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1. MOTIVATION

Parallel programming models can be split into three categories: (1) shared memory
with implicit communication and explicit synchronization, (2) message passing with
explicit communication and implicit synchronization (as a side effect of communica-
tion), and (3) remote memory access and partitioned global address space (PGAS)
where synchronization and communication are managed independently.

At the hardware side, high-performance networking technologies have converged
toward remote direct memory access (RDMA) because it offers the highest performance
(operating system bypass [Shivam et al. 2001]) and is relatively easy to implement.
Thus, current high-performance networks, such as Cray’s Gemini and Aries, IBM’s
PERCS and BG/Q networks, InfiniBand, and Ethernet (using RoCE), all offer RDMA
functionality.
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Shared memory often cannot be emulated efficiently on distributed-memory ma-
chines [Karlsson and Brorsson 1998], and message passing incurs additional over-
heads on RDMA networks. Implementing fast message-passing libraries over RDMA
usually requires different protocols [Woodall et al. 2006]: an eager protocol with
receiver-side buffering of small messages and a rendezvous protocol that synchro-
nizes the sender. Eager delivery requires additional copies, and the rendezvous pro-
tocol sends additional control messages and may delay the sending process. The PGAS
model thus remains a good candidate for directly exploiting the power of RDMA net-
working.

High-performance computing (HPC) has long worked within the message-passing
paradigm, where the only means of communication across process boundaries is to ex-
change messages. MPI-2 introduced a one-sided communication scheme, but for a va-
riety of reasons it was not widely used. However, architectural trends, such as RDMA
networks and the increasing number of (potentially noncoherent) cores on each node,
necessitated a reconsideration of the programming model.

The Message Passing Interface Forum, the standardization body for the MPI stan-
dard, developed new ways for exploiting RDMA networks and multicore CPUs in MPI
programs. We summarize here the new one-sided communication interface of MPI-
3 [MPI Forum 2012], define the memory semantics in a semi-formal way, and demon-
strate techniques for reasoning about correctness and performance of one-sided pro-
grams.

This paper, written by key members of the MPI-3 Remote Memory Access (RMA)
working group, is targeted at advanced programmers who want to understand the de-
tailed semantics of MPI-3 RMA programming, designers of libraries or domain-specific
languages on top of MPI-3, researchers thinking about future RMA programming mod-
els, and tool and compiler developers who aim to support RMA programming. For ex-
ample, a language developer could base semantics of the language on the underlying
MPI RMA semantics; a tool developer could use the semantics specified in this paper
to develop static-analysis and model-checking tools that reason about the correctness
of MPI RMA programs; and a compiler developer could design analysis and transfor-
mation passes to optimize MPI RMA programs transparently to the user.

1.1. Related Work

Efforts in the area of parallel programming models are manifold. PGAS programming
views the union of all local memory as a globally addressable unit. The two most
prominent languages in the HPC arena are Co-Array Fortran (CAF [Numrich and
Reid 1998]), now integrated into the Fortran standard as coarrays, and Unified Par-
allel C (UPC [UPC Consortium 2005]). CAF and UPC simply offer a two-level view of
local and remote memory accesses. Indeed, CAF-2 [Mellor-Crummey et al. 2009] pro-
posed the notion of teams, a concept similar to MPI communicators, but it has not yet
been widely adopted. Higher-level PGAS languages, such as X10 [Charles et al. 2005]
and Chapel [Chamberlain et al. 2007], offer convenient programmer abstractions and
elegant program design but have yet to deliver the performance necessary in the HPC
context. Domain-specific languages, such as Global Arrays [Nieplocha et al. 1996], offer
similar semantics restricted to specific contexts (in this case array accesses). MPI-2’s
RMA model [MPI Forum 2009, §11] is the direct predecessor to MPI-3’s RMA model,
and indeed MPI-3 is fully backward compatible. However, MPI-3 defines a completely
new memory model and access mode that can rely on hardware coherence instead of
MPI-2’s expensive and limited software-coherence mechanisms.

In general, the MPI-3 approach integrates easily into existing infrastructures since
it is a library interface that can work with all compilers. A complete specification of the
library semantics enables automated compiler transformations [Danalis et al. 20091,
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for example, for parallel languages such as UPC or CAF. In addition, MPI offers a rich
set of semantic concepts such as isolated program groups (communicators), process
topologies, and runtime-static abstract definitions for access patterns of communica-
tion functions (MPI datatypes). Those concepts allow users to specify additional prop-
erties of their code that allow more complex optimizations at the library and compiler
level. In addition, communicators and process topologies [Traff 2002; Hoefler et al.
2011] can be used to optimize process locality during runtime. Another major strength
of the MPI concepts is the strong abstraction and isolation principles that allow the
layered implementation of libraries on top of MPI [Hoefler and Snir 2011].

Since MPI RMA offers direct memory access to local and remote memory for multi-
ple threads of execution (MPI processes), questions related to memory consistency and
memory models arise. Several recent works deal with understanding complex memory
models of architectures such as x86 [Owens et al. 2009] and specifications for pro-
gramming languages such as Java [Manson et al. 2005] and C++11 [Boehm and Adve
2008]. We will build on the models and notations developed in those papers and define
memory semantics for MPI RMA. The well-known paper demonstrating that threads
cannot be implemented with a library interface [Boehm 2005] also applies to this dis-
cussion. Indeed, serial code optimization mixed with parallel executing schedule may
lead to erroneous or slower codes. In this work, we define a set of restrictions for serial
compilers to make them MPI-aware.

1.2. Contributions of This Work
The specific contributions of this work are as follows.

(1) Proposal of new semantics for a library interface enabling remote memory pro-
gramming

(2) Description of the driving forces behind the MPI-3 RMA standardization far be-
yond the actual standard text

(3) Considerations for optimized implementations on different target architectures

(4) Analysis of common use cases and examples

2. OVERVIEW AND CHALLENGES OF RMA PROGRAMMING

The main complications for remote memory access programming arise from the sepa-
ration of communication (remote accesses) and synchronization. In addition, the MPI
interface splits synchronization further into memory synchronization or consistency
(i.e., a remote process can observe a communicated value with a local read) and pro-
cess synchronization (i.e., when a remote process gathers knowledge about the state of
a peer process). Furthermore, such synchronization can be nonblocking.

The main challenges of RMA programming revolve around the semantics of opera-
tion completion and memory consistency. Most programming systems offer some kind
of weak or relaxed consistency because sequential consistency is too expensive to im-
plement. However, most programmers prefer to reason in terms of sequential consis-
tency because of its conceptual simplicity. C++11 and Java offer sequential consistency
at the language level if the programmer follows certain rules (i.e., avoids data races).
While Java attempts to define the behavior of programs containing races, C++11 leaves
the topic unspecified.

MPI models consistency, completion, and synchronization as separate concepts and
allow the user to reason about them separately. RMA programming is thus slightly
more complex because of complex interactions of operations. For example, MPI, like
most RMA programming models, allows the programmer to start operations asyn-
chronously and complete them (locally or remotely) later. This technique is necessary
to hide single-message latency with multiple pipelined messages; however, it makes
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reasoning about program semantics much more complex. In the MPT RMA model, all
communication operations are nonblocking; in other words, the communication func-
tions may return before the operation completes, and bulk synchronization functions
are used to complete previously issued operations. In the ideal case, this feature en-
ables a programming model in which high latencies can be ignored and processes never
“wait” for remote completion.

The resulting complex programming environment is often not suitable for average
programmers (i.e., domain scientists); rather, writers of high-level libraries can pro-
vide domain-specific extensions that hide most of the complexity. The MPI RMA inter-
face enables expert programmers and implementers of domain-specific libraries and
languages to extract the highest performance from a large number of computer archi-
tectures in a performance-portable way.

3. SEMANTICS AND ARCHITECTURAL CONSIDERATIONS

In this section, we discuss the specific concepts that we use in MPI RMA programming
to enable performance-portable and composable software development.

