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Abstract

Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is
to “lag” the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange
for some degradation in the convergence rate and robustness. We show that this degradation may be
partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which
applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate
the effectiveness of this technique on problems in glaciology and elasticity.
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1. Introduction

Inexact Newton methods are often used for solving nonlinear partial differential equations (PDEs) and

optimization problems [1], and require the repeated construction and solution of the Jacobian linearization

of the equations, typically using preconditioned Krylov methods. This “Newton-Krylov” approach has

been nearly universally adopted for solving nonlinear PDEs on large-scale problems in parallel computing

environments. Therefore, improvements in the efficiency of Newton-type methods are important for

modern computational science.

Quasi-Newton methods were developed in the context of optimization in order to approximate the

Jacobian∗ linearization by low rank updates to an (often crude) approximate Jacobian. The most popular

variants of these methods are limited memory, storing a number of previous iterations and using the

Sherman-Morrison-Woodbury formula [2] to apply the inverse of the updated A+
∑

i uiv
T
i without

explicitly storing a dense matrix, where A is the initial approximation for which A−1 can be applied

inexpensively. The convergence of quasi-Newton methods is generally not nearly as swift as the full

Newton’s method and can be related to nonlinear Krylov methods [3].

1.1. Amortizing Setup Costs

Much of the expense associated with the inexact Newton-Krylov solution of nonlinear problems is in the

repeated assembly of the Jacobian matrix and preconditioner setup. In response, practitioners often lag the
∗ We use nonlinear equations terminology “residual” and “Jacobian” throughout. These should be understood to mean “gradient”

and “Hessian” when considering an optimization problem, for which an objective functional would also be available.
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Jacobian by several iterations or adopt a Jacobian-free Newton-Krylov approach with a lagged

preconditioner [4]. If the system is only weakly nonlinear, this lagging does not affect the Newton’s

method convergence too much, and overall robustness can be maintained. For stronger nonlinearity,

however, the convergence rate will be significantly worse than the non-lagged case. Even so, the savings

due to less frequent Jacobian assembly and preconditioner setup may outweigh the cost of the increase in

the number of iterations.

Quasi-Newton methods attack the problem from the other direction: in typical usage, they start with a

rough notion of the Jacobian and improve it progressively through low-rank updates. Many variants of

quasi-Newton have a closed-form inverse that may be applied much more quickly than the inversion

required in the full Newton method. The initial inverse Jacobian used in the quasi-Newton method can be

improved in several ways, including some approximate or diagonal inverse of the full Jacobian. As the

lagged Newton and quasi-Newton methods have opposite behavior with respect to performance when

compared by per-iteration convergence, we combine the two in a way that amplifies the advantages of both

methods.

In this paper, we explore the effectiveness of quasi-Newton methods that start with relatively high-accuracy

representations of the Jacobian. We seek only to maintain non-lagged convergence rates despite less

frequent Jacobian assembly. We evaluate a suite of restarted quasi-Newton methods, as compared with

Jacobian lagging (modified Newton) and preconditioner lagging in “Jacobian-free” Newton-Krylov, on the

basis of the number of Jacobian evaluations/preconditioner setup, number of residual evaluations, and

number of preconditioner applications. A critical component of our discussion is the use of more

sophisticated line searches that, for elliptic problems, are justified via analogy to an associated energy

functional (but do not use the energy explicitly).

We have implemented these methods in PETSc, the Portable Extensible Toolkit for Scientific

computing [5]. All variants can be used in existing codes purely through run-time options. We test the

methods using a nonlinear viscous flow problem in glaciology and large-deformation elasticity.

1.2. Other Globalization Strategies

Numerous approaches have been developed for strongly nonlinear problems, many of which are based on

some form of continuation. In many cases, grid sequencing (full multigrid) [6] is an efficient method for

both local and global convergence, obviating the need for any global linearization. Pseudotransient

continuation [7,8] is another effective method that is still superlinearly (or quadratically) convergent in the

terminal phase. Other continuations, such as arc-length [9] and parameter [10], may also be used for

globalization. To restrict the design space of our discussion, we consider problems requiring around 10

Newton iterations. This is the realm in which Newton methods with only line search globalization may be

considered appropriate, but is not so benign that nonlinearities are not exercised by the solver. For each
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choice of method, the practitioner must also decide how to approximate the inverse of the Jacobian. This

step can be done by using approximations in matrix assembly [11] or by defining the inverse through an

inexact linear solve, such as one V-cycle of a multigrid preconditioner. Again, we restrict the design space

by considering only specific preconditioners that we believe to be appropriate for the problems at hand.

