
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Machine-Learning-Based Load Balancing for Community
Ice Code Component in CESM

Prasanna Balaprakash12, Yuri Alexeev2, Sheri Mickelson1, Sven
Leyffer1, Robert Jacob1, and Anthony Craig3

Mathematics and Computer Science Division

Preprint ANL/MCS-P4070-0413

January 2015

2 Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, IL 60439

3 Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439
4 UCAR, Seattle, WA

Machine-Learning-Based Load Balancing for
Community Ice Code Component in CESM

Prasanna Balaprakash1,2, Yuri Alexeev2, Sheri A. Mickelson1, Sven Leyffer1,
Robert Jacob1, and Anthony Craig3

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL

2 Leadership Computing Facility, Argonne National Laboratory, Argonne, IL
3 UCAR, Seattle, WA

Abstract. Load balancing scientific codes on massively parallel archi-
tectures is becoming an increasingly challenging task. In this paper, we
focus on the Community Earth System Model, a widely used climate
modeling code. It comprises six components each of which exhibits differ-
ent scalability patterns. Previously, an analytical performance model has
been used to find optimal load-balancing parameter configurations for
each component. Nevertheless, for the Community Ice Code component,
the analytical performance model is too restrictive to capture its scal-
ability patterns. We therefore developed machine-learning-based load-
balancing algorithm. It involves fitting a surrogate model to a small num-
ber of load-balancing configurations and their corresponding runtimes.
This model is then used to find high-quality parameter configurations.
Compared with the current practice of expert-knowledge-based enumera-
tion over feasible configurations, the machine-learning-based load-balan-
cing algorithm requires six times fewer evaluations to find the optimal
configuration.

1 Introduction

The Community Earth System Model (CESM) is one of the most widely used
climate models in the world. Results from this model are a major part of the
Intergovernmental Panel on Climate Change assessment reports [1]. CESM1.1.1
consists of six model components—atmosphere, ocean, sea-ice (CICE), land,
river, and land-ice models—that communicate through a coupler. Each of the
CESM model components has different scalability patterns and performance
characteristics. In this paper, we focus on static load-balancing of computation,
which is usually simple to implement with negligible overhead, making it suit-
able for “fine-grained” parallelism consisting of many small tasks. Previously,
the load-balancing problem has been formulated as a mixed-integer nonlinear
optimization problem and solved by using the optimization solver MINOTAUR
[2]. This is a heuristic method that consists of gathering benchmarking data,
calibrating a performance model using the data, and making decisions about
optimal allocation by using the model. The performance model predicts the exe-
cution time of the program running in parallel as a function of problem size and

the number of processors employed. Nonetheless, several challenges in intramodel
load balancing for the CICE computations occur only where sea ice is located
and the sun is shining. This restriction presents a load-balance problem because
processors are allocated across the entire Earth grid and several locations on the
grid that do not have any sea ice [3]. The poor fit of the CICE results in ineffi-
cient processor allocations to all components—incorrect allocation of the CICE
affects all other allocations because the total number of processors available to
components is a fixed number. This is the primary motivation for us to develop
sophisticated approaches for load balancing the CICE component of the CESM.

Recently, machine-learning methods [4] have received considerable attention
for tuning performance of large scientific codes and kernels on high-performance
computing systems. In particular, supervised machine-learning tries to learn the
relationship between the input and the output of an unknown response function
by fitting a model from few representative examples. When the model is accurate
enough, it can predict the output at new unseen inputs, which provides numerous
benefits, in particular when the evaluation becomes expensive.

In this paper, we present a machine-learning-based approach for static load-
balancing problems, and we apply it to find high-quality parameter configura-
tions for load balancing the CICE component of the CESM on IBM Blue Gene/P
(BG/P). The novelty of the proposed algorithm consists of iteratively using the
model to choose configurations with shorter predicted runtime for evaluation on
the target architecture. We emphasize, however, that the algorithm is general and
not specific to the CESM and/or BG/P. The contributions of the paper are as
follows: 1) a machine-learning-based algorithm for static load-balancing problem,
2) deployment of a machine-learning method as a diagnostic tool for analyzing
the sensitivity of the load-balancing parameters on the execution time, 3) empir-
ical analysis of several state-of-the-art machine-learning methods for modeling
the relationship between the load-balancing parameters and their corresponding
execution time, and 4) 6x savings in core-hour usage for load balancing the CICE
component of the CESM on BG/P.