The two central concepts of MPI RMA are memory regions and process groups. Both
concepts are attached to an object called the MPI window. A memory region is a con-
secutive area in the main memory of each process in a group that is accessible to all
other processes in the group. This enables two types of spatial isolation: (1) no pro-
cess outside the group may access any exposed memory, and (2) memory that is not
attached to an MPI window cannot be accessed by any process, even in the correct
group. Both principles are important for parallel software engineering. They simplify
the development and maintenance process by offering an additional separation of con-
cerns; that is, nonexposed memory cannot be corrupted by remote processes. They also
allow the development of spatially separated libraries in that a library can use either
a dedicated set of processes or a separate memory region and thus does not interfere
with other libraries and user code [Hoefler and Snir 2011].

MPI RMA offers the basic data-movement operations put and get and additional
predefined remote atomic operations called accumulates. Put and get are designed
to enable direct usage of the shared-memory subsystem or hardware-enabled RDMA.
Accumulates can, in some cases, also use functions that are hardware-accelerated.

All such communication functions are nonblocking. Communication functions are
completed by using either bulk-completion functions (all synchronization functions in-
clude bulk completion as a side-effect) or single-completion (if special, generally slower,
MPI-request-based communication operations are used). Figure 1 shows an overview
of communication options in the MPI specification.

| MPI-3 RMA | e 3.0
| [Jwmez 2.0

v v v ‘

active passive f 3
completion completion
r T H
' H H
1 i * | +
i 4 i A/ v
Post/Start/ Lock_all/ | | | | | |
Fence Complete/Wait Lock/Unlock Unlock all accumulate Put Get
+ A\
| Sync | | Flush_local | | Flush_local all | | Flush | | Flush_all | | Accumulate || Get_accumulate | | Fetch_and op | | CAs |

Fig. 1. Overview of communication options in the MPI-3 specification.
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3.1. Memory Exposure

MPI RMA offers four calls to expose local memory to remote processes. The first three
variants create windows that can be remotely accessed only by MPI communication
operations. Figure 2 shows an overview of the different versions. The last variant en-
ables users to exploit shared-memory semantics directly and provides direct load/store
access to remote window memory if supported by the underlying architecture.

Create Allocate Dynamic
0 1 2 : 0 1 2 : 0 1 2
_ : T T Win
o0x124 Win : | ox125 Win ox111 Win 0x130!
. : Win : .
Win Win Win : Win 0x170! Win

0x111]

0x110! Win §0x111
0x130 :

0x111 : 0x165
| oxa10[ Win

0x245

Fig. 2. MPI-3 memory window creation variants.

The first (legacy) variant is the normal win create function. Here, each process can
specify an arbitrary amount (> 0 bytes) of local memory to be exposed and a commu-
nicator identifying a process group for remote access. The function returns a window
object that can be used later for remote accesses. Remote accesses are always relative
to the start of the window at the target process, so a put to offset zero at process k
updates the first memory block in the window that process k exposed. MPI allows the
user to specify the block size for addressing each window (called displacement unit).
The fact that processes can specify arbitrary memory may lead to large translation
tables on systems that offer RDMA functions.

The second creation function, win allocate, transfers the responsibility for memory
allocation to MPI. RDMA networks that require large translation tables for win create
may be able to avoid such tables by allocating memory at identical addresses on all
processes. Otherwise, the semantics are identical to the traditional creation function.

The third creation function, create dynamic, does not bind memory to the created
window. Instead, it binds only a process group where each process can use subsequent
local functions for adding (exposing) memory to the window. This mode naturally maps
to many RDMA network architectures; however, it may be more expensive than allo-
cated windows since additional structures for each registration may need to be main-
tained by the MPI library. This mode can, however, be used for more dynamic programs
that may require process-local memory management, such as dynamically sized hash
tables or object-oriented domain-specific languages.

3.2. Shared-Memory Support

Shared-memory window allocation allows processes to directly map memory regions
into the address space of all processes, if supported by the underlying architecture.
For example, if an MPI job is running on multiple multicore nodes, then each of those
nodes could share its memory directly. This feature may lead to much lower overhead
for communications and memory accesses than going through the MPI layer. The win
allocate shared function will create such a directly mapped window for process groups
where all processes can share memory directly.

The additional function comm split type enables programmers to determine max-
imum groups of processes that allow such memory sharing. More details on shared-
memory windows and detailed semantics and examples can be found in [Hoefler et al.
2012]. Figure 3 shows an example of shared-memory windows on a dual-core system
with four nodes.
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Fig. 3. MPI-3 shared-memory window layout on a dual-core system with four nodes. Each node has its own
window that allows load/store and RMA accesses. The different shapes indicate that each process can pick
its local window size independently of the other processes.

3.3. Memory Access

One strength of the MPI RMA semantics is that they pose only minimal requirements
on the underlying hardware to support an efficient implementation. For example, the
put and get calls require only that the data be committed to the target memory and
provide initiator-side completion semantics. Both calls make no assumption about the
order or granularity of the commits. Thus, races such as overlapping updates or reads
conflicting with updates have no guaranteed result without additional synchroniza-
tion. This model supports networks with nondeterministic routing as well as nonco-
herent memory systems.

3.4. Accumulates

Similar to put and get, accumulates strive to place the least possible restrictions on
the underlying hardware. They are also designed to take direct advantage of hard-
ware support if it is available. The minimal guarantee for accumulates are atomic
updates (something much harder to achieve than simple data transport). The update
is atomic only on the unit of the smallest datatype in the MPI call (usually 4 or 8 bytes),
which is often supported in hardware. For larger types that may not be supported in
hardware, such as the “complex” type, the library can always fall back to a software
implementation.

Accumulates, however, allow overlapping conflicting accesses only if the basic types
are identical and well aligned. Thus, a specification of ordering is required. Here, MPI
offers strict ordering by default, which is most convenient for programmers but may
come at a cost to performance. However, strict ordering can be relaxed by expert pro-
grammers to any combination of read/write ordering that is minimally required for the
successful execution of the program. The fastest mode is to require no ordering.

Accumulates can also be used to emulate atomic put or get if overlapping accesses
are necessary. In this sense, get accumulate with the operation no op will behave like
an atomic read, and accumulate with the operation replace will behave like an atomic
write. However, one must be aware that atomicity is guaranteed only at the level of
each basic datatype. Thus, if two processes use replace to perform two simultane-
ous accumulates of the same set of two integers (either specified as a count or as a
datatype), the result may be that one integer has the value from the first process and
the second integer has the value from the second process.

3.5. Request-Based Operations

Bulk local completion of communications has the advantage that no handles need to
be maintained in order to identify specific operations. These operations can run with
little overhead on systems where this kind of completion is directly available in hard-
ware, such as Cray’s Gemini or Aries interconnects [Alverson et al. 2010; Faanes et al.
2012]. However, some programs require a more fine-grained control of local buffer re-
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sources and thus need to be able to complete specific messages. For such cases, request-
based operations, MPI_Rput, MPI_Rget, MPI_Raccumulate, and MPI_Rget_accumulate can
be used. These operations return an MPI_Request object similar to nonblocking point-
to-point communication that can be tested or can wait for completion using MPI_Test
and MPI_Wait, or the equivalent. Here, completion refers only to local completion. For
MPI Rput and MPI_Raccumulate operations, local completion means that the local buffer
is to be reused. For MPI Rget and MPI Rget_accumulate operations, local completion
means that the remote data has been delivered to the local buffer.

Request-based operations are expected to be useful in the model where the appli-
cation issues a number of outstanding RMA operations and waits for the completion
of a subset of them before it can start its computation. A common case would be for
the application to issue data fetch operations from a number of remote locations (e.g.,
using MPI Rget) and process them out of order as each one finishes (see Listing 1).

