
Design of a Multithreaded Barnes-Hut
Algorithm for Multicore Clusters

Technical Report

Junchao Zhang and Babak Behzad
Department of Computer Science, University of Illinois

at Urbana-Champaign
{jczhang, bbehza2}@illinois.edu

Marc Snir
Department of Computer Science, University of Illinois

at Urbana-Champaign and MCS Division, Argonne
National Laboratory

snir@anl.gov

Abstract
We describe in this paper an implementation of the Barnes-Hut al-
gorithm on multicore clusters. Based on a partitioned global ad-
dress space (PGAS) library, the design integrates intranode mul-
tithreading and internode one-sided communication, exemplifying
a PGAS + X programming style. Within a node, the computation
is decomposed into tasks (subtasks), and multitasking is used to
hide network latency. We study the tradeoffs between locality in
private caches and locality in shared caches and bring into the de-
sign the insights gained. As a result, our implementation consumes
less memory per core, invokes less internode communication, and
enjoys better load balancing strategies. The final code achieves up
to 41% performance improvement over a non-multithreaded coun-
terpart from our previous work. Through detailed comparison, we
also show its advantage over other well-known Barnes-Hut imple-
mentations, in both programming complexity and performance.

Keywords Barnes-Hut, n-body, PGAS, cluster, multicore

1. Introduction
The current evolution of supercomputers exhibits several important
trends [11, 26].
• The number of cores per node keeps increasing.
• The amount of memory per core is decreasing.
• One-sided communication (rDMA) is increasingly well sup-

ported on the interconnection networks.

The use of one-sided communication has several advantages. Such
communication can have less software overhead, since code is
executed on only one of the two communicating nodes; this results
in lower latency, especially for short messages [25]. Also, it is
easier to code irregular applications with dynamic communication
patterns, using one-sided communication. In such an application,
the consumer of a variable often knows the location of that variable,
but the owner of the memory containing this variable may not
know who is the consumer. Libraries such as SHMEM [6], Global

[Copyright notice will appear here once ’preprint’ option is removed.]

Arrays (GA) [20] and PGAS languages such as UPC [27] or CAF
[13] use one-sided communication as their main communication
mechanism.

The natural idiom for irregular applications with dynamic com-
munication patterns is to use remote reads or get operations in or-
der to access remote data. In order to achieve good performance,
it is essential to hide the latency of the long round-trip of a remote
memory access. Similar to simultaneous or concurrent multithread-
ing in shared memory environments, such latency hiding is most
conveniently achieved by descheduling tasks that are blocked on a
remote access and reusing the core to run another, ready-to-execute
task. This requires low-overhead task scheduling. Low-overhead
task scheduling also enables efficient load balancing, ensuring that
all cores are used.

Often, multiple cores on a node will use the same shared struc-
tures; memory pressure can be alleviated by keeping only one copy
per node for such structures. In addition, codes such as the Barnes-
Hut algorithm exhibit significant reuse of remote values; it is ad-
vantageous to keep a local copy of data brought from remote nodes,
for possible reuse. Effectively, we use local memory as a software
managed cache for remote memory.

We demonstrate in this paper the use of these techniques in the
context of the Barnes-Hut (BH) algorithm. The main contributions
of this paper are the following.

• We give the first BH design that integrates intranode multi-
threading and internode one-sided communication and uses
multitasking to hide network latency.

• We study the interplay in BH between locality in private caches
and reuse in shared caches.

• We compare BH implementations done using distinct program-
ming models and discuss how they handle programming chal-
lenges on multicore clusters.

The rest of this paper is organized as follows. We describe the
basics of the BH algorithm in Section 2 and then give details of
our design in Section 3. In Section 4 we evaluate and analyze our
design. In Section 5 we compare our code with two other BH
implementations. Section 6 provides an overview of the library
we are designing. Section 7 surveys related work. We conclude in
Section 8 with a brief summary and look at future work.

2. Barnes-Hut Algorithm
The Barnes-Hut (BH) algorithm [5] is a fast algorithm for the n-
body problem, which simulates the evolution of a system of n
bodies (particles), where bodies apply forces on each other. A

1 2013/5/7

simulation consists of multiple time steps. In each time step forces
are computed and the bodies moved. A brute-force approach to this
problem leads to ⇥(n2

) complexity. To lower the complexity, BH
approximates the interaction of a body with a set of other bodies,
by representing the set with a point located at its center of mass.
The approximation is valid when the bodies in the set are “far
enough” from the first body—with “far enough” being formalized
as l/d < ✓, where l is the size of the cube containing the bodies in
the set, d is the distance from the body to the center of mass, and ✓
is a constant called the cell-opening criterion.

The BH algorithm partitions the 3D space hierarchically into
cells using an octree representation. The root of the octree rep-
resents the cell that contains all bodies. Each cell is recursively
divided into octants, until its number of bodies is below a fixed
threshold. To compute forces on one body, the procedure begins
with the root cell. If the current cell is far enough or contains only
one leaf body, then we compute force with it and stop there. Oth-
erwise, we open the cell and continue, recursively, with each of its
children. With this hierarchical approach, the BH algorithm reduces
the computation complexity to O(n log n) [5].

Load balancing and locality are two important issues in par-
allel implementations of the BH algorithm. Since the input body
distribution is usually nonuniform, each body interacts with a dif-
ferent number of cells. We cannot simply assign bodies to proces-
sors evenly. Also in BH, cells accessed during force computation
for one body are likely to be accessed again for a nearby body. In
systems with hierarchical memories, it is critical to allocate to one
processor bodies close to each other in order to exploit this locality.

A shared memory implementation of BH from the SPLASH-2
benchmark suite [30] handles the issues as follows. It assigns each
body a cost, which is the number of forces computed for this body.
Since body locations change slowly per time step, one can use costs
in the previous time step as estimates of costs in the current time
step. SPLASH-2 BH uses an algorithm called cost-zone to assign
bodies to threads. Octree leaves are split into p zones of consecutive
leaves of roughly equal total cost, where p is the number of threads.
Thread i picks bodies in the ith zone. A left-to-right traversal of the
octree leaves corresponds to an ordering of the bodies along a space
filling curve (SFC); we call this order SFC order [28]. Each thread
is allocated a segment from the curve.

In a previous work [31], we implemented BH in UPC [27] on
distributed memory, using one UPC thread per core. The imple-
mentation, which we call UPC BH from now on, inherited the ideas
from SPLASH-2. A time step in UPC BH includes four phases,
which are separated by barriers; each phase executes in parallel:

Build Octree: Threads build subtrees for subspaces assigned
to them and compute the center of mass of each cell. Then threads
hook subtrees together to form the global octree. For details, see
[31].

Partition Octree: Each thread is assigned an array of bodies,
according to the cost-zone algorithm.

Compute Forces: Threads compute forces for their bodies by
traversing the octree from the root, then update their body costs.
(See more details in Section 3.2.)

Advance Bodies: Threads advance their bodies by computing
new velocities, positions, and so on. They also compute the bound-
aries of the new root cell for the next time step.

The force computation phase, which performs O(n log n) op-
erations, usually dominates the performance; other phases perform
O(n) operations. This paper extends UPC BH, mainly in the force
computation phase.

