store reads and writes:
in many cases I-vars can be bypassed using local temporary
variables. Finalized variable analysis detects I-vars, monotonic
arrays, etc., that are finalized at each instruction within the
code. A variable is clearly finalized if preceding instructions
have finalized it directly, or if it is within a wait statement
for that variable. Basic inference is also performed based on
variable dependences. For example, given the Swift condi-
tional if (x == 1) { ... }, the code within the block
cannot execute until the value of x == 1 is final, which



also implies that x is final. This analysis also eliminates
unnecessary wait statements and allows strength reduction,
whereby expensive operations using runtime data dependence
resolution are replaced with ones that execute immediately, or
have less runtime overhead.

Dead code elimination is performed by building a vari-
able dependence graph for the function. Monotonic variables
simplify this process, as we need not consider the scope of
overwritten values of a variable. Live variables are identified
by finding the transitive closure from variables that are either
function outputs or input/outputs of side-effecting instructions.
The analysis accounts for variables aliasing parts of data
structures, with another graph capturing the is a part of
relationship. Untaken branches of conditionals and any empty
control flow structures are also eliminated.

Function inlining is an important optimization. STC’s de-
fault function calling convention uses shared variables (e.g.
I-vars) to pass arguments for generality. This method is often
expensive since it can require unnecessary data store loads
and stores. Small functions are common, either written by
users or generated by the compiler to wrap foreign function
calls, so function call overhead is an issue. Function inlining
allows other optimization passes to eliminate unnecessary
loads and stores, and to relocate instructions within inlined
function bodies to reduce use of dependency resolution. Typi-
cal Swift programs can often be inlined entirely into the main
function, allowing aggressive interprocedural optimization.
Asynchronous op expansion is a variant of inlining where an
asynchronous operation is expanded to a Wait statement plus
local operation.

Several loop optimizations are implemented. Loop invariant
hoisting is important for typical Swift scripts, in which large
parallel nested foreach loops often include redundant computa-
tions such as nested array lookups in the innermost loop. Loop
fusion fuses foreach loops with identical bounds, reducing
runtime loop management overhead and allow optimization
across loop bodies. Loop unrolling is also performed. Loops
with known, small iteration counts are completely expanded.
Loops with high or unknown iteration counts are unrolled at
high optimization levels, subject to certain heuristics that take
into account code size. Loop unrolling has different benefits
in a parallel data flow language to a sequential compiled
language. The main benefit of unrolling is that it allows op-
timization across loop iterations. Iterations of parallel foreach
loops are not sequentially dependent, so unrolling loops is a
straightforward way to do inter-iteration optimization.

There is further room for improvement in these algorithms.
Most optimizations are implemented as single passes over the
IR tree, with only information from direct ancestor blocks and
continuations used to perform optimization in a given block.
This approach is effective at identifying most redundancy in
typical Swift scripts, but misses opportunities that would be
detected by more sophisticated control flow analysis.

1 a = f1(); b = f2(a);

2 c, d = £3(a, b); e = f4(f5(c);

3| f = f4(£f5(d); = f6(e, f);
(a) Swift code fragment

ancestor

(b) Unoptimized version, relying on shared data flow variables
to pass data and runtime data dependency tracking

value of e

value ofa_ value of b Yl O ¢ ,mged
pwsscd 777777
@ @;199511 passed g
Valae of &
passed

(c) After wait pushdown and elimination of shared variables in
favor of parent-to-child data passing

value of e
passed___..--=="1

_0; 120; 180 ...
5(); f4();

spawned
after f3()

(d) After pipeline fusion merges tasks

Fig. 8: Traces of execution showing optimization of task and
data dependencies in a Swift code fragment.

E. Data flow-specific optimizations

A number of further transformations are performed that are
specific to task-parallel data flow execution. These transfor-
mations aim to restructure the task graph of the program to be
more efficient, without reducing worthwhile parallelism: i.e.
any parallelism of sufficient granularity to justify incurring
task creation overhead.

Two related concepts are used to determine whether trans-
formations may reduce worthwhile parallelism. The first is
whether an intermediate code instruction is long-running:
whether the operation will block execution of the current
task for a long or unbounded time. Our optimization passes
avoid serializing execution of long-running instructions that
could run in parallel. The second is whether an instruction is
progress-enabling: e.g., a store to a shared variable that could
enable dependent tasks to execute. The optimizer avoids de-
ferring execution of potentially progress-enabling instructions
by a significant amount. For example, it avoids adding direct
or indirect dependencies from a long-running instruction to a
progress-enabling instruction.