1 int main(int argc, char xxargv)

2 {

3 /* MPI initialization and window creation =/

4

5 for (i = 0; i < 100; i++)

6 MPI_Rget(buf[i], 1000, MPIDOUBLE, ..., &reql[il);
7

8 while (1) {

9 MPI_Waitany (100, req, &idx, MPILSTATUSIGNORE);
10 process_data (buf[idx]);

11 }

12

13 /+ Window free and MPI finalization x/

14 return 0;

15 }

Listing 1. Example (pseudo) code for using Request-based Operations

Request-based operations allow for finer-grained management of individual RMA
operations, but users should be aware that the associated request management can
also cause additional overhead in the MPI implementation.

3.6. Memory Models

In order to support different applications and systems efficiently, MPI defines two
memory models: separate and unified. These memory models define the conceptual
interaction with remote memory regions. MPI logically separates each window into
a private and a public copy. Local CPU operations (also called load and store opera-
tions) always access the local copy of the window whereas remote operations (get, put,
and accumulates) access the public copy of the window. Figure 4 shows a comparison
between the two memory models.

The separate memory model models systems where coherency is managed by soft-
ware. In this model, remote updates target the public copy and loads/stores target the
private copy. Synchronization operations, such as lock/unlock and sync, synchronize
the contents of the two copies for a local window. The semantics do not prescribe that
the windows must be separate, just that they may be separate. That is, remote updates
may also update the private copy. However, the rules in the separate memory model
ensure that a correct program will always observe memory consistently. Those rules
force the programmer to perform separate synchronization.

The unified memory model relies on hardware-managed coherence. Thus, it assumes
that the private and public copies are identical; that is, the hardware automatically
propagates updates from one to the other (without MPI calls). This model is close
to today’s existing RDMA networks where such propagation is always performed. It
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(a) Unified memory model (b) Separate memory model

Fig. 4. Unified and separate memory models.

allows one to exploit the whole performance potential from architectures in which both
the processor and network provide strong ordering guarantees. Moreover, it places a
lower burden on the programmer since it requires less explicit synchronization.

A portable program would query the memory model for each window and behave
accordingly. Programs that are correct in the separate model are always also correct in
the unified model. Thus, programming for separate is more portable but may require
additional synchronization calls.

3.7. Synchronization

All communication operations are nonblocking and arranged in epochs. An epoch is
delineated by synchronization operations and forms a unit of communication. All com-
munication operations are completed locally and remotely by the call that closes an
epoch (additional completion calls are also available and are discussed later). Epochs
can conceptually be split into access and exposure epochs, where the process-local win-
dow memory can be accessed remotely only if the process is in an exposure epoch, and
a process can access remote memory only while in an access epoch itself. Naturally, a
process can be simultaneously in access and exposure epochs.

MPI offers two main synchronization modes based on the involvement of the target
process: active target synchronization and passive target synchronization. In active
target synchronization, the target processes expose their memory in exposure epochs
and thus participate in process synchronization. In passive target synchronization, the
target processes are always in an exposure epoch and do not participate in synchro-
nization with the accessing processes. Each mode is targeted at different use cases. Ac-
tive target synchronization supports bulk-synchronous applications with a relatively
static communication pattern, while passive target synchronization is best suited for
random accesses with quickly changing target processes.

3.7.1. Active Target Synchronization. MPI offers two modes of active target synchroniza-
tion: fence and general. In the fence synchronization mode, all processes associated
with the window call fence and advance from one epoch to the next. Fence epochs are
always both exposure and access epochs. This type of epoch is best suited for bulk
synchronous parallel applications that have quickly changing access patterns, such as
many graph-search problems [Willcock et al. 2011].

In general active target synchronization, processes can choose to which other pro-
cesses they open an access epoch and for which other processes they open an expo-
sure epoch. Access and exposure epochs may overlap. This method is more scalable
than fence synchronization when communication is with a subset of the processes in
the window, since it does not involve synchronization among all processes. Exposure
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epochs are started with a call to post (which exposes the window memory to a selected
group) and completed with a call to test or wait (which tests or waits for the access
group to finish their accesses). Access epochs begin with a call to start (which may
wait until all target processes in the exposure group exposed their memory) and fin-
ish with a call to complete. The groups of start and post and complete and wait must
match; that is, each group has to specify the complete set of access or target processes.
This type of access is best for computations that have relatively static communication
patterns, such as many stencil access applications [Datta et al. 2008]. Figure 5 shows
example executions for both active target modes.

0 1 2 3 4 0 1 2 3
L_fence - ]
ut et et 2 ac,
8*‘2‘%‘42‘9/ Ne : [ post(0) | [post(0) | [post(0) |
[ fence ]
. (—
. N
cog\pute co%npute co%npute co%npute coS\pute :
|_fence ] :

get

e\%‘e\%‘e&e%‘e | start(3) |[ wait | [wait ]

L fence I

Y Y v v

Fig. 5. Active target synchronization: (left) fence mode for bulk-synchronous applications and (right) scal-
able active target mode for sparse applications.

3.7.2. Passive Target Synchronization. The concept of exposure epoch is not relevant in
passive mode, since all processes always expose their memory. This feature leads to
reduced safety (i.e., arbitrary accesses are possible) but also potentially to improved
performance. Passive mode can be used in two ways: single-process lock/unlock as in
MPI-2 and global shared lock accesses.

In the single process lock/unlock model, a process locks the target process before
accessing it remotely. To avoid conflicts with local accesses (see Section 4), a process
may lock its local window exclusively. Exclusive remote window locks may be used
to protect conflicting accesses, similar to reader-writer locks (shared and exclusive in
MPI terminology). Figure 6(a) shows an example with multiple lock/unlock epochs and
remote accesses. The dotted lines represent the actual locked region (in time) when
the operations are performed at the target process. Note that the lock function itself is
a nonblocking function—it need not wait for the lock to be acquired.

In the global lock model, each process starts a lock all epoch (it is by definition
shared) to all other processes. Processes then communicate via RMA operations to
update data and use point-to-point communication or synchronization operations for
notification. Fine-grained data-structure locks, such as MCS (see Section 6.3), could
be implemented in this mode. Figure 6(b) shows an example of a lock all epoch with
several communications and flushes. MPI also allows mixing both models freely.

4. SEMI-FORMAL DEFINITION OF SEMANTICS

Our specification of the memory model tries to be as precise as possible while still being
readable by professional programmers. We aim to specify the semantics sufficiently
precisely in order to allow others to derive a formal specification of the MPI-3 RMA
memory models, programs with defined semantics, and valid transformations of such
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Fig. 6. Passive target mode examples.

programs.! For this purpose, we follow the conventions from [Manson et al. 2005] and
[Boehm and Adve 2008].

Formal semantics can be used for proving consistency of the standard; indeed, we
found two issues in MPI-3.0 while using formal modeling: (1) a loose definition that
allows interpretation of memory consistency rules in different, conflicting ways and
(2) a missing definition for the interaction between active and passive target mode. We
also found that the formal notation can be used to better describe corner cases, many
of which resolve themselves after formalization. In addition, applications written in
MPI-3 RMA can be verified for correctness and determinism. Formal semantics could
also be used to design and verify semantics-preserving compiler transformations.

MPT’s memory semantics are specified in terms of regions of exposed memory called
MPI windows. All MPI RMA calls are constrained to target a single window. In ad-
dition, the window’s memory can be accessed by the program using load and store
operations (induced by statements in the program). Our model considers only opera-
tions on memory associated with a window. To simplify our notation, we assume that
each (named) scalar value occupies a distinct memory location in a window (with a
per-byte granularity).

Each memory window has an associated set of MPI processes that may perform MPI
RMA operations on the window memory of any process in the set. MPI-3 RMA offers
memory operations and synchronization operations. Both are needed in order to up-
date remote memory consistently. The effect of memory or synchronization operations
during program execution is modeled by memory or synchronization actions.