3. Multithreaded BH Design
UPC BH is a porting of SPLASH-2 BH to UPC [27]. A naive port-
ing resulted in abysmal performance, but a sequence of optimiza-

tions resulted in dramatic improvement. In UPC BH, each core runs
a persistent UPC thread, so that the code took only limited advan-
tage of shared memory within nodes. This paper extends our pre-
vious work by using multithreading and multitasking within each
process, for better latency hiding and load balancing and less off-
node communication and memory use. Ideally, we would have im-
plemented the new code in UPC again. Since UPC is based on C,
however, it lacks support for generic programming, which is needed
for us to abstract common services that are also useful for other ap-
plications. We therefore designed PPL, a C++ template library atop
the Berkeley UPC runtime [1], and reimplemented BH in PPL. We
refer to this implementation as PPL BH. For the time being, it is
enough to know that PPL has the same memory model as UPC:
Each process in PPL has its heap divided into two parts: a private
heap and a local part of a global heap. While the private heap can
be accessed only by threads local to the process, the global heap
part can be accessed by any thread. Accesses to the local part of
the global heap is much faster than accesses to remote parts. PPL
has a generic global pointer structure that can point to any remote
memory locations. Dereferencing global pointers may require re-
mote reads. We use global pointers for the links in the BH octree.
(We talk more about PPL in Section 6.)

In this section, we first introduce our test platform and test
methodology, which will be used in experiments in this section and
thereafter. Then we give an overview of the force computation in
UPC BH for comparison. After that we describe PPL BH force
computation in detail. At the end of this section, we study how to
achieve both load balance and cache efficiency within a node.

3.1 Test Platform and Test Methodology
We did all experiments on an x86 Linux InfiniBand cluster. Each
compute node has two hex-core Intel Xeon 5650 CPUs running at
2.67 GHz. The six cores on a CPU have a private 32 KB L1 data
cache and a private 256 KB L2 cache but share a 12 MB L3 cache.
We used gcc4.6.3 as our C/C++ compiler and used the runtime
of Berkeley UPC 2.14.2 as the communication library below PPL.
The input bodies were generated by the Plummer model [2] as in
SPLASH-2 BH. The octree was built with each leaf having at most
10 bodies. We ran 22 time steps and timed only the last 20 steps,
with a time step = 0.025 seconds. All computations were done in
double precision. The number of bodies n and the cell opening
criterion ✓ were varied. Since the focus of this paper is the force
computation phase, which consumes most of the execution time,
we report only average time per step of this phase.

3.2 UPC BH Force Computation
In UPC BH, there is one UPC thread per core in a multicore
node. The octree is distributed among threads. For load balancing,
bodies are partitioned across all UPC threads using the cost-zone
algorithm; there is no distinction between threads that belong to the
same process and threads that belong to distinct processes. Every
UPC thread is assigned an array of bodies sorted in SFC order
with equal total cost. Two important optimizations in UPC BH are
caching and computation/communication overlapping. Each thread
caches cells visited, as these are likely to be reused to compute
forces for subsequent bodies. The cached cells form a local partial
octree, which is a snapshot of the global octree. We use pointer
swizzling to have child pointers in a cached cell point to either its
children in the original octree or cached copies of these children,
depending on whether the children have been cached or not. The
cached data is discarded at the end of the force computation phase.
UPC threads do not share the cached data even when they are on the
same node. If multiple threads on a node need the same off-node
cells, they fetch them separately and communicate multiple times.

2 2013/5/7

To overlap computation and communication, UPC BH takes
advantage of the two-level parallelism in BH: Force computations
for different bodies are independent and can be done in parallel;
interactions between a body and different cells are also independent
and can be done in parallel except that all forces acting on one body
need to be summed together. At the beginning, each thread caches
the octree root locally. Each thread maintains a work list of bodies.
To compute forces for a body, a thread traverses the octree from
the cached root. If a cell needs to be opened and its children are
not cached, the thread will invoke a nonblocking communication
to fetch the children; meanwhile the thread traverses other paths
in the octree or just picks up another body from the work list.
Threads periodically check pending nonblocking communications
to complete them. For completed ones, threads resume interactions
with the cells just fetched back.

3.3 PPL BH Force Computation
To make our description easier, we define some terms first. A cell
is localized if its children have all been cached. Each cell has a
localized flag to indicate whether it is localized or not; this flag
is initially cleared. To localize a cell, we fetch its children, swiz-
zle its global child pointers to local pointers pointing to the cached
children, and then set the localized flag. The localization is a
split-phase operation that includes making a nonblocking commu-
nication request and completing the request. Hence, we also add
a requested flag in each cell to indicate that the cell has been
requested but is not yet localized; this prevents making multiple re-
quests for the same cell. The requested flags of all cells are initially
cleared, too.

A task consists of the tree traversal and force computation for
one body. During the traversal, if a cell needs to be opened but
is not localized, we generate a subtask to handle the interactions
between the body and the subtree rooted at that cell. Thanks to
parallelisms in force computation, all tasks and subtasks can be
executed in parallel, and synchronization is needed only to properly
add together the forces acting on one body. Our objective is to
orchestrate tasks and subtasks efficiently.

In PPL BH, usually there is one process per node. Upon en-
tering the force computation phase, each process gets an array of
bodies through the cost-zone algorithm and spawns one thread per
core. This gives us the opportunity to allocate tasks and subtasks
dynamically to threads and to share cached copies of cells across
all threads However, dynamic allocation and sharing can lead to in-
creased synchronization overheads and reduced locality. (We study
these tradeoffs in Section 3.4.) The general rule is that threads take
bodies from the array, generate tasks, and execute them. If a thread
is blocked in a task’s execution by an unlocalized cell during tree
traversal, it will generate a subtask to encapsulate the context and
continue the traversal along other paths if possible; otherwise it will
generate new tasks and execute them. Although subtasks from the
same task can be executed simultaneously by distinct threads, we
do not do so; instead, we execute a task and all its descendant sub-
tasks on the same thread. The reason is that the large number of
bodies is sufficient to ensure that threads are always busy; more-
over, this choice avoids the need to synchronize reductions across
multiple threads.

PPL BH has the same optimizations as does UPC BH: caching
and computation/communication overlapping. We considered three
ways of splitting work across threads, as shown in Figure 3.1.

(1) Equal & Centralized (Figure 3.1(a)): In the first approach,
all threads are equally involved in computation and communica-
tion. As shown, all threads share a map (c2s_map), which stores,
for each cell, the list of subtasks blocked on an open request for
that cell. The map acts as a hub for subtask registering and re-
leasing. When a thread wants to open an unlocalized cell, it gen-

erates a subtask and registers it in the map under that cell. If the
cell is not requested, the thread also makes a nonblocking re-
quest to fetch children of the cell and puts a handle to the re-
quest in a list (pending_requests). Threads periodically check
the list to see whether any request is completed. For completed
requests, they will push registered subtasks to runnable subtask
queues (runnable_subtaskq) on threads. Each subtask carries a
thread id (tid) that indicates the thread responsible for executing
the subtask—hence the queue the subtask joins when it becomes
runnable. Threads query their own runnable_subtaskq when-
ever the task they currently execute becomes blocked.

The biggest problem of this approach is synchronization. First,
accesses to the localized flags and the requested flags must be
atomic so that all threads have a consistent view of the cached
octree. Second, all data structures, such as c2s_map and the
pending_requests queues, must be concurrent. The overall over-
head could be high even with an efficient implementation of these
data structures.