2 The CICE Component on BG/P

For the CICE component, we need to find the optimal load-balancing parameter
configuration x∗ with the shortest the runtime (f∗) for task counts ∈ {80, 128,
160, 256, 320, 376, 512, 640, 800, 1024}. The task count corresponds to number
of MPI tasks; the number of OpenMP threads per MPI task is set to four be-
cause of memory restrictions on BG/P. The CICE component comprises six pa-
rameters. Three integer parameters, namely, maximum number of CICE blocks,
max.block; the size of a CICE block in the first and second horizontal dimensions
block.x and block.y respectively. Two categorical parameters that determine
the decomposition strategy, decomp.typ ∈ {blkrobin, roundrobin, spacecurve,
blkcart, cartesian} and decomp.set ∈ {null, slenderX1, slenderX1}. A binary
parameter mask.h ∈ {0,1} that specifies to run the code with or without halo.

Table 1. Decomposition strategies and their corresponding block.x and
block.y sizes

decomp.set decomp.typ block.x block.y

null blkrobin, blkcart 1, 2, 4, 8 24, 48, 96,
roundrobin, spacecurve 192, 3840

slenderX1 cartesian 4, 5, 8, 10 4 6 8 12
slenderX2

The constraints that define a feasible set D of configurations are as follows.
The parameter max.block ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16,
20, 24, 26, 30, 32, 40, 48, 64} is determined by computing (CICE X Grid Size
× CICE Y Grid Size) / (block.x × block.y × task count). The feasible values
for decomp.set, decomp.typ, block.x, and block.y are constrained as shown
in Table 1. The decomposition strategies have different rules, and not all com-
binations of block sizes are possible. The blkcart method must have a multiple
of four blocks per compute core. The spacecurve method must have 2, 3, and
5 only in max.block. The slenderX1 method requires that the block.x multi-
plied by the task count divide evenly into the CICE X grid size. The value of
block.y must also be divisible by the CICE Y grid size. The slenderX2 method
requires that the block.x multiplied by the task count be divisible by the CICE
X grid size multiplied by 2. The decomposition also requires that the block.y

multiplied by 2 divide evenly into the CICE Y grid size.

3 Machine-Learning Based Load-Balancing Algorithm

Given a set of training data {(x1, y1)), . . . , (xl, yl))}, where xi ∈ D and yi =
f(xi) ∈ R are the load-balancing parameter configuration and its corresponding
runtime, respectively, the supervised machine-learning approach includes finding
a surrogate function h for the expensive f such that the difference between f(xi)
and h(xi) is minimal for ∀i ∈ {1, . . . , l}. The function h, which is an empirical
performance model, can be used to predict the runtimes of unevaluated x′ ∈
D. The key idea behind the machine-learning-based load-balancing algorithm
is iteratively using the model to choose configurations with shorter predicted
runtime for evaluation and retrain the model with the evaluated configurations.

The pseudo-code is shown in Algorithm 1. The symbols ∪ and − denote set
union and difference operators, respectively. Given a task count c, a pool Xp

of unevaluated configurations of task count c, the maximum number nmax of
allowed evaluations, and initial sample size ns, the algorithm proceeds in two
phases: parallel initialization phase and sequential iterative phase. In the ini-
tialization phase, the algorithm first samples ns configurations at random and
evaluates them in parallel to obtain their corresponding runtimes. A supervised
learning method uses these points as a training set to build a predictive model.
The sequential iterative phase consists of predicting the runtimes of all remain-
ing unevaluated configurations using the model, evaluating the configuration
with shortest predicted runtime, and retraining the model with the evaluation

Algorithm 1 Pseudo-code for the machine-learning-based load-balancing algo-
rithm
Input: task count c, configuration pool Xp of task count c, max evaluations nmax,

initial sample size ns

1 Xout ← sample min{ns, nmax} distinct configurations from Xp

2 Yout ← Evaluate Parallel(c, Xout)
3 M ← fit(Xout, Yout)
4 Xp ← Xp −Xout

5 for i← ns + 1 to nmax do
6 Yp ← predict(M, Xp)
7 xi ← x ∈ Xp with the shortest runtime in Yp