Following [Manson et al. 2005] and [Boehm and Adve 2008], a memory action is
defined as the tuple.

(t,0,d,rl,wl,u)

t: can be one of the following: memory write (w), memory read (r), remote put (rp),
remote get (rg), remote get accumulate (rga, with the special case fetch and op),
remote accumulate (rac), or remote compare and swap (rcas).

o: indicates the MPI process number for the origin of the action.

d: indicates the MPI process number for the destination of the action. Actions of
type w and r can have only the local process as destination.

rl : indicates the location read by the action. This is not specified for w and is a tuple
of the form (compare location, swap location) for rcas.

wl : indicates the location written by the action (not specified for r).

1Small additions and the removal of simplifications are necessary for defining a full formal model. The model
presented in this work is kept simple and readable to allow human reasoning.
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u : indicates a label identifying the source program point.
A synchronization action is defined as the tuple.
(t,0,d,u)

t: can be one of the following: fence (f), lock shared (/s), lock exclusive (/e), unlock
(ul), lock all (la), unlock all (ula), flush (f1), flush local (fil), flush all (fla), flush
local all (flla), win-sync (ws), and external synchronization (E£S, e.g., matching
send/recv pairs or collective operations).

o: indicates the process number for the origin of the action.

d : indicates the process number for the destination of the action. The actions la, ula,
fla, flla have a special identifier ¢ as destination, which stands for the entire set
of processes associated with the window.

u : indicates a label identifying the source program point.

We omit the generalized active target synchronization and request-based RMA oper-
ations in order to keep the notation simple. They are conceptually similar to the mod-
eled operations, and their omission does not affect the conclusions drawn. However,
modeling these would require several new symbols and interactions and significantly
complicate the text, jeopardizing our goal of readability.

We introduce the following groups of actions: put/get actions RPG
{rp,rg}, accumulate actions RA = {rac,rga,rcas}, communication actions CA
{RPG,RA}, memory actions M = {CA,r,w}, and synchronization actions S =
{fe,ls,le,ul,la,ula, fl, fll, fla, flla,ws, ES}. For convenience, we abbreviate an in-
stance of an action a with type z as z instead of a.t = 2. Additionally, we abbreviate an
instance of an action a where a.t € 7 as z.

An execution of a program can be defined as follows.

X = (P, A, 2% WV, 2%, 1y <oy

P : is the program to be executed.

A : is the set of all actions (S and M).

P9 specifies the program order of actions at the same process much like the
“sequenced-before” order in C++ or the “program order” in Java. This specifies
the order of executions in a single-threaded execution.

: is a function that returns the write (w), remote put (rp), or remote accumulate
(ras, rcas, rga) that wrote the value into the location read by the specified action.
is a function that returns the value written by the specified action.
is a total order of the synchronization relations between synchronization actions
including external waiting-for relationships (such as arise from E'S actions, e.g.,
collective operations and matched send/recv pairs).

LN

o g . (o]
sitive closure of the union of 2% and =%.
. . . co
— defines a partial order of the memory actions; a consistency edge a — b guar-
antees that the memory effects of action a are visible before b. This order is nec-
essary because some synchronization actions (e.g. flush) order memory accesses
without synchronizing processes.

hb. . " . . . . hb_.
— 1is a transitive relation between each pair of actions. The relation — is the tran-
co

. . hb . . .
The consistency order <> does not introduce any — relations; in fact, if a = b, then

the effects are guaranteed visible only if also a LNy Otherwise, b could happen (in real
time) before a, and thus a’s effects are not visible to b even though a =% b holds for a
particular execution (see Section 4.7). It is guaranteed, however, that a =% b implies
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that operations that happen later than b will eventually observe the effects of a. This
guarantee is needed for polling and does not require an hb, ordering (see Section 4.5).
On the other hand, an operation that synchronizes processes and is thus part of LN

. . hb . co
may not synchronize memory accesses; that is, ¢ — b does not imply a — b. Some
synchronization operations, such as ul LN le, also ensure ul — le if ul.d = le.d, while

. . . . hb
others, such as a point-to-point communication between two ranks, guarantee only —,

or a flush fI guarantees only . A consistent happens-before order between a and b is
also abbreviated

a =y = 0™ baa b, 1)

For two actions a and b and an order of type Z, we say that a and b are not ordered
by Z as follows.

allzb=-(aZbvbSa) (2)

For example, a |5, b means that a and b happen concurrently in happens-before order.
For three actions a, b, c,

b He=aevbDe (3)
which reads “a or b precede c in order Z”. Let d be a dummy action (defined later).

4.1. Valid Executions

We now specify valid programs in terms of operational semantics of their executions. In
a valid program, all executions must be valid. An execution is valid under the following
conditions.

(1) The actions occur in an order consistent with the program, namely, 2%. In partic-
ular, for actions ¢ and b,

a % b=a My (4)

(2) Passive target (lock/unlock) epochs must be well-formed; they must be opened and
closed in the correct order at each process (e.g., each unlock is preceded by a match-
ing lock in program order and each lock is followed by an unlock). In addition, an
origin process may not lock a target process if the process is currently locked by
the origin process or if it an active target access epoch is in-progress between that
origin and target. Formally, for an action a where a.t = [Is, le],

Fb:a B oAbt =ulNa.d=bdAVce {a.b},ct# feAct=[ls,le] = c.d # a.d (5)
and similarly, when a.t = la,

3b:a B oAbt =ulaAYc € {a.b},ct # [fe,ls, le,ull. (6)
Where,
{a.b}={c:a 2 ¢ 25 b} (7

(3) Fence actions are matched correctly; that is, for each fence fe; on process i, there
must be a corresponding fence fe; on each other process & (for all processes in the
window) such that fe; || feg.

(4) Windows may not be locked and exposed concurrently. For actions feq = ca -2
fe1, feo opens a fence epoch when the MPI_NOSUCCEED is not given and

{feg..ca} NS =1. (8)
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The fe; action closes a fence epoch when the MPI_NOPRECEDE assertion is not given
and

{ca..fe1} NS =10. 9

(5) The program is deadlock-free; that is, the directed graph G = (A4, ﬂ>) contains no
cycles (this excludes the synchronization orders introduced by fence, unlocks, and
flushes).

(6) For each communication action ca, the origin process ca.o is in an epoch of type
access (see Section 4.2). The target process ca.t is in an epoch of type exposure if

the accessing origin process’s last synchronization operation (in 2%) was of type

fe.

The orders 2% and =% are uniquely defined by the execution schedule and the rules
for a well-formed execution. The consistency order is defined by the semantics of epochs
and synchronization operations. We define these in the following sections.

4.2. Epochs and Synchronization Semantics

Epochs have a total order per process and can be of type access (the process acts as
source of RMA operations), type exposure (the process acts as destination of RMA op-
eration), or a combination of both. Each epoch starts with a synchronization action
[fe,le,ls,la] and ends with a matching synchronization action [fe, ul, ula]. Each mem-
ory action « is assigned to one epoch by E(a), and each epoch is limited by matching

synchronization actions (in 2%). Two epochs z and y are ordered by 1b if the ending
synchronization action s, of z is ordered with the starting synchronization action s, of

hb
Y as s; — Sy.

4.2.1. Active Target Synchronization. In the fence synchronization mode, the transition
from epoch i to epoch 7 + 1 occurs collectively such that all processes are always in
the same epoch. The <% of a fence orders all memory actions before (in %) the fence
before all memory actions after the fence. For our definition of the memory model, we
assume that a fence also synchronizes all processes in =%, even though such is not
always true.

A fence introduces =% and 2% between all pairs of processes. In addition, a fence
guarantees local consistency:

[r,w, CA,d] 2% fe = [r,w,CA,d] %% fe (10)
and
fe 2% [rw,CA,d) = fe =% [r,w,CA,d]. (11)

4.2.2. Passive Target Synchronization. In the passive target synchronization mode, the
concept of an exposure epoch does not exist, and all processes can be accessed at any
time without any MPI call at the (“passive”) target. A process-local access epoch is
opened to a single process k after an action [Is,le].d = k and ends with a ul.d = k
action.