(2) Biased & Centralized (Figure 3.1(b)): In the second ap-
proach, one thread is designated as the communication thread
(cthread), with the remaining as worker threads (wthreads). All
threads share the concurrent map (c2s_map) as in the first ap-
proach. Only the cthread is in charge of communication. Thus,
communication management is easier, and data structures such
as pending_requests need not be concurrent anymore. Every
wthread has a runnable subtask queue. When a wthread wants to
localize a cell and finds it was already requested, the wthread reg-
isters a subtask for the cell in c2s_map. Otherwise, if the cell was
not requested previously, the wthread will also mark the cell as re-
quested and push it in a concurrent queue (unlocalized_cellq).
The operation of marking cells as requested needs not be atomic.
The same cell can be pushed into unlocalized_cellq multiple
times by different threads.

The cthread pops cells from unlocalized_cellq, checks and
updates their requested flags again to remove the redundancy,
and issues only one request per cell. The cthread also checks pend-
ing requests. If a request is completed, it marks the corresponding
cell as localized, looks up c2s_map, pushes subtasks registered
under the cell back to the queues (runnable_subtaskq) of their
owner wthreads, then deletes the entry in c2s_map. Each subtask
has a worker id (wid) so that the cthread knows which queue to
choose. The cthread and wthreads must be properly synchronized
if they are operating on the same entry in c2s_map. For example,
when a cell in c2s_map was deleted by the cthread, no wthread
should have chance to insert it again. In this approach, every
runnable_subtaskq is now a single-producer single-consumer
(SPSC) queue while unlocalized_cellq is a multiproducer
single-consumer (MPSC) queue.

This approach is similar to thread scheduling in an operating
system: Multiple threads can wait for a same signal. Once the signal
arrives, all threads registered under this signal are woken up.

(3) Biased & Distributed (Figure 3.1(c)): This approach has the
same cthread and wthreads as in the second approach. But this time
the cell-to-subtask map (c2s_map) is distributed among threads
and is not concurrent anymore. If a wthread wants to localize a cell,
it looks up its private c2s_map to see whether the cell has already
been requested by itself. If so, it just registers the subtask in its map;
otherwise, it also pushes the cell along with a worker id (wid) into a
concurrent queue (unlocalized_cellq). An unlocalized cell may
be pushed into the queue multiple times by different threads. But
the cthread makes only one communication request for each cell.
The cthread uses a private map (c2w_map) to map cells to wthreads
that have requested them. The cthread manages communication.
When a request is completed, it marks the cell as localized and
pushes it back to the wthreads’ queue (localized_cellq).

3 2013/5/7

cell subtask
...

cell

<cell, wid> <cell, wid>

cell ... cell

cell
...

cell

wid

localized_cellq

c2s_map
...

...

wthread 1

...

unlocalized_cellq

c2w_map

...

...

wthread n-1

cthread

cell cell

wthread 1

unlocalized_cellq

c2s_map

...

cthread

wthread n-1

...

<handle,cell>

pending_requests

<handle,cell>

<handle,cell>
...

subtask ...
runnable_subtaskq

thread 1

c2s_map

subtask

thread n

...
<handle,cell>

pending_requests

<handle,cell>

<handle,cell>

...

<handle,cell>

pending_requests

<handle,cell>

<handle,cell>

...

cell
...

cell

<subtask,tid>

...

(a) Equal & Centralized (b) Biased & Centralized (c) Biased & Distributed

... subtask ...
runnable_subtaskq

subtask subtask ...
runnable_subtaskq

subtask...

...cell
...

cell

<subtask,tid>

...

cell subtask
...

cell

cell ... cell
localized_cellq

c2s_map
...

...
subtask ...

runnable_subtaskq
subtask

Figure 3.1. Data structures used in the three approaches. Shaded structures are accessed concurrently.

On the other side, wthreads pop cells from their queue, look
up their map, and execute subtasks registered under the cells. Note
that accesses to the localized flags of cells need not to be syn-
chronized between the cthread and wthreads. If the cthread set the
localized flag of a cell and the new value is not immediately ob-
served by a wthread, the wthread may superfluously push the cell
into unlocalized_cellq. When the cthread pops up the cell, it
will check the cell’s flag. Of course, the cthread will find the flag is
true because it was set by itself before. If the flag is set, the cthread
just rebounds the cell back to its owner wthread. Sooner or later,
the new value will be seen by wthreads, thanks to the hardware
cache coherence protocol. It turns out that all synchronizations in
this approach can be done through either SPSC queues or MPSC
queues, which can be implemented efficiently by using lock-free
data structures [12].

In our code, all maps are implemented as hash maps. We use
pointers to cells as keys for the hash maps, which we found to be
efficient in practice.

3.4 Intranode Task Scheduling
We now study how to schedule tasks within a node, in other words,
how to distribute bodies to threads, with the aim of achieving
both load balance and cache efficiency. A distinguishing feature
of multicore CPUs is that they usually have their last level cache
shared among cores on the chip. Hence, besides private cache
efficiency, it is interesting to know whether we can improve shared
cache efficiency by synergistic task scheduling.

There are two common distribution strategies to start with:
cyclic distribution and block distribution. In the former, body i
will be assigned to core i mod p, where i is the body index in
the body array and p is the number of cores. In the latter, each
core is assigned a block of consecutive bodies from the body array.
The locality in BH says that cells visited by one body are very
likely to be visited again by nearby bodies. We did the following
experiments to measure the locality in these two distributions.

We ran UPC BH with n = 1M, ✓ = 0.5 and 16 processes
(threads in UPC terms), and examined process 8 (P8) in the fourth
time step. The process was assigned about 69K bodies. We tagged
cells visited during force computation for the first body. Then we
found out how many of them were visited again by the second body,
the third body, and so on and calculated a sharing ratio for each
body with respect to the first body. The result is shown in Figure
3.2, which also includes a zoom-in picture for the first 100 bodies
on P8. We can see that BH has very good locality when SFC order is
used. For example, the second body shares about 90% of the cells

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sh
ar
in
g�
ra
ti
o

Body�index

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90

Figure 3.2. Sharing ratio for the 69K bodies on P8.

the first body visited. Even the 100th body still shares more than
50% with the first body. The sharing ratio decreases with distance,
but the trend is not strict. The reason is that distance in a 1D SFC
does not strictly correspond to distance in a 3D space. The curve
does not hit zero because top cells of the octree are visited by all
bodies. So there is still a good sharing (20–40%) even at distant
parts of the curve. Curves on other processes have similar shapes,
so we do not show them here.

Using the same concept, we studied sharing between blocks.
The configuration was the same. But this time we cut the 69K
bodies into 12 blocks of equal total costs (note that we have 12
cores per node). We tagged cells visited by the first block of bodies
and calculated the sharing ratio of the second block, the third block,
and so on with respect to the first block. Figure 3.3 shows the block-
sharing ratio curves measured on processes 7 and 8. Compared with
Figure 3.2, the ratio drops greatly. Hence, blocks of bodies will
touch different bottom parts of the octree so that they have less
sharing than before. We can also notice that the ratio varies a lot
between different processes, which indicates different regions of
the space have distinct sharing property. But generally the ratio is
low.

The above experiments suggest that block distribution should
benefit L1 cache, since computations on successive bodies will
reuse the same cells. By the same token, cyclic distribution should

4 2013/5/7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Sh
ar
in
g�
ra
ti
o

Block�id

Process�7
Process�8

Figure 3.3. Block sharing ratio on P7 and P8.