One optimization is called wait coalescing, as it performs
a variety of transformations that relocate, coalesce, and other-
wise transform wait statements in the IR. Data dependencies
between tasks can be eliminated by pushing wait statements
down in the IR to the location where the needed variable is
assigned. The effect, shown in Figure 8c, is to convert data
dependency edges to task spawn dependency edges. Some
control tasks can also be merged without detriment if no
progress is made in an enclosing wait, or if the sets of variables
waited on by wait statements overlap.

Another optimization is pipeline fusion, illustrated in Fig-
ure 8d. A commonly occuring pattern is a sequentially depen-



dent set of function calls: a “pipeline.” We can avoid runtime
task dispatch overhead and data transfer without any reduction
in parallelism by fusing a pipeline into a single task. For short
tasks, or for tasks with large amounts of input/output data, this
method saves much overhead. As a generalization, a fused task
will spawn dependent tasks if a pipeline “branches.”

F. Finalization and memory management

As already mentioned in Section III-A, the Swift language
implementation is responsible for both memory management
(automatically reclaiming memory allocated to variables) and
variable finalization (detecting when a variable will no longer
be written). These two problems are related, and we address
them with automatic, distributed, reference counting. Read and
write reference counts are defined for each shared variable.
When the write reference count drops to zero, the variable is
finalized and cannot be written, and when both drop to zero,
then the variable can be deleted. This design is quite flexible:
for example, a fresh I-var has a write reference count of one,
which is decremented upon assignment to finalize the variable.
In the case of read references and write references for arrays,
the compiler must determine which statements may read or
write each variable.

The addition of reference counts is implemented as two
post-optimization passes over the IR. The first pass identifies
where read and write references are passed from parent to
child tasks. For example, if the array A is declared in a
parent block and written within a wait statement, a passed
write reference is noted. The second pass uses this information
to insert reference counting operations. A naive reference
counting strategy would be to increment or decrement the
reference count of a shared variable every time a reference
is copied or lost. However, this strategy would impose an
unacceptable performance overhead: it could easily double the
number of data store operations, and therefore messages.

The second pass applies several optimizations to reduce the
number of operations:

o Cancelling and merging reference count operations, for
example if a reference is handed to a single child task
while going out of scope in the parent.

o Pulling up reference increments from child blocks, allow-
ing them to be merged.

o Batching reference counts for parallel foreach loops,
exploiting chunked execution of loops.

o Piggybacking reference count increments or decrements
on other data operations, such as variable creation or
variable reads. In a distributed environment, the piggy-
backed reference count is almost free, as no additional
messages need be sent.

In combination, these techniques allow reference counting
overhead to be reduced greatly. Separate reference count
operations can be eliminated entirely in most cases where the
number of readers can be determined statically. In the case of
large parallel loops, the cost of reference counting can often
be amortized over the entire loop.
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Fig. 9: Impact of optimization levels on number of runtime
operations that involve message passing or synchronization.

V. EVALUATION

To characterize the impact of different optimization levels,
we chose five benchmarks that capture commonly occurring
patterns. Sweep is a parameter sweep with two nested loops
and completely independent tasks; Fibonacci is a synthetic
application with the same task graph as a recursive Fibonacci
calculation with a custom calculation at each node that rep-
resents a simple divide-and-conquer application; Sudoku is a
more complex divide-and-conquer Sudoku solver that recur-
sively prunes and divides the solution space, and terminates
early when a solution is found; Wavefront has more complex
data dependencies, where a two-dimensional array is filled
in with each cell dependent on three adjacent cells; and
Simulated Annealing is an iterative optimization algorithm
with a parallelized objective function.

We ran benchmarks of these applications when they are
compiled at different optimization levels. These levels each
include the optimizations from previous levels:

00: Only optimize write reference counts.

O1: Basic optimizations: constant folding, dead code elim-
ination, forward data flow, and loop fusion.

02: More aggressive optimizations: asynchronous op ex-
pansion, wait coalescing, hoisting, and small loop expansion.

03: All optimizations: function inlining, pipeline fusion,
loop unrolling, intra-block instruction reordering, and simple
algebra.

For the two simplest applications, we also imple-
mented hand-coded versions using the same runtime library,



TABLE II: Runtime operation counts, measured in thousands of operations, in simulated annealing run, showing impact of
each optimization pass. Each row includes prior optimizations.