Lock operations can be either shared or exclusive. In a valid execution, a shared lock
Is has a synchronization order ul =% Is to all previous unlocks ul with Is.d = ul.d, and
the ul is unlocking an exclusive lock epoch. An exclusive lock /e has a synchronization

order ul 2% le to all previous unlocks ul with le.d = ul.d. From the program order,

[1s,le,la] 22 [r,w] = [Is, le, la] = [r,w]. (12)
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Unlock completes communications locally and remotely. The local completion occurs
as follows:

ca 2% ul = ca < ul 13)
ul 2% ca Aul.d = ca.d = ul <% ca. (14)

An unlock also guarantees that local memory is consistent, such that ul % [r,w] =

ul % [r,w] if-and-only-if the values written or read by w and r, respectively, were
accessed by some ca action, and ul.d = ca.d.

In addition, each unlock generates a virtual action d at ul.d with ul =% d, d <> ul,

ul 2% d, and d 2% wl. This virtual action represents the access to the remote public
window and guarantees the following:

PN [ws, CA,ls,le,la] = d <% [ws, CA,ls,le, la) (15)

co

[ws, s, le,la] LANY N [ws,ls,le,la] — d (16)

and in addition in the unified memory model,

d -, [r,w] =d £ [r, w] (17
[r, w] LN N [r, w] 2% d. (18)

Moreover, the new d operation will introduce a consistency relation (see Section 4.3) to
all [ra,rg] actions that originate from the same process, namely,

[ra.d,rg.d] = d.o = d % [ra,rg]. (19)

A lock-all synchronization action /a opens an access epoch to all processes. The access
epoch ends with an ula action. Lock-all synchronizations have the same semantics as
shared access epochs to all processes.

A flush can be used to synchronize remote memory accesses. A flush fI behaves much
like an unlock in that it guarantees that effects of all previous operations are visible at
the target when a flush returns as well as local consistency. It also generates a virtual
action d at its destination with ul =% d, d <% ul, ul =% d, and d =% ul with the same
semantics of d as described above. A flush-all fla behaves like a flush to all processes.
In addition, for flushes and flush local,

[ra, rp,r,w] o, [f1, fla, fll] = [ra,rp,r,w] £9 [f1, fla, fl] (20)

[f1, fla, fl] 2% [ra,p, r,w] A [ra,rpl.d = [fl, fla, fll].d = [fl, fla, flI] <% [ra,rp,r, w].
(21)
A win-sync call ws has the effect of atomically closing an existing epoch and opening
a new epoch in a single action:

[r,w,d) 2% ws = [r,w,d] <% ws (22)
a2 [CAd) = d <% [CA,d). (23)

For normal reads and writes interacting with RMA calls,

[r,w] 2% ca = [r,w] <% ca. (24)
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4.3. Consistency

We now define the rules for consistent memory operations in MPI RMA. Those are
needed to reason about the possible result of a set of memory operations originating at
different processes.

4.3.1. Conflicting Actions. In the separate memory model (see Section 3.6), two memory
actions a and b are called conflicting if they are directed towards a overlapping memory
locations at the same process and either: (1) one of the two operations is a put rp, (2)
exactly one of the operations is an accumulate (RA), or (3) one operation is a get (rg)
and the second one a local write (w). In addition, remote writing operations (rp and
RA) that access the same process conflict with local write (w) operations issued by the
target process regardless of the accessed location.

In the unified model, two actions a and b are called conflicting if a ||.on» b and they are
directed towards a overlapping memory locations at the same process and either: (1)
one of the two operations is a put rp, (2) exactly one of the operations is an accumulate
(RA), or (3) one operation is a get (rg) and the second one a local write (w).

4.3.2. Races. A data race between two conflicting operations a and b exists if they are
not ordered by both 1by and <% relations.

ﬁ((aﬂb/\agb)v(bﬁa/\bga)) (25)
—(a 22 by b L2y ) (26)
That is,
a ||hb bVa ||co b. 27
In other words, for a program to be free of data-races, all conflicting accesses must be

ordered by <%

4.3.3. Conditions for Well-Defined Memory Semantics. Only programs where all executions
are data-race free have well-defined memory semantics. If a program has well-defined
semantics, then a read action r will always return the last written value (last as de-
fined by the consistent happens-before order).

W(r) <2 AV (r) = V(W (r)) (28)
In addition, the following property is guaranteed.
W (r) <2y 0 20 1 then rrl # wawl AV(r) = V(W (r)) (29)

In other words, in a program with well-defined memory semantics, for every read ac-
tion 7,

- (r < W), (30)

4.4. Memory Ordering Rules
When a and b are of type RA and update the same variable,
awl =bwl Aa % b= a5 b (31)

However, the user can relax any of the possible combinations of write and read ordering
(waw, war, raw, rar).

For local w and r memory actions and the local reads and writes associated with ca
actions, we assume sequential ordering. The effects cannot be observed remotely since
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no consistent ordering exists for those operations; thus, many local compiler transfor-
mations that do not modify sequential correctness are possible.

Remote put and get [rp,rg] actions and RA actions with different destination ad-
dresses or processes have no specified ordering.

4.5. Eventual Remote Completion

The unified memory model allows the user to “poll” on a location and wait for a message
to arrive without additional MPI operations. Thus, a flush or unlock on a process A
could complete an RA action targeted at process B, and process B could wait in an
infinite loop for the arrival for the message.

The d action that is generated on process B will not have a happens-before relation,
while it will have a [ul, fI, fla] = d. If process B waits (potentially an unbounded
number of steps) for the message to arrive (by polling on ra.wl), it is guaranteed that
the message will eventually arrive; that is, a consistent happens-before relation will be
established between the [ul, fI, fla] and one of the polling reads. However, there are no
timing guarantees; and thus the process must wait for an unbounded number of steps.

4.6. Shared-Memory Windows

All the discussions above apply to shared-memory windows. As stated before, however,
there are no guarantees about the consistency order of r and w actions (which can
now be observed directly by remote processes) since this is a function of the architec-
ture’s memory model (e.g., x86 [Owens et al. 2009] or POWER [Adve and Gharachorloo
1996]).

4.7. Examples

We show several examples for using the semantic definition to reason about the va-
lidity and outcome of RMA operations. To avoid cluttering the figures, we do not show
process order (£2%). Each statement at a process is ordered with regard to the previous
statements at this process in 2%, and thus nb,.

Figure 7(a) shows a simple example with fence synchronization. The variables x and
v are accessed with conflicting operations, but the fences guarantee a Lcohb, ordering.

Thus, the result of this example trace is defined, and the read (r(v)) will always read
“0.’7

Process A Process B
Process A e Process B MPT_Barrier la
1 ST _ P N
co( f y‘% X_O)co la y x_Q)co
v=rg(B,x) £ cog‘f-:f.g,(,.B.{ X s
. +—>
co ‘-FA FB r‘(v') \ d o
I"(V) ula
(a) Active mode fences with a remote get and (b) Passive mode synchronization mixed with
output point-to-point synchronization

Fig. 7. Simple examples for active and passive synchronization.

The formal model also allows reasoning about mixing RMA programming with tra-
ditional point-to-point programming. Figure 7(b) shows how a passive mode unlock is
combined with a barrier to establish consistency and happens-before orders. The con-

.. . . . hb .
flicting accesses are again acting on x and v. The barrier guarantees a — ordering
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between the assignment of x and the remote get. The win sync guarantees — at pro-
cess b (for the separate model, it is unnecessary in the unified model), and the unlock
together with the d action guarantees > order between the conflicting accesses. Thus,
the program is defined, and the read will always read “0.”