Table 1. Average traversal length and octree size in number of cells
n 1M 2M 4M 8M 16M

Traversal

length

✓=0.5 1973 2074 2178 2280 2375

✓=0.7 853 892 928 962 996

Octree size 1.4 ⇥ 106 2.7 ⇥ 106 5.4 ⇥ 106 1.1 ⇥ 107 2.2 ⇥ 107

benefit L3 cache, since cached cells are likely to be accessed by
all threads in a small time interval. To test this hypothesis, we
modified SPLASH-2 BH (itself uses block distribution), added
cyclic distribution, and ran it with 6 threads on one CPU of our
platform. We bound threads to cores and did cache profiling with
PAPI [19]. Table 3 shows the miss rates for both cases. Note that
the table uses local miss rates at each level, defined as the miss
count of this cache divided by the reference count of this cache. We
took the average miss rate on six cores. Surprisingly, no significant
differences between cyclic distribution and block distribution can
be seen in either performance or miss rate. L1 miss rates of both
are very high, while L3 miss rates of both are fairly low. (In the
table, L2 miss rates are high because most of the locality in L2 is
absorbed by L1, which makes L2 miss rates less interesting here.)

To understand this, in the fourth time step, we measured the
octree traversal length per body and the total octree size with
various n and ✓, in number of cells. The traversal length of a body
is the number of cells visited by the body during its traversal. Table
1 shows the results.

From Table 1 we can see that, as expected, the tree size is
proportional to the number of bodies, while the traversal length
is proportional to the log of the number of bodies. In the code,
the average size of a cell or body is about two cache lines (i.e.,
128 bytes, including fields for 3D positions, mass, child pointers,
etc.). So, with n = 1M, ✓ = 0.5, the average traversal size is
about 246 KB. The number explains why in the previous block
distribution test the L1 miss rate was high: since the size of a
traversal exceeds L1 capacity (32 KB), accesses to cells in the
second traversal generate L1 misses. It also explains why the two
experiments have nearly identical L3 miss rates: since the size of
a traversal is much smaller than that of L3, it has enough capacity
to cache simultaneously many successive traversals of each thread,
even if there is less sharing between threads. So we can conjecture
that the benefit of cache sharing will show up only when the size of
a single traversal approaches the L3 quota per core (i.e., 2 MB in
our case). We could increase n to meet the condition, but n would be
an incredibly large number. Instead, we decreased ✓. Table 2 shows
the result for n = 1M , ✓=0.2 on one CPU. (Note that ✓=0.2 is not a
realistic choice for BH; we use it only to test the conjecture.) In this
test, the average traversal length is about 21,260 cells, or 2.6 MB.
Now we can observe a big difference between cyclic distribution
and block distribution: the former’s L3 miss rate is 1.25%, while
the latter’s is 15.93%. That results in a big performance difference,
as also shown in Table 2.

Table 2. Performance when traversal size > L3, n = 1M, ✓ = 0.2
Time(s) L1 Miss L2 Miss L3 Miss

Cyclic 108.88 7.33% 53.32% 1.25%
Block 142.36 6.91% 56.66% 15.93%

Table 3. Performance when traversal size < L3, n = 1M, ✓ = 0.5
Time(s) L1 Miss L2 Miss L3 Miss

Cyclic w/o SFC 12.66 8.19% 76.77% 7.65%
Cyclic 10.59 8.24% 69.73% 0.14%
Block 10.84 8.23% 69.46% 0.14%
Block w/ Tiling 8.28 0.20% 74.14% 6.36%

These experiments suggest that with reasonable input parame-
ters and hardware, it is not important to exploit cache sharing on
multicores in BH. In contrast, the important thing is to improve
L1 efficiency. To verify that conclusion, we implemented the tiling
technique in [14] in SPLASH-2 BH. Block distribution is still used,
but each thread now takes a tile of bodies at a time from its block.
When visiting a cell, bodies in the tile will interact in turn with that
cell. Some bodies may need to open the cell„ while others may not.
Therefore, we need to dynamically mask member bodies in a tile.
As a result, the octree is traversed only once for all bodies in a tile.
In this way, when a cell is brought into L1 by one body, it will be
reused by other bodies in the same tile who need it. As we saw in
Figure 3.2, the reuse probability is high. Row “Block w/ Tiling” in
Table 3 shows the result with a tile size of 128. We can see the dra-
matic L1 miss reduction and performance improvement. Note that
the L3 miss rate seems high after tiling. The reason is that the L3
reference count drops greatly (not shown in the table). In reality, the
L3 miss count did not increase much. We tried different tile sizes
and found that the performance is not sensitive to size when it is in
range of 64 to 10K. If bigger than that, the tile itself will overflow
the L1, lowering performance. We therefore choose a tile size of
128 hereafter. Table 3 has a row “Cyclic w/o SFC,” which is also
interesting here. In this case, we used cyclic distribution, but bodies
in the input array were randomly ordered. We see a high L3 miss
rate and degraded performance, because the BH locality was not
respected. Different parts of the octree are now randomly touched
by unrelated bodies, resulting in a much bigger memory footprint
in L3 than before.

We now see that we should increase the task size in PPL BH.
Fortunately, doing so requires only small changes in the algorithms
described in Section 3.3. Now a task computes forces for a tile
of bodies. A task has a bit mask to indicate which bodies need
to interact with a cell. When a body in a tile needs to open an
unlocalized cell, the task generates a subtask and relay, the bit mask
to it, so that when the subtask is resumed, it knows which bodies to
pick up.

Note that the distributions we discussed are static in the sense
that bodies are assigned to threads before force computation starts.
This approach is fine for the shared-memory SPLASH-2 BH but
not good for the distributed-memory PPL BH since, besides com-
putation, there is communication. With a static block distribu-
tion, different threads need different amount of remote data, result-
ing in load imbalance. To smooth this variation, we adopted dy-
namic scheduling in PPL BH. We tried two approaches similar to
OpenMP dynamic scheduling and guided scheduling for work shar-
ing loops [21]. In the former, worker threads request a fixed-sized
chunk of bodies from the body array, work on the chunk, then re-
quest another chunk until no bodies are left. In the latter, worker
threads request a chunk of bodies with length proportional to the
number of unassigned bodies divided by the number of worker

5 2013/5/7

threads. We chose guided since it shows a little better performance
than dynamic.

4. Evaluation and Analysis
In this section, we test and analyze PPL BH with the various multi-
threading approaches discussed in Section 3. Because of the obvi-
ous synchronization overhead in the Equal & Centralized approach
(we can see it even in the Biased & Centralized approach), we im-
plemented only the last two approaches. We quantitatively measure
benefits of PPL BH and then present its performance.

4.1 Comparison of the Two Biased Approaches
We tested PPL BH with the last two biased approaches with various
configurations. We note that the performance of the Biased & Cen-
tralized approach is 1.6 to 3.5 times worse than that of the Biased
& Distributed approach. Both use a data-driven style: subtasks be-
come runnable only when their requested data arrives. But the first
biased approach uses a centralized cell-to-subtask map: all subtasks
are registered in the map at the cthread, which notifies wthreads
which subtasks become runnable. In the second biased approach,
when a cell is localized, the cthread notifies the wthreads that have
requested the cell. Then those wthreads look up their private maps
to release subtasks depending on this cell. Although this approach
can result in the same cell being registered at multiple threads, it
reduces the pressure on the cthread, as the wthreads filter requests
for the same cell.