2. Newton and Quasi-Newton Methods

We describe the computational characteristics and convergence properties of inexact Newton and

quasi-Newton methods. We include details about line searches, which will be particularly important in our

discussion.

2.1. Inexact and Lagged Newton Methods

The inexact Newton-Krylov scheme for solving a nonlinear equation [12]

F(x) = 0 (1)

involves assembling the Jacobian J(x), (iteratively) solving for yi such that

|J(xi)yi + F(xi)| < ε |F(xi)| (2)

and updating

xi+1 = xi + λyi (3)

until convergence in |F(xi)|, with λ determined by line search.

Assembly of the Jacobian requires computing derivatives of F(x),

J(x)[i, j] =
∂F(x)[i]

∂x[j]
, (4)

which involves sparse matrix manipulation and local operations (e.g., quadrature over each cell/face in

finite element methods) that, despite sparsity because of compactly supported basis functions, may be

computationally expensive. Assembly costs are especially significant for problems with complex material

models requiring evaluation of many transcendental functions, lookup tables, or implicitly defined

constitutive relations (requiring an implicit solve at each quadrature point), and when high-order or exotic

spatial discretizations are used.

A standard strategy to reduce assembly costs is to lag the Jacobian such that it is recalculated only every m

steps. This lagged Newton (Shamanskii) method [13] finds yi such that

|J(xi−k)yi + F(xi)| < ε |F(xi)| , (5)

where k < m is the number of steps since the last assembly. The lagged Newton method converges

q-superlinearly (for limit solution x∗, |xi − x∗| ≤ c |xi−1 − x∗|q with q > 1 for some c > 0) in the
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terminal phase [14,12], as opposed to q-quadratically for Newton, but is typically much less robust when

not started close to a solution. As we will see in Section 4, this lack of robustness can be partially

compensated for by additional work in a line search.

An alternative lagging scheme is to apply the action of the Jacobian Jxi using matrix-free finite

differencing but to define the preconditioner by using the lagged assembled Jacobian Jxi−k (or an

approximation thereof). In this approach, which is a common variant of the Jacobian-free

Newton-Krylov [4] (JFNK), the linear solver is responsible for compensating for any ill effects of lagging,

leaving the nonlinear convergence (including q-quadratic local convergence) intact. Algorithmically, this

requires many more residual evaluations (one per inner linear iteration) but potentially many fewer matrix

assemblies and preconditioner setups. The downside is that increased lagging reduces the effectiveness of

the preconditioner, leading to many more linear iterations.

2.2. Quasi-Newton

The quasi-Newton update is constructed as

xi+1 = xi − λJ̃−1i F(xi), (6)

where J̃ is the sum or product of some set of low-rank updates that approximates J from the Newton

method. For small problems, the Jacobian is sometimes updated by adding the dense low-rank update

directly; but in large-scale problems where sparsity must be preserved, the rank-one updates are stored as a

vector pairs. Limited memory variants allow for the inverse of the approximate Jacobian to be applied by

using the stored previous iterates. Define si = xi − xi−1 and zi = F(xi)− F(xi−1). The rank-one

Broyden update [15], has a compact recursive application as [16,3]

J̃−1i = (I+
(si − J̃−1i−1zis

>
i )

s>i J̃
−1
i−1zi

)J̃−1i−1. (7)

A popular symmetric rank-two update procedure, Broyden-Fletcher-Goldfarb-Shanno (BFGS), has a

multiplicative limited memory form (L-BFGS) [17],

J̃−1i = (I− siz
>
i

s>i zi
)J̃−1i−1(I−

zis
>
i

s>i zi
) +

sis
>
i

s>i zi
, (8)

which can be applied quickly in a recursive fashion given storage of sj and zj for j = i, . . . , i− k. For

L-BFGS with periodic restart, we take k < m as the number of steps since the last restart. We must then

choose a method for computing the approximate starting Jacobian inverse J̃−1i−k. In optimization, this is

mostly frequently some diagonal scaling, since the inverse of the true (dense) Jacobian is inaccessible.