Process A Process B
x=1 x=0 Process A Process B
la co la co ( la X=0
co
rap(B,x) v=rag(B,x) | while(v==0){
cog cog v=rag(B,x); co( rap(B,x) la
MO o P FLEBY; (B ws
ulat > r(v) } )Co
2% J ula %, r(x)
. co
hb )CO N ws )
e v=rag(B,x)
co d co
f1(B)
rcv) )Co r(x)
ula ula

(a) Polling example in the unified model (b) Undefined polling in the separate model

Fig. 8. Examples for polling on a memory location. The abbreviations rap and rag stand for remote atomic
put (accumulate with replace) and remote atomic get (get accumulate with noop), respectively.

In Figure 8(a), process A puts a value into process B’s window, which waits for the

value’s arrival. In this example, LN guaranteed to the d action, which itself is not
ordered with regard to the actions at process B. However, since process b is in an
infinite loop, d, it will eventually appear in this loop and thus introduce an eventual

LLN ordering. The =% order is also maintained by the operations. Thus, this program
is correct in the unified memory model, and v will have the value “1” at process b
eventually.

Figure 8(b) shows polling in the separate memory model. This schedule is undefined
since the d action can occur between a synch and a read and may thus lead to undefined
outcome of the read.

Process A Process B

Process A Process B
la x=0 la
v=rg(B,v) la COQ rp(B,v)
COC r(v) ula f1(B) % J
f1(B) send(B) % Recv(A)>c°
ula ula w(v)

(a) Get followed by an inconsistent read  (b) Consistent ordering with a send/recv syn-
chronization

Fig. 9. Examples for consistency ordering.

Figure 9(a) shows an example where a consistency edge is missing for a local access.

The accesses to x are conflicting on process A, and there is no =%; thus, the outcome
is undefined. Figure 9(b) shows an example with correct consistency ordering. Two

conflicting accesses to v at process b are synchronized with a flush (=%) and with a
send/recv pair (%), The outcome of this example is well defined.
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Process A Process B
r’ B e Dco
pCB, V)/w(v)
ﬂ(B)
rg(B,v)
ula

Fig. 10. Missing happens-before ordering

Figure 10 shows an example for a missing happens-before ordering. The =% ordering
at process B is established because of the stronger guarantees of the unified model,

however, there is no LN ordering such that d could execute after the write, making the
outcome undefined.

We now show how to use the semantics of MPI-3 RMA to prove correctness of a
simple program.

4.7.1. Peterson’s Lock. We use the following implementation of Peterson’s two-process
lock with MPI-RMA. The direct translation from the textbook version [Herlihy and
Shavit 2012] is below:

// declarations omitted

if (rank == 0) size = 3; else size = 0;
MPI_Win_allocate(size, sizeof(int),

info_null , comm, &mem, &win);
/] flag = offsets 0,1; victim = offset 2
MPI_Win_lock_all(0, win); // start lock—all MPI RMA epoch
peterson_lock (win, mem); // acquire the lock
peterson_unlock (win, mem); // release the lock
10 MPI_Win_unlock_all(win); // end the lock—all MPI RMA epoch

OO0 Uk W -

12 void peterson_lock (MPI.Win win) {
13 int j = l-rank;

14 MPI_Put(&one, ..., O, rank, ..., win);
15 MPI_Put(&rank, ..., 0, 2, ..., win);
16 while () {

17 int rflag, rvict;

18 MPI_Get(&rflag, ..., 0, j, ..., win);
19 MPI_Get(&rvict, ..., 0, 2, ..., win);
20 if (rflag || rvict != rank) break;
21}

22}

23

24 void peterson_unlock (MPI.Win win) {

25 MPI_Put(&zero, ..., 0, rank, ..., win);
26 1}

Listing 2. Simple (incorrect) Peterson Lock in MPI-3

Let P4(xz = z) denote a put rp with rp.o = A, rp.wl = z, and V (rp) = z, and similarly
let a G4(z) denote a get rg with rg.o = A and rg.rl = z. We denote offset 0 and 1 in
the window as f4 and fp (for process A’s and B’s flag) and offset 2 as v for the victim
variable in the textbook version. CR denotes the critical region to be protected from
concurrent access.
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4.7.2. Consistency. The code above defines the orders

Pa(fa=1) 2 Pav=A) 25 rfa =Ga(f) 2> rv=Ga(v) 2> Ra(rfa) 25 Ra(rva) 2% CR

PB(fB = 1) ﬂ) PB(’U = B) ﬁ) TfB = GB(fA) ﬂ) rvp = GB(U) E) RB(T'fB) E) RB(T'UB) E) CR

Since there is no % order between the puts and gets, the program has a race (be-
tween P4(v = A) and Pp(v = B)), which makes the outcome undefined under all MPI
memory models.

One way to guarantee a defined outcome for this program is to introduce epochs and

7%, t0 avoid conflicts. In the unified memory model, one could use an le epoch for the
two puts in line 14/15 and an /s epoch for the two gets in line 18/19. The separate model
would require separate epochs for lines 14 and 15. However, this would require an
exclusive window lock in order to implement the two-process Peterson lock algorithm,
and one would wonder why a single window lock would not be sufficient.

A second option would be to change the accesses to accumulates, which do not cause
conflicts. The MPI standard describes how to use Fetch_and_op() and Accumulate() to
simulate atomic get and put functionality. The two orders above would still be valid
(simply assuming P and G are atomic and thus do not cause races). In addition, one
would need to introduce a local =% edge between the gets in line 18/19 and the local
read in line 20; this can be achieved with a flush local fIl before line 20. The outcome
of this transformed program is now defined in terms of MPI. The full source code of
the correct lock is shown in Listing 3.

4.7.3. Correctness. The proof that the lock provides mutual exclusion fails because the
two put calls are not ordered with respect to the get calls. They could align in a way
that the get fetches the value before the put commits to memory (due to the missing
22 relation). This relation can be introduced by adding a fI action before line 16. In
addition, the two writes need to appear in order, so another m fI action is necessary at
before line 15.

Proof by contradiction: Assume processes A and B are in the critical region. The
program enables the following possible execution for process A.

Pa(fa=1) 2% fIL(B) 2% Pa(v = A) 2% FI5(B) 2% Ga(f5)Ga(f5) 22 Gav) 2% flla(B) 25 CR

The semantic rules for RMA imply the following.

cohb cohb

Pa(fa=1) 2% Py(v = A)] <% [Ga(f5), Gaw)] < [Ra(rfa), Ra(rva)] 2% CR

Similar, execution and consistency orders can be established for process B. Without

loss of generality, assume that Ps(v = A) commits after Pg(v = B), that is, Pg(v =

B) cohb, P4(v = A). This establishes the following order.

cohb cohb

Po(fs =1) <2 Pp(v = A)] <22 Pp(v = B) <2 [Ga(fs), Ga(v)] 2% [Ra(rfa), Ra(rva)] 22 CR

This implies that thread A cannot have entered the CR since it must have read
fB =landv = A.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 1, Publication date: March 2013.



1:20 T. Hoefler et al.