8 yi ← Evaluate(c, xi)
9 retrainM with (xi, yi)

10 Xout ← Xout ∪ xi; Yout ← Yout ∪ yi
11 Xp ← Xp − xi

12 end for

Output: x ∈ Xout with the shortest runtime in Yout

results. Without loss of generality, Algorithm 1 can be run in parallel for each
task count c ∈ C. Because the best supervised learning algorithms depends
on the relationship between the input and output, we test four state-of-the-art
machine-learning algorithms as candidates for Algorithm 1: random forest (RF)
[5], support vector machines (SVM) [6], Gaussian process regression (GP) [7],
and neural networks (NN) [8].

RF belongs to the class of recursive partitioning methods [9]. They are widely
used tools for predictive modeling in many scientific fields. These methods re-
cursively partition the multi-dimensional input space D′ of training points into
a number of hyper rectangles. The partition is done in such a way that input
configurations with similar outputs fall within the same rectangle. The partition
gives rise to a set of if-else rules that can be represented as a decision tree. For
each hyper rectangle, a constant value is assigned—typically this is an average
over the output values that fall within the given hyper rectangle. An example
tree which is obtained on the CICE component data is shown in Figure 1. Given
an unseen input x∗ ∈ D∗ ⊂ D, the algorithm uses the if-else rule to find the leaf
and returns the corresponding constant value as the predicted value. RF uses
a collection of regression trees, where each tree is obtained by the principle of
recursive partitioning. For each tree generation, the algorithm takes a subsample
of random points from the given training set. The subsample is either a boot-
strap sample of the same size drawn with replacement or a subset of smaller
size, drawn without replacement. Due to the randomness in the sampling, each
subsample differs from each other. Given that each individual tree is build on
the subsample, it can differ significantly from other trees. For a given x∗, each
tree can make a prediction with respect to its own subsample. The power of RF
comes from the aggregation of predicted output values from different trees and

the natural way of handling the categorical parameters. Consequently, it can
deal with large dimensional inputs even in the presence of complex interactions
and non-linearity.

Fig. 1. Illustration of a decision tree obtained via recursive partitioning on CICE
component data for the task count 80.

SVM for nonlinear regression consists of mapping the given D′ of the training
points into a high dimensional feature space and performing linear regression in
the feature space:

g(D′) = 〈w · ψ(D′)〉+ b, (1)

where ψ : Rn → F being the nonlinear transformation, b being the bias term,
and w ∈ F . Finding g(D′) consists in specifying a loss function that need to
be optimized and a kernel function k(·) for nonlinearity transformation ψ. For
the former, we use ε intensive-loss function in which zero penalty is added to
the loss function when predicted value of a training point is within ε from its
observed value. For the latter, we use the widely used Gaussian radial basis
function kernel. Now, Equation 1 can be written as follows:

g(D′) =

l∑
i=1

αi × [k(xi, x1), . . . , k(xi, xl)] + b, (2)

k(xi, xj) = exp

(
−||xi − xj ||

2
2

2σ2

)
, (3)

where coefficients αi can be found by solving ε intensive-loss function, ||x−x′||22
is squared Euclidean distance that decreases with an increase in dissimilarity
between xi and xj , and σ is a parameter of the kernel.

GP follows a probabilistic approach for regression. Given a training data
of l points, GP assumes that Y = [y1, . . . , yl] as a sample from a l-variate
Gaussian distribution. For an unseen input x∗, the probability p(y∗|Y) follows
the Gaussian distribution N with a user defined kernel function k(·):

y∗|Y ∼ N (K∗K
−1Y,K∗∗ −K∗K

−1KT
∗), (4)

where

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn),

 (5)

K∗ = [k(x∗, x1), . . . , k(x∗, xn)],

K∗∗ = k(x∗, x∗).

