
Accelerating Performance of NekCEM with MPI and CUDA

Azamat Mametjanov, Misun Min, Boyana Norris and Paul Hovland
Mathematics and Computer Science Division

Argonne National Laboratory

Abstract

Modern supercomputing architectures are increasing the number of cores per node by adding GPU co-

processors to increase instruction and memory throughput. Compute-intensive applications need to take

advantage of higher throughput by employing both distributed and shared memory programming models.

In this paper, we describe our approach for accelerating Computational ElectroMagnetics application

NekCEM using MPI and CUDA programming models and demonstrate its performance on the leadership-

class computing systems. The resulting code kernels can potentially be reused in other applications within

the Nek family of codes.

1 Introduction

NekCEM is an open-source, scalable implementation of high-order methods for electromagnetic (EM) device
simulations [1]. One of the primary applications is a simulation of an undulator – a high-energy EM device
that bends electrons forcing them to radiate intense and concentrated energy for use in particle accelerators
and colliders. By enabling the simulation of EM dynamics, NekCEM complements and strengthens the
theoretical and experimental research in high-energy physics.

NekCEM uses an MPI-based single-program multiple-data (SPMD) programming model, where each
MPI process executes on its piece of a decomposed domain and cooperates with neighboring processes by
exchanging messages for process boundary data points. The calculations are done using spectral element
discontinuous Galerkin (SEDG) scheme, where electric and magnetic field values on just the domain boundary
faces are exchanged between neighbors. Upon completion of face data exchange, a new time-step calculation
is initiated with the new data from neighbors.

Due to the relatively small data exchange, the execution time of a simulation run is computationally
bound such that for most runs 25 to 50% of overall time is spent in a matrix-matrix multiplication routine
(mxm). This is due to the computational intensity of looping through each mesh element and calculating
the local gradient along each dimension of the modeled domain. Therefore, it is essential to accelerate the
execution of mxm operation to improve the overall performance of application runs.

In this paper, our contributions are as follows

1. We describe the parallelization of mxm routine using CUDA threads

2. Due to the inherent characteristics of a GPU as a co-processor with its own memory hierarchy, it is
insu�cient to simply port the code for execution on the GPU. We describe several optimizations to
obtain additional performance improvements.

3. Finally, acceleration of NekCEM is intended to improve other codes in the Nek-family of applications
that use a similar computational core.

2 Background

In this section, we describe the existing structure of NekCEM to observe performance bottlenecks and
opportunities for acceleration.



An application run consists of three stages: setup, solve and checkpoint stages. The setup stage initializes
processors, reads and distributes mesh data to the processors, and assigns geometric coordinates to mesh
points. The solve stage performs time-stepping iterations and evaluates spatial operators at each time step.
The checkpoint stage produces output files and checkpoints global field data.

The solver stage invokes a 5-stage fourth order Runge-Kutta time-stepping routine, which was previously
shown to produce favorable results in comparison with those from low-order methods [2][1]. In this routine,
the spatial Maxwell operator is invoked five times with the corresponding pre- and post-processing of operator
results. The operator itself computes field values within a processor’s domain, computes face values and
exchanges them with neighboring processors.

The most computationally intensive routine within the operator is the calculation of weighted curl values.
Here, for each EM field along mesh dimensions (e.g. E

x

, E
y

, E
z

, H
x

, H
y

, H
z

in 3-D) and for each mesh element
e, the routine local grad3 is invoked (see the following figure).

3 Approach

4 Analysis

5 Related Work

6 Conclusion

Acknowledgments

This work was supported by the U.S. Department of Energy O�ce of Science under Contract No. DE-AC02-
06CH11357.

References

[1] Misun Min and Paul Fischer. Spectral-element discontinuous galerkin simulations with a moving window
algorithm for wakefield calculations. In Proceedings of Particle Accelerator Conference (PAC’09), 2009.

[2] Misun Min, Paul Fischer, and Y. C. Chae. Wake fields for tesla cavity structures: Spectral element
discontinuous galerkin simulations. In Proceedings of SRF (SRF’07), 2009.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy O�ce of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

2