Task | Create | Sub. | Load | Store | Lookup | Insert | Refcount | Total
00 221.3 41.3] 740.5| 616.9 | 305.9 798| 14.8 3.512024.1
+Constant fold +DC elim. 165.3 15.4| 658.2| 575.8 | 198.1 798| 14.8 3.8|1711.2
+Forward dataflow 157.8 13.8 | 453.4| 427.5| 129.5 79.7| 14.8 0.6 | 1277.3
O1: +Loop fusion 157.7 13.8 | 453.3| 427.4| 129.5 79.6 | 14.8 0.6 | 1276.8
+Expand async. ops 157.9 13.8 | 453.4| 427.5| 129.5 79.7| 14.8 0.6 | 1277.3
+Expand small loops 157.8 13.8 | 453.4| 427.5| 129.5 79.7| 14.8 0.6 | 1277.2
+Hoisting 58.6 13.8 | 354.5| 414.7| 67.2 182 14.8 0.6 9423
02: +Wait coalesce 56.3 137 96.2| 157.8| 39.6 18.1| 14.8 0.6| 397.0
+Inline +Pipeline 28.8 13.3 54| 784| 39.1 169 14.8 0.6| 1974
+Reorder +Algebra 28.5 13.3 53| 784| 39.1 16.9| 14.8 0.6 196.9
0O3: +Full unroll 28.3 2.7 50| 783| 39.1 16.6 | 14.8 0.7| 185.6
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most complex benchmark. Garbage collection was disabled
while running these benchmarks so that we can examine
its impact separately. Overall we see that all applications
benefit markedly from basic optimization, while more complex
applications benefit greatly from each additional optimization
level. Compared with hand-coded ADLB, Swift at O3 uses
only fractionally more runtime synchronization and com-
munication. More complex applications would present more
opportunities to implement optimizations in a hand-coded
version, so this gap may widen somewhat. However, more
complex applications are also exactly when the higher-level
programming model is most valuable.

B. Reference Counting

We also examined the impact of reference counting for
garbage collection in isolation to understand the overhead
imposed by automatic memory management and the impact
of optimizations designed to reduce it. We ran the same
benchmarks under three different configurations, based on
the O3 configuration: Off, where read reference counts are
not tracked and memory is never freed, Unopt, where all
reference counting optimizations are disabled, and Opt, with
reference counting optimizations enabled. Figure 10 shows the
results. The Sweep benchmark is omitted since at O3 no shared
variables were allocated. The results show that the reference
counting optimizations are effective, reducing the additional
number of operations required for memory management to
2.5%-25% for three benchmarks. The optimizations were less
effective for Sudoku, which heavily uses struct data types that
are not yet handled well by reference counting optimizations.

ing for memory management on runtime operations

C. Application speedup

The second part of the optimization evaluation is to examine
the impact on runtime of different optimizations. We first
ran the previously introduced benchmarks on a Cray XE6
supercomputer. Each node has 24 cores. Except otherwise
indicated, 10 nodes were used for benchmarks. We measure
throughput in tasks/sec dispatched to worker processes; this
metric captures how efficiently the Swift/T system is able to
distribute work and hand control to user code.

Different cluster configurations were chosen based on initial
tuning, with different splits between worker processes, which
execute user code, and control processes, which execute co-
ordination code and serve data store and task queue requests.
The ratio for Sweep was 192 : 48, for Fibonacci 204 : 36, and
for Wavefront 128 : 112. Simulated Annealing had a variable
number of workers and 48 control processes.

Figure 11 shows the results of these experiments. For the O0
and ADLB Sweep experiment runs, and the O1 Wavefront run,
the 30 minute cluster allocation expired before completion.
Since these were the baseline runs, we report figures based
on a runtime of 30 minutes to be conservative. We omitted
Sudoku because the runtime was too short to obtain accurate
timings. The most challenging Sudoku problem was solved at
all optimization levels in 1.25-1.9 seconds, a 40-65x speedup.

The wide variance between tasks dispatched per second in
different benchmarks is primarily due to different complexity
of data flow. In some cases, such as for example for O0-O2
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Fig. 11: Throughput at different optimization levels measured in application terms: tasks/sec, or annealing iterations/sec.

in Wavefront, the unoptimized code interacts poorly with the
runtime system, causing further slowdown.

Performance of hand-coded ADLB on Sweep was bottle-
necked by a single process generating work tasks, while the
Swift/T version automatically parallelized work generation.
With some effort, the ADLB issue could be fixed. In contrast,
the hand-coded Fib program performed substantially better
mainly because, in the hand-coded version, we avoided having
two separate classes of worker and control processes and thus
achieved better utilization. Figure 1le shows strong scaling
for the simulated annealing benchmark. At lower optimization
levels, task dispatch limits scaling, while code compiled at
higher optimization levels scales better.