Note that T represents matrix transpose operation. For k(·), we use the Gaussian
radial basis function as in Equation 3. The predicted value ŷ∗ and variance
var(y∗) of y∗ are given by the parameters of N :

ŷ∗ = K∗K
−1Y,

var(y∗) = K∗∗ −K∗K
−1KT

∗ .
(6)

NN is a classical and one of most widely used supervised learning approaches.
We focus on a single-hidden-layer neural network, an effective variant that com-
prises one input layer, one hidden layers, and one output layer. The nonlinear
regression performed by NN can be written as follows:

Y = h(D′) = Bϕ(AD′ + a) + b,

where A and is the matrix of weights and bias vector for the first layer (between
input and hidden layer) and B and b are the weight matrix and the bias vector
of the second layer (between hidden and output layer). The function ϕ denotes
an element wise nonlinearity. The training in neural network consists in adapting
all the weights and biases A, B, a, and b to their optimal values for the training
set {(x1, y1)), . . . , (xl, yl))}. The optimization problem consists in minimizing the

squared reconstruction error
∑l

i=1 ||h(xi)− yi||2 and it can be solved effectively
with back-propagation algorithm.

4 Experimental Results

We evaluated the effectiveness of the proposed load-balancing algorithm with
the four machine-learning methods. In addition, we include two approaches in
the comparison: Expert-knowledge-based enumeration (EE) and random search

Fig. 2. Sensitivity analysis of the load-balancing parameters on the runtime
of the CICE component for different task counts. For each parameter, the plot
shows the percentage increase in mean squared error (%IncMSE) when the values
of the corresponding parameter gets imputed.

(RS). EE is the current practice for finding the optimal load-balancing config-
uration for the CICE component of the CESM. In addition to the application-
specific constraints, expert knowledge of the code and the architecture were used
to prune the feasible set of configurations D for the CICE component. As a re-
sult, for each task count c, there are 50 to 60 (|Dc|) feasible configurations; in
total, for all the 10 task counts, there are |D| = 653 parameter configurations.
This method evaluates all 653 parameter configurations. Moreover, we followed
the current practice for defining the runtime f(x) for x: the code was run twice
with the same x and the shortest runtime was taken as f(x). In RS, for each task
count c, parameter configurations were sampled at random without replacement
from Dc and were evaluated. To minimize the impact of randomness involved
in the initialization procedure of Algorithm 1 and in the five approaches, we
repeated all of them 10 times, each with a different random seed. Moreover, we
stored the runtime of each configuration from EE in a lookup table and reused
the results for running all other algorithms. For Algorithm 1, for each task count
c, Dc obtained in the EE approach was given as the configuration pool Xp, and
the initial sample size ns was set to 5. The approaches were implemented and
run in the R programming language and environment [10] version 2.15.2 using
the nnet (NN), kernlab (SVM, GP), and randomForest (RF) packages. The
default parameter values were used for each method. Experiments were carried
out on Intrepid, a BG/P supercomputer at Argonne.

Sensitivity analysis: First, we present an empirical analysis to explain why
the previously proposed analytical performance model fails to predict the run-
time of the CICE component and why distinct models may be constructed for
each task count. For this purpose, we used the RF method to analyze the im-
pact of each load-balancing parameter on the resulting runtimes. For the train-
ing data, we randomly sampled 50% of the data (parameter configuration and
runtimes) obtained with EE approach. An RF model was fitted on this train-
ing set. The mean squared error (MSE) on the original training set is given

by
∑l

i=1(f(xi)−f̂(xi))
2

l , where l is the number of training points, and f(xi) and

f̂(xi) are the original and predicted runtime value of parameter configuration
xi, respectively. In order to assess the impact of a parameter m, the values of
m in the training set were randomly permuted. Again, an RF model was fitted
on this imputed training set, and the mean squared error was computed. If a
parameter m is important, then permuting the values of m should affect the pre-
diction accuracy significantly and eventually increase the mean squared error.
The results are shown in Figure 2. We observe that the trend in the parame-
ter importance is not the same over all the task counts. For task counts up to
320, decomp.set and/or decomp.type have a strong impact on the runtimes; for
large task counts, they become relatively less important—max.block, block.x,
and block.y have a strong impact on the runtime. For 1024, only max.block,
block.x, and block.y have an impact on the runtime; the other three param-
eters have negative %IncMSE, suggesting that they do not affect the runtime.
In summary, the impact of parameter values on the runtimes and the type of
nonlinear interactions between them change with an increase in the task counts.
The previously developed analytical model does not take this effect into account
for the CICE component, and consequently it falls short in runtime prediction.
Moreover, if we build a single model for all task counts with task count being an
input to the model, we might loose these task-count-specific interactions, thus
affecting the runtime quality of the obtained configurations.