/] declarations omitted

if (rank == 0) size = 3; else size = 0;
MPI_Win_allocate(size, sizeof(int),

info_null , comm, &mem, &win);
/] flag = offsets 0,1; victim = offset 2
MPI_Win_lock_all(0, win); // start lock—all MPI RMA epoch
peterson_lock (win, mem); // acquire the lock
peterson_unlock(win, mem); // release the lock
10 MPI_Win_unlock_all(win); // end the lock—all MPI RMA epoch

OO0 Utk W

12 void peterson_lock (MPI.Win win) {
13 int j = l-rank;

14 MPI_Put(&one, ..., 0, rank, ..., win);
15 MPI_Win_flush (0);
16 MPI_Put(&rank, ..., 0, 2, ..., win);

17 MPI_Win _flush (0);
18 while () {

19 int rflag, rvict;

20 MPI_Get(&rflag, ..., O, j, ., win);
21 MPI_Get(&rvict, ..., 0, 2, ..., win);
22 MPI_Win _flush_local (0);

23 if (Irflag || rvict != rank) break;
24 }

25 }

26

27 wvoid peterson_unlock (MPI.Win win) {

28 MPI_Put(&zero, ..., 0, rank, ..., win);
29 }

Listing 3. Simple (correct) Peterson Lock in MPI-3

5. IMPLEMENTATION ISSUES

A wide variety of implementation choices exists based on the communication and ad-
dressing features provided by the system. Interconnects that provide only messaging
(e.g., Ethernet) require a remote software agent in order to perform RMA operations
in the target process’s memory, whereas networks that provide RDMA or active mes-
saging capabilities can rely on hardware and system-level agents to move data to and
from the target’s memory. Software agents allow the origin process to shift processing
that requires knowledge of the target process state (e.g., displacement unit and base
address) to the target, potentially improving the scalability of origin data structures
that track the target process state. In contrast, hardware and system-level agents con-
sume fewer computational resources but may require additional steps (e.g., memory
registration and handshaking) to configure the agent for communication with a given
target. If a hardware agent cannot perform the desired operation directly (e.g., double-
precision or complex accumulate), a software solution requiring additional processing
at the origin and/or target must be used.

5.1. Implementation on Message-Based Networks

Messaging-based networks require the use of a software agent at the target to process
RMA operations [Dinan et al. 2013]. These agents are implemented within the MPI
progress engine, and they can be triggered through one or more threads that dedicate
CPU resources to processing incoming messages in the progress engine. Spawning ad-
ditional threads ensures asynchronous progress for RMA operations. However, for ap-
plications that are not sensitive to asynchronous progress for performance and do not
rely on asynchronous data consistency in the unified model, an MPI implementation
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may allow communication helper threads to be disabled by using an info argument,
and processing of RMA operations can be performed by the target process when it
enters an MPI call.

This implementation effectively treats RMA operations as remote procedure calls,
in which the origin packages the arguments to the operation and ships them to the
target, where the operation will be applied. Such an implementation simplifies the
processing of complex RMA operations. Derived datatypes that describe the target
buffer can be serialized and shipped to the target process for use in applying the RMA
operation; complex operations in calls to accumulate (e.g., MPI_MAXLOC or the use of
MPI pair types) can be applied programmatically at the target; and atomic operations
can use system-supported atomic operations and synchronization mechanisms. In ad-
dition, generalized message processing at the target enables multiple opportunities for
performance optimization, through pipelining of operations and piggybacking of RMA
synchronization operations on top of RMA messages.

user MPI_1lib

ot send get
g get msg packet handler

\ A
receive
derived datatype

e
q get response
receive

Fig. 11. Origin (left) and target (right) actions taken when performing a get operation in a messaging-based
implementation of MPI RMA.

Active target synchronization can be handled efficiently through two-sided and col-
lective communication, as discussed in [Thakur et al. 2005]. For passive target syn-
chronization, a lock queue is managed at each process, and lock request messages can
be merged and piggybacked with RMA operations in many cases, for example, when
the user specifies MPT_MODE_NOCHECK or performs one operation within an epoch. Remote
completion for flush and unlock operations can be achieved by requesting a completion
acknowledgment from the target. For exclusive epochs, notification is not necessary be-
cause other processes will not be granted access to the target window until the current
epoch has completed at the target.

5.2. Implementation on RDMA Networks and Shared-Memory Systems

If the network supports direct remote memory access, then one can use those facilities
directly to implement MPI-3 RMA. In fact, one of the major strengths of the defined
interface is that the control path between the MPI call and the hardware can be kept
at a minimum (less than 200 CPU instructions for contiguous data). This enables high
message rates and asynchronous progression.

Window-creation operations must register the exposed memory locally in order
to initialize the virtual-to-physical memory translation tables in the network card.
This action may cause significant overhead [Mietke et al. 2006], however, so window-
creation routines should be used sparingly. The dynamic windows offer a more flexible
mechanism for adding memory to an existing window. Nevertheless, its costs may not
be trivial if the network hardware relies on memory registration.
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Synchronization operations depend on the capabilities of the underlying hardware.
If the hardware offers remote completion, then a fence can be implemented by com-
pleting all remote operations and followed by a barrier call. General active target syn-
chronization is more complex, and a scalable protocol requires correct matching of
access and exposure groups. An O(logp) time and space protocol is described in [Ger-
stenberger et al. 2013]. Passive target locks—global (lock all) and local (process lock)
shared and exclusive locks—can be implemented by using reader-writer global and
local locking [Mellor-Crummey and Scott 1991b].

Communication operations, such as put and get, can usually be translated directly
into RDMA calls. Some accumulates may be directly supported in hardware by remote
atomic operations. If they are not supported, they can be emulated with a simple (but
inefficient) protocol that locks the remote window, gets the data to the origin, performs
the operation locally, and puts the data back to the target. The window lock must
protect from accesses or updates to the memory that is targeted by the accumulate.

MPI datatypes can be handled easily if the hardware provides scatter/gather support
for RDMA operations. If not, datatypes can simply be split into the smallest contigu-
ous blocks from source to target buffers and issued as separate transfers. Depending
on the local and remote types, this approach may result in very small messages, and,
if the message-injection rate of the hardware is the limiting factor, protocols based on
pack/unpack may be used to utilize the network bandwidth more efficiently. Figure 5.2
shows how an RDMA put and get can be used to implement communication from dif-
ferent source datatypes to different target datatypes. Figure 12(a) shows a read of a
vector with three elements at the target into a vector with a different stride at the ori-
gin. Figure 12(b) shows a write of a vector that permutes the order of vector elements.
In both cases, a single MPI access results in multiple (three) low-level transfers.

0 1 0 1
get X
get pu »
%
get QQ
(a) Noncontiguous access using (b) Noncontiguous access using
RDMA get RDMA put

Fig. 12. Noncontiguous access using RDMA

6. USE CASES AND EXAMPLES

In this section, we discuss several possible uses of the new remote memory access in-
terface. Some of those applications can be implemented with other mechanisms, such
as traditional MPI-1 communication or even other new MPI-3 features such as neigh-
borhood collectives [Hoefler and Schneider 2012]. We note that RMA programming can
be faster because of the missing message-matching overhead; however, it is impossible
to make general statements about performance across a wide variety of architectures.
Here, we focus on MPI-3 RMA examples and provide some high-level hints to poten-
tial users. We often cannot provide detailed advice about which mechanism to use;
however, we encourage MPI vendors to provide detailed performance models for all
operations to help guide the user’s decisions.
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6.1. Stencil Boundary Exchange

Many applications follow the stencil parallel pattern, the basis of many PDE and ODE
computations. In this pattern, each process is running an iterative computation and
communicates with a set of neighbors in each iteration. The communication exchanges
the boundary zones of the local process domains. The neighborhood relations are often
fixed for several iterations (or, in fact, may never change). The computation generally
follows the bulk synchronous paradigm of repeated computation and communication
phases and may allow overlapping of computation and communication.

If each of the p processes communicates with a large number of neighbors % (k >
log(p)), then fence synchronization may be the best solution. However, if the number
of neighbors is relatively small (or constant) and the neighborhood relationship is not
changing often, then the general active target synchronization seems most natural.
Remote memory put operations are often faster than get. If the target address can be
computed at the origin, using put operations is often beneficial. Figure 13 shows an
example execution of the 1D stencil exchange with overlap using fence and general
active target synchronization. Compute inner is independent of the halo-zone values,
and compute outer then computes the boundary that depends on the halo zone.