We did profiling with n = 1M, ✓ = 0.5 on 8 nodes. In the Bi-
ased & Centralized approach without tiling, on average dozens to
hundreds of subtasks from wthreads are going to be registered un-
der one cell in the cthread’s map; the maximal number is huge,
ranging from 8,000 to 31,000. In the Biased & Distributed ap-
proach, however, maximally 6 to 11 wthreads request the same
cell from the cthread simultaneously; on average, the number is 1.
Clearly, through distributed subtask management we saved much of
the traffic between the cthread and wthreads and thus achieve better
performance. With tiling, the number of tasks/subtasks decreases
so that the phenomenon is not that significant. The centralized still
lags, however, likely because of the synchronization overhead in
c2s_map (note that it is a concurrent map). Because of its supe-
rior performance, we will henceforth use PPL with the Biased &
Distributed approach.

4.2 Less Memory Consumption
The octree in UPC BH is distributed among threads. Each thread
has a local part of the octree (which we call the local tree). Local
trees are linked together by shared pointers. In force computation,
threads traverse the octree and cache visited cells. The part of the
octree visited during force computation for all bodies assigned to
a thread is called the thread’s locally essential tree (LET). Table
4 shows the average ratio of the LET size to local tree size while
varying n, ✓, and the number of threads.

Let us look at one configuration, namely, 16 nodes, each with 12
cores, for a total of 192 threads for UPC BH. With n = 1M, ✓ =

0.5, the ratio of LET size to local tree size is 3.58. In PPL BH,
however, we create only one process per node. Threads spawned by
a process share the same LET; this will be the same LET created
in UPC BH when one runs 1 thread per node, where the ratio
is 1.80. It means that PPL BH saves about half of the memory
consumed by cached remote cells by sharing the LET. By the same
reasoning, we see that for n = 1M, ✓ = 0.5, the percentages of
memory saved through multithreading with 32 nodes and 64 nodes
are (4.68 � 2.12)/4.68 = 55% and (6.37 � 2.58)/6.37 = 59%,
respectively. We could expect bigger savings when more cores are
put on a chip. From Table 4, we notice that when n increases, the

Table 4. Ratio of locally essential tree (LET) size to local tree size

No. of Threads
n = 1M n = 2M n = 4M

✓ = 0.5 ✓ = 0.7 ✓ = 0.5 ✓ = 0.7 ✓ = 0.5 ✓ = 0.7

16 (1x16) 1.80 1.43 1.65 1.37 1.51 1.29

32 (1x32) 2.12 1.59 1.91 1.49 1.69 1.38

64 (1x64) 2.58 1.81 2.21 1.64 1.92 1.49

192 (12x16) 3.58 2.28 2.90 1.96 2.42 1.73

384 (12x32) 4.68 2.79 3.64 2.30 2.91 1.96

768 (12x64) 6.37 3.54 4.76 2.81 3.66 2.30

Table 5. Percentage of off-node communication saved in PPL BH with
respect to UPC BH

No. of Nodes
n = 1M n = 2M n = 4M

✓ = 0.5 ✓ = 0.7 ✓ = 0.5 ✓ = 0.7 ✓ = 0.5 ✓ = 0.7

16 44% 33% 36% 22% 28% 13%
32 51% 42% 43% 32% 36% 25%
64 57% 49% 50% 40% 43% 32%

ratio decreases; with bigger ✓, which translates into less accuracy
and fewer cells opened, the ratio will also decrease.

4.3 Less Off-Node Communication
Each thread in UPC BH has its own LET, and the off-node remote
cells fetched by one thread will not be reused by other threads on
the same node. In PPL BH, this is not a problem anymore. We can
quantitatively measure the saving in communication. For example,
given 16 nodes and 12 cores per node, we run UPC BH with 192
threads. We distinguish on-node cells and off-node cells fetched
during force computation and sum the number of off-node cells
fetched by each thread. Then we run PPL BH on 16 nodes and
collect the same number. Comparing these two numbers, we can
know how big the saving is. Table 5 shows the savings on 16, 32,
and 64 nodes. For example, with n = 1M, ✓ = 0.5, and 64 nodes,
PPL BH saves about 57% of the off-node communication compared
with UPC BH. In strong scaling, with more nodes, the saving is
bigger; with other parameters fixed, increasing n or ✓ reduces the
saving.

4.4 Better Load Balancing
Since the force computation phase is synchronized between pro-
cesses, its execution time is determined by the longest process. As
we know, UPC BH inherited from the shared memory SPLASH-
2 BH code the cost-zone load-balancing algorithm. However,
this algorithm is computation-centric. On distributed memory the
need to access remote cells can disturb the balance. Because
of SFC ordering, boundary processes on a node usually require
more remote cells than do interior processes. Considering com-
putation/communication overlapping, the effect is hard to esti-
mate upfront and thus is better attacked by dynamic schedul-
ing enabled by multithreading. Let us look at an example. With
n = 4M, ✓ = 0.5 and 64 nodes, we measured the execution
time variation of the 12 threads, using the formula (MaxTime �
AverageT ime)/AverageT ime on each node. For UPC BH, it
ranges from 0.5% to 71.0%. For PPL BH, however, it ranges only
from 0.0% to 2.5%. Obviously, PPL BH achieves better intranode
load balancing.

6 2013/5/7

Ͳ30%

Ͳ20%

Ͳ10%

0%

10%

20%

30%

40%

50%

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Im
pr
ov
em

en
t�o

ve
r�U

PC
�B
H�
(%

)

Nodes�(ɽ=0.5)

PPL�BH�w/�tiling
PPL�BH�w/o�tiling
SPLASH2�BH

`

Ͳ20%

Ͳ10%

0%

10%

20%

30%

40%

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Im
pr
ov
em

en
t�o

ve
r�U

PC
�B
H�
(%

)

Nodes�(ɽ=0.7)

n=1M n=2M n=4M

Figure 4.1. Performance improvement over UPC BH.

1

2

4

8

16

32

64

1 2 4 8 16 32 64

Sp
e
e
d
u
p

Nodes

Linear
n=4M,�ɽ=0.5
n=2M,�ɽ=0.5
n=1M,�ɽ=0.5
n=4M,�ɽ=0.7
n=2M,�ɽ=0.7
n=1M,�ɽ=0.7

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8 16 32 64

C
o
m
p
u
ta
ti
o
n
�ti
m
e
�(s
e
co
n
d
s)

Nodes�(1M�bodies�per�node)

ɽ=0.5
ɽ=0.7

Figure 4.2. Strong scaling (left) and weak scaling (right) of PPL BH.

4.5 PPL BH Performance
We used our best UPC BH implementation as a baseline and com-
pared PPL BH with it. The performance improvement is shown in
Figure 4.1, which also includes SPLASH-2 BH’s performance on
one node. Surprisingly, UPC BH and PPL BH have much higher
single-node performance than does SPLASH-2 BH, even though
they perform extra operations. Note that we cache cells even if they
are in the local part of the octree. (This step is necessary because
otherwise accesses from remote processes to the local part would
read invalid swizzled pointers.) While caching the octree entails ad-
ditional memory copies, it reduces L1 misses, probably because of
the better memory layout. Thus, both UPC BH and PPL BH per-
form better than SPLASH-2 BH even without tiling. Also, PPL BH
significantly outperforms UPC BH. The improvement is larger for
higher node counts. For example, with n = 4M, ✓ = 0.5 and 64
nodes, we get the highest improvement, at 41%. We can also ob-
serve the trade-off between the benefits of multitasking and their
overhead, especially when the computation density degrades. For
example, with n = 1M, ✓ = 0.7 and 64 nodes, without tiling, PPL
BH degrades about 17%. From Table 1, we know that the average
cost of a body decreases by more than half when ✓ is changed from
0.5 to 0.7. With tiling, however, by having better locality and less
tasks, PPL BH’s performance goes up.