2.3. Line Search

When used in conjunction with inexact Newton, a simple backtracking (bt) line search featuring cubic

interpolation [18] guards against divergence. In the case of nonlinear PDEs, the line search approximately
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minimizes the norm of the residual, defaulting to the full step when it is acceptable. However, minimizing

the norm of the residual may be far less effective than minimizing some PDE-specific functional, which

may be unavailable because of implementation or formulation details.

Suppose there exists an energy minimization formulation of the nonlinear PDE. Define energy E(x) and

residual F(x)[i] = ∂E(x)
∂x[i] . In this case, we have an effective strategy for the line search that does not

require the (potentially repeated) explicit evaluation of E. Suppose that we are given a descent direction y

(implying that y>F(x) < 0) and that we discover λ > 0 such that

y>F(x+ λy) = 0.

This implies

y>F(x+ λy) =
dE(x+ λy)

dλ
= 0,

which is equivalent to locally minimizing E(x+ λy) in λ. This can also be related to the second Wolfe

condition [19]. Such a point may be approximately discovered iteratively by a secant method,

λi+1 = λi −
y>F(x+ λiy)(λi − λi−1)

y>F(x+ λiy)− y>F(x+ λi−1y)
, (9)

defined as a procedure starting from some acceptable guess λ0. In the case of y generated by an inexact

Newton’s method, an acceptable initial guess is λ0 = 1. This type of procedure has been

recommended [20] for nonlinear conjugate gradient methods. We refer to this as the critical point (cp) line

search and use it in most of our experiments. It requires a minimum of two function evaluations per

nonlinear iteration, compared with the single evaluation needed for a standard backtracking line search

(when accepting full steps).

3. Lagged-Jacobian Newton with Rank-One Updates

If we take J̃−1i−k = J−1(xi−k), the L-BFGS application becomes

J̃−1i = (I−siz
>
i

s>i zi
)...(I−

si−k+1z
>
i−k+1

s>i−k+1zi−k+1
)(J−1(xi−k)(I−

zi−k+1s
>
i−k

s>i−k+1zi−k+1
)+

si−k+1s
>
i−k+1

s>i−k+1zi−k+1
)...(I−zis

>
i

s>i zi
))+

sis
>
i

s>i zi
.

(10)

Note that k steps ago, we assembled J(xi−k) and set up a preconditioner so as to be able to apply

J(xi−k)
−1 efficiently using a Krylov method, so the computational cost is effectively like the lagged

Jacobian from Section 2.1 plus some vector work proportional to the restart length m (similar to GMRES).

For the PDE problems considered herein, we either will apply J(xi−k)
−1 using a preconditioned Krylov

method or will apply an approximation J̃(xi−k)
−1 such as one V-cycle of linear multigrid constructed from

J(xi−k).
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4. Numerical Results

We apply quasi-Newton, lagged Newton, and lagged JFNK to a nonlinear elliptic system in glaciology and

large-deformation elasticity. Our implementation has been developed in the PETSc library and will be

available in version 3.4 (a preliminary implementation is available in version 3.3). All methods reuse the

same algorithmic components and require only run-time options, with no modifications to user code. For

example, the L-BFGS algorithm is obtained by using

-snes_type qn -snes_qn_restart_type periodic -snes_qn_scale_type jacobian,

with the linear solve to approximate the inverse of the lagged Jacobian using KSP, as with the standard

Newton-Krylov methods.

For each class of methods, the user chooses what matrix to assemble and what algorithm to use for an

approximate linear solve. For consistency, our examples assemble an exact Jacobian and use V-cycles of a

multigrid algorithm to implement the approximate solve, combined with GMRES when an accurate solve

is desired.