VI. RELATED WORK

Many previous authors have addressed the problem of im-
proving performance of distributed workflows created through
data flow composition, often with explicit task graphs. None
have treated the problem as a compiler optimization problem.
Rather, the problems addressed have been scheduling problems
where resource availability and movement of large data are
the major limitations. Thus, that work focused on computing
efficient schedules for task execution and data movement [19],
[25], [26], [33], generally assuming that a static task graph is
available. We focus on applications with finer-grained paral-
lelism in conjunction with a high level programming model,
in which runtime overhead is, in contrast, a dominant concern.
Previous authors have made case for the importance of such
applications [22] and the value of combining a low-level
computation language and a high-level scripting language [18].

Hardware data flow-based languages and execution models
received significant attention in the past [2]. There has been
a resurgence in interest in hardware-based [12], [17] and
software-based [5], [6], [7], [21], [27] data flow models due
to their ability to expose parallelism, mask latency, and assist
with fault tolerance. Previous work has sought to optimize
data flow languages with arrays: SISAL [24] and Id [28].
Both languages have similarities to Swift, but both emphasise
generating efficient machine code and lower level parallelism.
Id targets data flow machines rather than a distributed runtime.
The SISAL runtime used fork-join parallelism, meaning that
the process of compilation eliminated potential parallelism. In
STC, task-graph based transformations and the more involved
reference counting required for fully dynamic task graphs also
necessitated new techniques.

Other authors have described intermediate representations
for parallel programs, typically extending sequential imper-
ative representations with parallel constructs [34] Our work
differs by focusing on a restricted, data flow programming
model that is suitable for parallel composition of lower-level
code. Our restricted model allows aggressive optimization due
to monotonic data-structures and loose rules on statement
reordering. We also focus on a distributed execution context,
in which communication overhead is a dominant concern.

Other authors have proposed related compiler techniques in
different contexts. Task creation and management overhead is
a known source of performance issues in task parallel pro-
grams. Zhao et al. describe optimizations that reduce task par-
allelism overhead by identifying opportunities to safely elim-
inate or reduce strength of synchronization operations [35].
Arandi et al. show benefits from compiler-assisted resolu-
tion of inter-task data dependencies with a shared memory
runtime [1]. The communication-passing style transformation
described by Jagannathan [10] is related to the STC wait
coalescing optimization technique that relocates code to the
point in the IR tree where required data is produced. Various
optimizations has been proposed for reduction in reference
counting overhead [11], [20], which have similar goals to
STC’s reference counting optimization, such as cancelling or
merging reference counts. The required analysis, however,
is substantially different for sequential or explicitly parallel
functional or imperative languages.

Other authors have reduced task parallelism overhead for
data parallelism and fork-join task-parallelism through runtime
techniques that defer task creation overhead [4], [9], [23].
However, these techniques do not easily apply to general
dynamic task graphs.

VII. FUTURE WORK

The STC optimizer suite comprises a range of optimizations,
but many opportunities for further improvement remain. For
example, standard analyses could be applied in several cases:

« Handling of control flow such as iterative loops and con-
ditionals is currently simplistic: better data flow analyses
would improve optimization.

o Certain well-known analyses of affine nested loops could
be applied to applications with patterns such as the
wavefront example [3], [14].

« Data structure representation could be optimized: there
are unexploited opportunities, for example, to switch to
a more efficient local representation for small arrays.



Further evolution of the language runtime and the relation-
ship between compiler and runtime also present opportunities.

Past work [29] has identified opportunities for runtime
systems to optimize data placement and movement for data-
intensive applications given additional information about fu-
ture workload. Or intermediate representation and other com-
piler infrastructure offers an opportunity to pass hints to
runtime systems about patterns of data movement.

Our current intermediate representation and execution
model has only synchronous operations for the data and task
store. There is a clear opportunity to better mask communi-
cation latency by overlapping asynchronous operations. The
current compiler infrastructure offers a good basis for such an
extension, as it can easily support analysis of which operations
can be overlapped.

VIII. CONCLUSION

We have described a set of optimization techniques that
can be applied to improving communication efficiency of
distributed-memory data flow programs expressed in a high-
level, deterministic programming language. Our performance
results support two major claims: that a high-level data flow
scripting language is a viable approach for building scalable
applications with demanding performance requirements; and
that applying a wide spectrum of compiler optimization tech-
niques in conjunction with runtime and middleware techniques
greatly helps with building scalable systems.

The system described in this paper is in production use
for science applications running on up to 8,000 cores in
production and over 100,000 cores in testing. Application
of compiler techniques to communication reduction has been
essential to meeting these scalability goals. The programming
model offers a combination of ease of development and
scalability that has proven valuable for developers who need
to rapidly develop and scale up applications.
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