Figure 4.2 shows scaling of PPL BH with tiling. For strong
scaling, using performance of one node as baseline, at 64 nodes,
n = 4M , it achieves a speedup of 51, 38 for ✓ =0.5 and 0.7,
respectively. For weak scaling, we keep 1M bodies per node, and
the computation time increases logarithmically, as expected.

5. Comparison with Other BH Implementations
BH is a challenging application that has drawn much attention. It
is worth comparing implementations done in different program-
ming models and analyzing how they deal with critical program-
ming issues such as overlapping computation and communication,
balancing load, preserving locality, and using multicore nodes. In
this section, we compare PPL BH with two other codes, PEPC
and Charm++ BH, which are implemented in distinct programming
models. We describe and compare each with PPL BH and then sum-
marize.

5.1 PEPC
The Pretty Efficient Parallel Coulomb (PEPC) solver 1, written in
MPI + Fortran 2003, is a state-of-the-art parallel BH code devel-
oped and widely used at the Jülich Supercomputing Center. PEPC
was reported to be able to run with up to 2 billion particles and
256K cores [29]. PEPC has multiple front-ends for various disci-
plines. They all share the same kernel—a tree code implementing
the hashed octree scheme pioneered by Warren and Salmon [28].
The scheme computes unique keys for cells and particles according
to their positions and then stores them in a hash table. Particles are
weighted by their costs as in SPLASH-2 BH and sorted by their
keys, resulting in an SFC. The curve is then partitioned among pro-
cessors to achieve both locality and load balancing. MPI two-sided
communication is used to fetch remote cells during tree traversal.
The fetching process sends keys of parents to remote processes,
which compute child keys, look up their hash tables, and send the
children back. Processes do periodic synchronization to exchange
data. This approach is well explained in [28].

As multicore cluster emerges, PEPC ships a hybrid MPI +
Pthreads tree code [29], for the same reasons as we do in PPL BH.
Its design is similar to PPL BH but without one-sided communica-
tion, multitasking and tiling. Usually there is one process per CPU,
which spawns multiple worker threads while continuing as a com-
municator thread. Workers dynamically grab fixed-sized chunks of
particles from the list of particles assigned to this process and com-
pute forces for them. For each particle, workers maintains a todo
list, which contains locally available cells to interact with, and a
defer list, which contains unlocalized parent cells. Worker threads
push into queues at their communicator threads requests for child
cells. Communicator threads communicate with each other to sat-
isfy these requests. Once child cells are sent back, communicators
cache them locally and tags their parents in the hash table. Work-
ers have to periodically poll tags of cells on defer lists and try to
move their children to todo lists. PEPC allows overbooking cores.
Communicator threads can periodically yield cores to workers, a
function that is not implemented in PPL BH.

Hash keys in PEPC function as global pointers in PPL BH, ex-
cept that dereferencing keys needs hash table lookups and partici-
pation of remote threads. In PPL BH, with a global name space and
one-sided communication, these added complications are avoided,
resulting in less programming complexity and lower runtime over-
head. Also, PPL BH abstracts computation into tasks/subtasks and
uses a data-driven style task scheduling in contrast to tag polling in
PEPC.

5.2 Charm++ BH
Charm++ BH, written in Charm++ [17], is a parallel BH code
developed at the University of Illinois. We took the code from
the Charm++ benchmarks, which won the 2011 HPC Challenge
Class 2 [16]. Charm++ is a C++-based parallel programming sys-
tem that implements a programming model based on message-
driven, migratable objects. It features measurement-based auto-

1 http://www.fz-juelich.de/ias/jsc/pepc

7 2013/5/7

matic load balancing and automatic computation/communication
overlapping, through overdecomposition. The migratable objects
are called chares in Charm++. Chares are activated by remote invo-
cations and execute without preemption. Communication latency
is hidden by having multiple chares for each core. The Charm++
runtime can instrument chares, measure their execution time and
migrate them among processors to balance their loads.

Charm++ provides an SMP mode. When enabled, it spawns
multiple threads within a node (process, actually). Each thread be-
comes a processing element (PE) that handles a set of chares. Ide-
ally, Charm++ encourages programmers to think of chares as vir-
tual processors, so that the code is largely independent of the num-
ber of physical processors and the number of cores within each.
But, for certain optimizations (such as data sharing and message
reduction in BH), this ideal model is not feasible. Charm++ pro-
vides two language constructs: group and nodegroup, which are
collections of chares; there is one chare per PE in a group, and one
chare per process in a nodegroup. Lacking a global name space,
Charm++ BH adopts the hashed octree scheme again and shares its
weaknesses.

To lower runtime overhead, Charm++ BH creates a chare for a
group of particles instead of one. During tree-building, Charm++
BH creates an auxiliary space partitioning tree (similar to the top
part of an octree). Each leaf represents a subcube of the space,
enclosing a number of particles that is below a threshold set by
the user. Each such leaf is handled by one chare (named TreePiece,
or TP). There are usually dozens of TPs per PE. TPs build local
partial octrees with their particles and compute forces for them
by traversing the entire octree. During traversal, TPs may need
to access other TPs on the same node. To avoid this intranode
communication, Charm++ BH designs a nodegroup (TreeMerger).
When the SMP mode is enabled, it merges all local trees in a node
and forms a larger local octree, which is then shared by all TPs
in the node. TPs on the same PE may also need to access the
same remote cells. To save this duplicate internode communication,
Charm++ BH designs a group (named DataManager, or DM).
The TPs are similar to our worker threads, and the DM is similar
to a communication thread, except that the TPs and DM on a
PE are executed by a single thread (i.e, the PE itself). The DM
maintains a software cache so that duplicate off-node requests
from the same PE are screened out. But note that DMs are per-PE
objects. Duplicate requests from different PEs on the same node
are not filtered. Table 5 showed that this approach can result in
a significant amount of superfluous communication. We believe
Charm++ BH could design the DM at node level to remedy that,
but only after it handles thread synchronization problems as we
discussed and fixed in PPL BH.

The Charm++ load balancer is triggered every few time steps.
At the end of such steps, the balancer computes the center of
mass of the TPs and weights these mass points with the TP costs
measured by the runtime. It then maps the mass points (hence
TPs) to PEs using the well-known locality-preserving orthogonal
recursive bisection (ORB) method [24]. With a new TP-to-PE map,
chare migration is triggered. The approach is nice, but we found
an issue with it in our experiments. Because of particle movement,
the space partitioning tree (hence the TPs) can change at each step.
If this happens, it means we will use an outdated TP-to-PE map
until the next balancing step, with imperfect load-balancing. It is
not clear how to balance the size of the TPs and the frequency of
load balancing so as to optimize performance.