0 1 2 3 : 0 1
fence ] ‘[ post(1) ][ post(0,2) |[ post(l,3) |[ post(2) |
>Ek >P_“t< >Pk 1 [ start(1) |[start(0,2) | [start(I,3) |[ start(2) |
colypute coljpute colpute colpute ! }ut< §l¢< put
ipner igner ipner ipner
fence ] compute compute compute compute
: infier inher infier infher
codpute codpute codpute cor gute [ compJ’.ete | comp]l.ete | comp]l.ete | compil.ete |
er er er er | [wait | [[wait ] [wait ] [wait ]

fence | H compute compute compute compute
\ ; ; . outer outer outer outer

Fig. 13. 1D stencil boundary exchange example using fence (left) and general active target synchronization
(right).

One can also use passive target synchronization to implement stencil codes. The
benefit of passive mode is that separate targets can be completed separately and a
target process can pipeline the computations that use the incoming data. Depending
on the operation, different protocols must be used. For put, the source process simply
puts the message into the target window and notifies the target (either by setting a
notification byte or with a message). In addition, the target has to notify the source
when the data can be overwritten in the next iteration in order to satisfy the output
dependence at the target window. In a get-based protocol, the origin would send a
notification to the target which then fetches the data and processes it. Both protocols
require two remote accesses (or messages), and the better protocol depends on the put
and get performance of the target system. Figure 14 shows put and get protocols for
passive target synchronization.

6.2. Fast Fourier Transform

Fast Fourier transforms (FFTs) are an important kernel in many scientific applica-
tions. The computation patterns can often be arranged in different layouts by using
twiddle factors. Here, we discuss a three-dimensional FFT (X x Y x Z) using a one-
dimensional data decomposition as a case study.
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Fig. 14. Put and get protocols for passive target mode synchronization.

In the decomposition, each process has a set of two-dimensional planes. If we assume
that the X dimension is distributed initially, each process can perform local Y-Z 2D
FFTs. Then, a global transpose step follows such that X is contiguous at each process
for performing the final 1D FFT. An optional transpose can be used to copy the data
back into the original layout if needed.

An optimized RMA implementation could issue puts to remote processes as soon as
the data becomes available (e.g., start all puts for a plane after the Y-Z transform of
this plane completed). After all planes have been started, all processes end the epoch
with a fence before moving to the X FF'T. This scheme enables high overlap of compu-
tation and communication. Figure 15 shows an example decomposition and execution
of a 3D FFT.

0 1 2 put
e\
put < put K \‘ 7 put
>put
N
- Put ?: P KA 7 >

77 ranstomm

Fig. 15. Example computation of a 3D FFT.

6.3. Distributed Locks

The new atomic operations added in MPI-3 make it possible to build asynchronous,
distributed, lock-free data structures. Such structures are central to a variety of scal-
able algorithms; the well-known MCS mutual exclusion algorithm [Mellor-Crummey
and Scott 1991a], for example, uses a lock-free queue. In this queue, the process at
the head holds the lock and forwards it to the next process when it has completed its
critical section. Thus, the queue supports two operations: removing the element at the
head of the queue and adding new elements to the tail.

The MCS algorithm uses a tail pointer in a fixed location at a specific process, which
is initialized to MPI_PROC_NULL. In addition, each process maintains a single queue el-
ement, which contains a next pointer that is also initialized to MPI_PROC_NULL. These
pointers are integer values that will be used to enqueue processes by rank. Thus an
MPI window is created, where each process posts an integer location that will be used
as its queue element, and the process hosting the mutex adds a second integer element
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that will be used as the tail pointer. Once the window has been created, all processes
call MPI_Win_lock_all to initiate shared-mode access, since accesses will be performed
by using only atomic operations.

As shown in Listing 4, when processes request the lock, they atomically exchange a
pointer to their list element (initialized to nil) with the tail pointer. If the tail pointer is
nil, the process has successfully acquired the lock. Otherwise, it updates the element
of the process that was the old list tail and waits for that process to forward the lock.
All concurrent accesses are performed by using atomic operations to enable a shared
lock access mode.

/* This store cannot occur concurrently with a remote write x/
mutex—>base [MCS MTX ELEM DISP] = MPI PROCNULL;
MPI_Win_sync (mutex—>window ) ;

MPIREPLACE, mutex—>window );

1
2
3
4
5 MPI_Fetch_and_op(&rank, &prev, MPIINT, mutex—>tail_rank , MCS MTX TAIL DISP,
6
7 MPI_Win_flush (mutex—>tail_rank , mutex—>window);

8

9

/* If there was a previous tail, update their next pointer and wait for

10 x notification. Otherwise, the mutex was successfully acquired. x/

11 if (prev != MPIPROCNULL) {

12 MPI_Status status;

13

14 MPI_Accumulate(&rank, 1, MPIINT, prev, MCSMTXELEMDISP, 1, MPIINT,
15 MPIREPLACE, mutex—>window );

16 MPI_Win_flush(prev, mutex—>window);

17 MPI_Recv(NULL, 0, MPIBYTE, prev, MCSMUTEXTAG, mutex—>comm, &status);
18 }

Listing 4. MCS mutex lock algorithm.

Similarly, when releasing the lock, shown in Listing 5, processes perform an atomic
compare-and-swap of the tail pointer. If the process releasing the lock is still at the
tail of the queue, the tail pointer is reset to nil. If not, the process forwards the lock
to the next process in the queue, potentially waiting for that process to update the
releasing process’s queue element. As an optimization, processes can first check their
local queue element to determine whether the lock can be forwarded without checking
the tail pointer.

1 /* Read my next pointer. FOP is used since another process may write to
2 x this location concurrent with this read. x*/

3 MPI_Fetch_and_op (NULL, &next, MPIINT, rank, MCSMTXELEM DISP, MPINO.OP,
4 mutex—>window ) ;

5 MPI_Win_flush(rank, mutex—>window);
6
7
8
9

if (next == MPIPROCNULL) {
int tail, nil = MPIPROCNULL;

10 /* Check if we are the at the tail of the lock queue. If so, we’re
11 x done. If not, we need to send notification. x/

12 MPI_Compare_and_swap(&nil , &rank, &tail , MPI.INT, mutex—>tail_rank,
13 MCS_MTX TAIL DISP, mutex—>window );

14 MPI_Win_flush (mutex—>tail_rank , mutex—>window );

15

16 if (tail != rank) {

17 for (;;) {

18 int flag;

19

20 MPI_Fetch_and_op (NULL, &next, MPIINT, rank, MCSMTXELEM DISP,
21 MPINO.OP, mutex—>window );

22 MPI_Win_flush (rank, mutex—>window);
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23 if (next !'= MPIPROCNULL) break;
24y} 3

26 /+ Notify the next waiting process x*/

27 if (next != MPIPROCNULL) {

28 MPI_Send (NULL, 0, MPIBYTE, next, MCSMUTEXTAG, mutex—>comm);
29 }

Listing 5. MCS mutex unlock algorithm.

7. DISCUSSION AND CONCLUSIONS

In this paper we described the MPI-3 one-sided interface, presented the semantics in
a semi-formal way, and showed several use cases. This new interface is expected to de-
liver highest performance on novel network architectures that offer RDMA access di-
rectly in hardware. While being extremely efficient and close to the hardware, the new
interface still offers several convenient and easy-to-use programming constructs such
as process groups, exposed memory abstraction (windows), MPI datatypes, and dif-
ferent synchronization models. The RMA interface separates communication and syn-
chronization and offers different collective and noncollective synchronization modes.
In addition, it allows the programmer to choose between implicit notification in ac-
tive target mode and explicit notification in passive target mode. This large variety of
options allows users to create complex programs.

Our formalization of remote access semantics allows one to reason about complex
applications written in MPI-3 RMA. We show how to prove whether programs have
defined outcomes, and one can easily derive deadlock conditions from our specification
of happens-before orders. Thus, we expect that the semantics will lead to powerful
tools to support programmers in using MPI for RMA.

We also demonstrated some application examples for the use of MPI-3 RMA. This
collection covers several important classes but is, by far, not complete.
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