For each problem and solution method, we count the number of residual evaluations, Jacobian evaluations

(equal to preconditioner setups), and preconditioner applications. The user chooses a restart parameter m

based on the relative cost of Jacobian assembly and preconditioner setup to residual evaluation and

preconditioner application. The combined choice of nonlinear solver class, restart parameter, and

preconditioner allows work to be shifted between these computational stages.

4.1. Hydrostatic Ice-Sheet Flow

We consider the hydrostatic model for ice-sheet flow using the discretization and geometric multigrid

preconditioners presented in [21]; see src/snes/examples/tutorials/ex48.c in PETSc. This model for viscous

flow with shear-thinning power-law rheology is posed in 3D but has been partially vertically integrated by

using incompressibility to eliminate pressure and vertical velocity, leaving only the horizontal components

of velocity (u, v) as state variables. The hydrostatic model solves conservation of momentum

−∇
[
η

(
4ux + 2vy uy + vx uz
uy + vx 2ux + 4vy vz

)]
+ ρg∇s = 0, (11)

where

η(γ) =
B

2

(
ε2/2 + γ

) 1−n
2n (12)

is the nonlinear effective viscosity with regularizing strain rate ε and

γ = u2x + v2y + uxvy +
1

4
(uy + vx)

2 +
1

4
u2z +

1

4
v2z

is the second invariant of the strain rate tensor. Finite element discretization of this system yields a

symmetric positive definite Newton linearization. The regularizing strain rate ε is required in order to
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prevent the equations from becoming singular at zero-stress points in the domain; and although a

corresponding convex energy functional exists, it is no longer explicitly available in the regularized

equations (see [22,23] for other approaches).

We consider the ISMIP-HOM [24] test C at L = 10 km with an added nonlinear slip boundary condition,

in which the nonlinearity is globally activated and is notoriously difficult to converge by using Picard

iteration [25], which is the most common approach used by the glaciology community. Two geometric

coarse levels are used in the multigrid V-cycle, with rediscretized coarse grid operators and standard

bilinear interpolation and restriction. Zero-fill incomplete Cholesky is used as a smoother to overcome

anisotropy caused by the grid.

Table I shows the cost measures for each method on a 32× 32× 21 element domain. We observe that the

critical point line search is much more effective than the backtracking line search and that quasi-Newton

methods are slightly more effective than lagged Newton. For this model, a multigrid V-cycle costs about

the same as function evaluation, but Jacobian assembly is approximately four times more expensive.

Although [21] demonstrates that grid sequencing is effective for globalizing this problem, it requires

rediscretization of the nonlinear problem on each level. In comparison, the methods shown in Table I are

applicable with a single-level discretization.

4.2. Large-Deformation Elasticity

We consider large-deformation elasticity discretized using a continuous finite element discretization based

on high-order Q3 elements and a St. Venant-Kirchoff stress model. The solution is chosen to be

u =

 cos(ax) exp(by) · z + sin(cz)
sin(ax) tanh(by) + x cosh(cz)

exp(ax) sinh(by) + y log
(
1 + (cz)2

)
 (13)

on the domain (−1, 1)3, with a forcing term manufactured symbolically so that this is an exact solution.

This deformation is large enough that the system is nonconvex at many of the iterates in the nonlinear

solve. Dirichlet displacement boundary conditions are used on the exterior of the cube. We use one V-cycle

of BoomerAMG [26] as a preconditioner. Cost measures are shown in Table II. The high-order elements

used for this problem lead to relatively expensive Jacobian assembly and preconditioner setup, combining

to make evaluating the Jacobian more than 30 times as expensive as either residual evaluation or

preconditioner application. L-BFGS is found to be most effective at reducing Jacobian work and is

relatively tolerant of inexact linear solves. Lagging the preconditioner in JFNK causes the number of linear

iterations to increase uncontrollably.