Thanks to overdecomposition, each PE has many TPs. Particles
are sorted in an SFC order as in PEPC, and each TP owns a segment
of the curve. In Charm++ BH, all TPs are active objects. A TP on a
PE periodically yields the core to give its partners a chance to run.
From the PE’s view, however, particles are handled in a somewhat

Table 6. Computation time(s) of PEPC-mini, Charm++ BH and
PPL BH, n = 1M, ✓ = 0.5

Nodes 1 2 4 8 16 32 64
PEPC-mini 15.86 7.03 3.59 1.98 1.00 0.64 0.57
Charm++ BH 6.27 3.83 2.24 1.45 1.03 0.74 0.63
PPL BH 4.38 2.22 1.14 0.61 0.33 0.19 0.14

arbitrarily order. As we have shown in Section 3.4, this damages
cache locality. It is not clear how the scheduling order could be
controlled to improve locality.

5.3 Comparison
To squeeze performance from BH on multicore clusters, all im-
plementations did nontrivial work. But by leveraging intranode
multitasking and internode one-side communication, we encapsu-
lated many complicated issues clearly and gave a simple but high-
performance design. For simplicity, we use lines of code to indicate
code complexity. They are about 3600, 8000, 25000 lines of code
in PPL BH, Charm++ BH, and PEPC-mini (mentioned later), re-
spectively. To measure performance, we made all implementations
compatible to SPLASH-2 BH so that we could use the same pa-
rameters and input files.2 For PEPC, we started from PEPC-mini, a
skeleton molecular dynamics front-end of PEPC. With little effort,
we changed its interaction from Coulomb to gravitation and its ex-
pansion from multipole to monopole and got a code comparable to
ours. The critical PEPC tree code is not modified. We compiled
PEPC-mini with OpenMPI-1.6.4 and the Intel Fortran Compiler
13.1. We ran it with two processes per node, six workers per pro-
cess (since this configuration achieved the best performance). For
Charm++ BH, we used Charm++ 6.4 and triggered the ORB load
balancer every five time steps. Test results for n = 1M, ✓ = 0.5
are shown in Table 6. We varied n and ✓, but the relative perfor-
mance did not change much. We can see PPL BH’s impressive per-
formance advantage over the two other codes. We believe the heavy
hash table lookups hurt PEPC’s performance.3

6. PPL Library
Through a concrete application, the Barnes-Hut algorithm, we
demonstrated the potential of a parallel programing style that com-
bines intranode multitasking with internode one-sided communica-
tion and uses task preemption to hide communication latency. Al-
though we worked on only one application, we believe that many
of the abstractions (e.g., wthreads/cthread separation, queue-based
synchronization, distributed task management, tagged tree nodes)
in our design can be reused for other applications. We are in process
of designing a library, PPL, to facilitate this kind of programming.
PPL is designed as a C++ template library atop one-sided commu-
nication. We borrow ideas from the Intel Threading Building Block
(TBB) [23]. At the top of the library are parallel algorithms such as
parallel_for(), parallel_reduce(), which are used by programmers
to express parallelism in their applications. At the middle is the task
scheduler, which does load balancing and latency hiding primarily
through multitasking. At the bottom are global data structures in
a PGAS memory model. Currently, we have implemented these
primitives in PPL:

global variable: template <typename T> class gvar. A
gvar’s home is on process 0, but all processes have a local copy
of it. The local copy is updated by a call to gvar.cache(). An

2 With one exception, leaves in PEPC’s octree can contain only one parti-
cle. We configured PPL BH accordingly and found small performance vari-
ations, so we ignored this.
3 The JSC group is working on this issue.

8 2013/5/7

assignment to gvar updates the copy on process 0 – there is no
coherence protocol; the user is responsible to avoid data races.
This construct captures the write-once read-many access pattern
common in applications. We used a gvar to store the octree root.

global vector: template <typename T> class gvec. A
gvec is like a co-array in Fortran 2008: every process has a vector
of the same size. A process can access elements of remote vectors.
Collective operations are defined on gvec. We used a gvec to store
costs of subspaces in octree-building [31].

global pointer: template <typename T> class gptr. A
global pointer can point to any memory locations in the global heap
of any process. Dereferencing a global pointer may incur remote
reads or writes. We used global pointers to link octree cells.

Generic high-level data structures such as trees can also be
defined in a global address space. However, an important departure
from data structures on shared memory is that we should also define
caching properties for global data structures on distributed memory,
like the one we showed in gvar, such that variables can be cached
without changing names to reference them, a feature needed for
productivity but lacking in current PGAS languages. Besides TBB
Task’s standard execute()interface, tasks in PPL also provide
interfaces such as IsDataReady(), ExtractRemoteAddress()
to let the runtime know whether the needed data is locally available
and, if not, what the global address of the data is so worker threads
can forward their requests to communication threads. We are now
refining interfaces of PPL.

7. Related Work
The first parallel BH algorithm on distributed memory was devel-
oped by Salmon [24]. This work pioneered the locally essential
tree (LET) method, which we can think of as a workaround for the
problem caused by lack of a global address space and irregular-
ity in BH. A LET for a process is the part of octree that will be
traversed during force computation for bodies on this process. In
this method, processes estimate which cells in their local octree are
needed by other processes by using a relaxed cell opening criterion,
then exchange cells and build their LET. With a LET in hand, force
computation can proceed without communication. Obviously, this
method loses the opportunity to overlap computation and commu-
nication. As a remedy, Warren and Salmon came up with another
method, the hashed octree scheme [28], as we discussed in Section
5.1.

Truong Duy et al. [10] presented a hybrid MPI + OpenMP BH
implementation. They used OpenMP to parallelize the for loop for
force computations for bodies on a node, in order to avoid intranode
communication and achieve better load balancing, as we also do in
PPL BH. They also tested various OpenMP schedules for work-
sharing loops and found dynamic was slightly better than static
and guided. A similar work appeared in [22], which implemented
a multipurpose n-body code with MPI + OpenMP hybrid program-
ming. However, both works are based on the LET method, sharing
its inefficiency.

Dinan et al. [9] introduced a hybrid parallel programming model
that combines MPI and UPC. This model consists of UPC groups,
and the intergroup communication is done through MPI. Processes
in a UPC group can access each other’s shared heap as normal UPC
programs do, thus in effect increasing the amount of memory acces-
sible to an MPI process. Using this model, they modified a UPC-
only BH code and got a twofold speedup at the expense of a 2%
increase in code size. However, this hybrid scheme’s performance
comes from replicating the entire octree in each UPC group (in
other words, from reduced remote data references). They did not
discuss optimizations we found crucial to BH’s performance. It is
not clear whether this code is scalable.

Dekate et al. [8] described a BH implementation in ParalleX
[15]. They suggest four main characteristics of a scalable and high-
performance n-body simulation: data-driven computation, dynamic
load balancing, data locality, and variable workload. To this end,
they have implemented BH in HPX, a C++ implementation of
ParalleX, making use of many light-weight threads to increase
parallelism; work-queues to balance the load on the processors;
interaction lists to improve data locality; and futures to make use of
asynchronous operations. They also make use of manager threads
and communication threads for the force-calculation phase. Some
of these ideas are similar to what has been shown in this paper.
However, they did evaluations only on shared-memory machines.

Jo et al. [14] described a point blocking optimization for traver-
sal code, which can be thought as a counterpart of the classic loop
tiling transformation for irregular applications. They introduced a
transformation framework to automatically detect such optimiza-
tion opportunities and autotuning techniques to determine appro-
priate parameters for the transformation. Our body tiling optimiza-
tion was inspired by this work. However, we also measured BH
locality in different body distributions and studied the interplay be-
tween locality in private caches and reuse in shared caches, which
they did not mention.