5. Discussion

Quasi-Newton methods combined with quality line searches can be used to shift the computational burden

from Jacobian assembly and preconditioner setup to residual evaluation and preconditioner application.
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Table I. Cost measures for quasi-Newton and lagged Newton methods applied to the hydrostatic ice sheet
flow problem. Divergence is indicated with “—”, demonstrating the limitations of the backtracking line
search (bt) compared to the critical point line search (cp). For each lagging scheme, we compare a single
V-cycle (preonly) to a linear solve with relative tolerance 10−5. The number of iterations is for comparison,
but the work is better quantified by the number of residual evaluations, Jacobian evaluations (coincides with
preconditioner setup), and preconditioner applications (V-cycles).

Method Lag LS Linear Solve Iterations Residual Jacobian Preconditioner

LBFGS 3 cp preonly 15 31 4 15
LBFGS 3 cp 10−5 10 21 3 68
LBFGS 6 cp preonly 16 33 3 16
LBFGS 6 cp 10−5 15 31 3 100
Broyden 3 cp preonly 14 29 4 14
Broyden 3 cp 10−5 12 25 3 76
Broyden 6 cp preonly 18 37 3 18
Broyden 6 cp 10−5 15 31 3 88
Newton 0 bt preonly 23 31 23 23
Newton 0 bt 10−5 12 21 12 66
Newton 0 cp preonly 14 29 14 14
Newton 0 cp 10−5 6 13 6 38
Newton 1 bt preonly — — — —
Newton 1 bt 10−5 — — — —
Newton 1 cp preonly 14 29 7 14
Newton 1 cp 10−5 9 19 5 59
Newton 3 cp preonly 15 31 4 15
Newton 3 cp 10−5 12 25 3 74
Newton 6 cp preonly 18 37 3 18
Newton 6 cp 10−5 15 31 3 87
JFNK 0 cp preonly 14 43 14 14
JFNK 0 cp 10−5 6 83 6 38
JFNK 1 cp preonly 15 46 8 15
JFNK 1 cp 10−5 6 101 3 47
JFNK 3 cp preonly 16 49 4 16
JFNK 3 cp 10−5 6 155 2 74
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Table II. Cost measures for quasi-Newton and lagged Newton methods applied to large-deformation elastic-
ity. For each lagging scheme, we compare a single V-cycle (preonly) to a linear solve with relative tolerance
10−5. The number of iterations is for comparison, but the work is better quantified by the number of resid-
ual evaluations, Jacobian evaluations (coincides with preconditioner setup), and preconditioner applications
(V-cycles).

Method Lag LS Linear Solve Iterations Residual Jacobian Preconditioner

LBFGS 3 cp preonly 18 37 5 18
LBFGS 3 cp 10−5 21 43 6 173
LBFGS 6 cp preonly 24 49 4 24
LBFGS 6 cp 10−5 30 61 5 266
Newton 0 bt preonly 13 14 13 13
Newton 0 bt 10−5 10 11 10 77
Newton 0 cp preonly 11 23 11 11
Newton 0 cp 10−5 8 17 8 60
Newton 1 bt preonly 16 21 8 16
Newton 1 bt 10−5 17 23 9 128
Newton 1 cp preonly 15 31 8 15
Newton 1 cp 10−5 13 27 7 103
Newton 3 cp preonly 23 47 6 23
Newton 3 cp 10−5 22 45 6 179
Newton 6 cp preonly 36 73 6 36
Newton 6 cp 10−5 35 71 5 294
JFNK 0 cp preonly 11 23 11 11
JFNK 0 cp 10−5 8 69 8 60
JFNK 1 cp preonly 15 31 8 15
JFNK 1 cp 10−5 7 2835 4 2827
JFNK 3 cp preonly 23 47 6 23
JFNK 3 cp 10−5 7 3143 2 3135
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These methods were shown to be more robust than conventional lagged Newton methods and significantly

reduce the required number of required iterations. This improved performance is obtained with only a

small amount of vector work to store and apply the low-rank updates. These methods, available within

PETSc using only run-time options, are likely to benefit applications solving nonlinear elliptic equations in

cases where either Jacobian assembly or preconditioner setup is expensive. This situation arises with

high-order and exotic spatial discretizations, as well as with sparse direct and adaptive multilevel [27]

solvers. As with Newton methods, given a scalable preconditioner such as multigrid, the nonlinear

convergence rate is independent of grid resolution.
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