Exploiting multithreading on multicores in high-performance
computing has been extensively studied in different contexts. The
linear algebra library PLASMA [3], a multicore version of LA-
PACK [4], has dynamic scheduling as one of its crucial elements
[18]. It uses pthreads as its thread library and supports two schedul-
ing strategies: static scheduling and dynamic scheduling. The dy-
namic scheduling strategy of PLASMA, implemented as QUARK,
makes use of queues of tasks, from which worker threads pop and
execute tasks. DAGuE [7], which extends PLASMA to distributed
memory, has another commonality with our work, as it uses a sep-
arate thread, called the Asynchronous Communication Engine, for
doing internode communication. However, PLASMA and DAGuE
have been designed for dense linear algebra, where the communi-
cation pattern is known up-front and is regular. Neither is true for
BH.

8. Summary
We have shown how one-sided communication, message-driven
task scheduling, and caching of remote data can be combined to
implement the Barnes-Hut algorithm with superior performance.
We believe that a library implementing this programming model
will prove useful for other applications as well, in terms of both
ease of programming and performance. We plan to pursue this
direction in future work. We have also shown the complex interplay,
in multicore systems, between task scheduling and cache hit rate,
at different levels of the cache hierarchy. The proper choice of a
scheduling policy is extremely dependent on machine parameters
and input parameters; on the other hand, the code behavior does
not change rapidly across iterations. Hence, it is likely that run-
time autotuning could be used to properly select the scheduling
parameters.

Acknowledgments
This work was supported by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research, under Con-
tract DE-AC02-06CH11357, and by the U.S. Department of Energy
Sandia National Lab grant 1205852.

References
[1] Berkeley UPC. http://upc.lbl.gov.

9 2013/5/7

[2] SJ Aarseth, M. Henon, and R. Wielen. A comparison of numerical
methods for the study of star cluster dynamics. Astronomy and Astro-
physics, 37:183–187, 1974.

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on
emerging architectures: The plasma and magma projects. volume 180,
page 012037. IOP Publishing, 2009.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, third edition, 1999.

[5] J. Barnes and P. Hut. A hierarchical O(nlogn) force-calculation algo-
rithm. nature, 324:4, 1986.

[6] R. Barriuso and A. Knies. SHMEM user’s guide for C. Technical
report, Cray Research Inc, 1994.

[7] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra. DAGuE: A generic distributed dag engine for high
performance computing. Parallel Computing, 2011.

[8] Chirag Dekate, Matthew Anderson, Maciej Brodowicz, Hartmut
Kaiser, Bryce Adelstein-Lelbach, and Thomas Sterling. Improving
the scalability of parallel n-body applications with an event-driven
constraint-based execution model. Int. J. High Perform. Comput.
Appl., 26(3):319–332, August 2012.

[9] James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and Rajeev
Thakur. Hybrid parallel programming with MPI and Unified Parallel
C. In Proceedings of the 7th ACM international conference on Com-
puting Frontiers, CF ’10, pages 177–186, New York, NY, USA, 2010.
ACM.

[10] Truong Vinh Truong Duy, Katsuhiro Yamazaki, Kosai Ikegami, and
Shigeru Oyanagi. Hybrid MPI-OpenMP paradigm on SMP clusters:
MPEG-2 encoder and n-body simulation. CoRR, abs/1211.2292, 2012.

[11] Mary Hall, Richard Lethin, Keshav Pingali, Dan Quinlan, Vivek
Sarkar, John Shalf, Robert Lucas, Katherine Yelick, Pedro C Diniz,
Alice Koniges, et al. ASCR programming challenges for exascale
computing. 2011.

[12] M. Herlihy and N. Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[13] International Organization for Standardization. Programming Lan-
guages – Fortran. ISO/IEC 1539-1:2010 Standard, 2010.

[14] Youngjoon Jo and Milind Kulkarni. Enhancing locality for recursive
traversals of recursive structures. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages 463–482, New York,
NY, USA, 2011. ACM.

[15] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. Parallex
an advanced parallel execution model for scaling-impaired applica-
tions. In Proceedings of the 2009 International Conference on Paral-
lel Processing Workshops, ICPPW ’09, pages 394–401, Washington,
DC, USA, 2009. IEEE Computer Society.

[16] Laxmikant Kale, Anshu Arya, Abhinav Bhatele, Abhishek Gupta,
Nikhil Jain, Pritish Jetley, Jonathan Lifflander, Phil Miller, Yanhua
Sun, Ramprasad Venkataraman, Lukasz Wesolowski, and Gengbin
Zheng. Charm++ for productivity and performance: A submission

to the 2011 HPC Class II challenge. Technical Report 11-49, Parallel
Programming Laboratory, November 2011.

[17] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: A portable
concurrent object oriented system based on c++. In Proceedings
of the eighth annual conference on Object-Oriented Programming
Systems, Languages, and Applications, OOPSLA ’93, pages 91–108,
New York, NY, USA, 1993. ACM.

[18] J. Kurzak, P. Luszczek, A. YarKhan, M. Faverge, J. Langou,
H. Bouwmeester, and J. Dongarra. Multi- and Many-Core Technolo-
gies: Programming, Algorithms, & Applications, chapter Multithread-
ing in the PLASMA Library. Taylor & Francis, 2011.

[19] P.J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable
interface to hardware performance counters. In Proceedings of the
Department of Defense HPCMP Users Group Conference. Citeseer,
1999.

[20] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà. Advances, applications and performance of the global arrays
shared memory programming toolkit. International Journal of High
Performance Computing Applications, 20(2):203–231, 2006.

[21] OpenMP Architecture Review Board. OpenMP application program
interface version 3.1, 2011.

[22] H. Rein and S.-F. Liu. REBOUND: An open-source multi-purpose
n-body code for collisional dynamics. Astronomy and Astrophysics,
537:128, 2012.

[23] J. Reinders. Intel threading building blocks: Outfitting C++ for multi-
core processor parallelism. O’Reilly Media, Incorporated, 2007.

[24] John K. Salmon. Parallel hierarchical N-body methods. PhD thesis,
California Institute of Technology, 1991.

[25] H. Shan, B. Austin, N.J. Wright, E. Strohmaier, J. Shalf, and K. Yelick.
Accelerating applications at scale using one-sided communication. In
The 6th Conference on Partitioned Global Address Space Program-
ming Models, 1993.

[26] R. Stevens, A. White, et al. Architectures and technology for extreme
scale computing. In ASCR Scientific Grand Challenges Workshop
Series, Tech. Rep., 2009.

[27] UPC Consortium. UPC language specifications, v1.2. Technical
Report LBNL-59208, Lawrence Berkeley National Lab, 2005.

[28] M.S. Warren and J.K. Salmon. A parallel hashed oct-tree n-body
algorithm. In Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 12–21. ACM, 1993.

[29] Mathias Winkel, Robert Speck, Helge Hübner, Lukas Arnold, Rolf
Krause, and Paul Gibbon. A massively parallel, multi-disciplinary
Barnes-Hut tree code for extreme-scale N-body simulations. Com-
puter Physics Communications, 183:880–889, 2012.

[30] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. Method-
ological considerations and characterization of the SPLASH-2 paral-
lel application suite. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 24–36, 1995.

[31] J. Zhang, B. Behzad, and M. Snir. Optimizing the Barnes-Hut al-
gorithm in UPC. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analy-
sis(SC), page 75. ACM, 2011.

10 2013/5/7

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