Comparison between variants: With EE as a baseline, we next examined
the effectiveness of the five approaches in finding the optimal load-balancing
configuration for the CICE component. As a measure of the effectiveness of each
variant, we use the percentage deviation from the optimal runtime (%dev). Given

a variant v and task count c, this is given by
fc
v−f

c
opt

fc
opt
×100, where f cv is the shortest

runtime obtained by variant v and f copt is the optimal runtime obtained from EE.
Because we repeated each method 10 times to reduce the impact of randomness,
we consider the mean percentage deviation from the optimal runtime of a variant
as %dev averaged over 10 repetitions. We also used a statistical t-test to check
whether the observed differences in the %dev of the variants are significant.
Figure 3 shows the comparison between the approaches. The results show that
RS requires almost the same number of evaluations as does EE for all task counts.
These results indicate that the problem of finding high-quality configurations is
not an easy task; clearly, we need more sophisticated approaches to find high-
quality configurations within fewer evaluations. The variants of Algorithm 1
obtain optimal configurations with fewer evaluations, and they outperform RS.

Fig. 3. Comparison between approaches for different task counts of the CICE
component. The lines represent the mean percentage deviation from the optimal
runtime as a function of the number of evaluated configurations.

NN completely dominates all other variants and RS. The key advantage of NN
comes from its requiring less than 10 evaluations to find the optimal parameter
configuration on 9 out of 10 task counts—only on c = 376, does it require 15
evaluations.

In Table 2, we analyze %dev of each variant, when it is allowed to perform
only 10 evaluations (for machine-learning variants this corresponds to five eval-
uations after the initialization). The results show that mean %dev of NN is zero
and it lower than all other variants. For all but one task counts, the observed
differences are significant in statistical sense. NN fails to find optimal runtime
for c = 376, where it is 6% away from the optimal runtime and it is comparable
to other approaches.

As soon as a new evaluation becomes available, each machine-learning vari-
ants is retrained on all the available input-output pairs. This is the most compu-
tationally expensive part in the iterative phase of Algorithm 1. In Figure 4, we
analyze the retraining time required by the machine-learning variants after each
evaluation. The reported time is an average time over all repetitions and task
count. The results show that NN outperforms all other variants in retraining
time. The time remains fairly constant throughout with an average of 0.5 sec-
onds. This can be attributed the effective back propagation algorithm adopted in
the underlying optimization routine. For GP and SVM, there is a slight increase
in retraining time. Nonetheless, the retraining time of RF increases linearly with
an increase in the number of training points suggesting that it might not be suit-

able for sequential learning with large number of points. Note that there exists
some advanced algorithm-specific techniques to avoid retraining from scratch,
however, none of the machine-learning methods adopts such technique in our
study. Furthermore, in all these algorithms, the time to predict an unseen input
x∗ is negligible (in the order of milli to micro seconds) because they belong to a
class of eager learning algorithms as opposed to lazy learning algorithms where
a model is built only when x∗ needs to be predicted.

Fig. 4. Time taken by various machine-learning methods in Algorithm 1 for
retraining after each evaluation.

5 Related work

Compared with dynamic strategies [11,12,13,14,15,16], static load-balancing ap-
proaches have received relatively less attention in the literature. The problem
of static load-balancing can be formulated as a graph-partitioning problem that
belongs to a class of NP-hard problem for which finding optimal solution is com-
putationally hard. Many efficient algorithms are developed to tackle this prob-
lem in operations research community and are used for static load-balancing.
These algorithms can be grouped into geometry-based algorithms, graph-based
algorithms, and partitioning algorithms [17]. In [18], the authors carried out
an experimental comparison of eleven static load-balancing algorithms for het-
erogeneous distributed computing systems. They showed the relatively simple
Min-Min heuristic performs well in comparison to the other techniques such as
simulated annealing and genetic algorithms, and tabu search. However, the state-
of-the-art high-performing algorithms comprises hybrid algorithms, multilevel

Table 2. Mean percentage deviation from the optimal runtime averaged over 10
replications with the maximum budget of 10 evaluations

Task count NN RF GP SVM RS

80 0.000 12.668 15.032 18.089 20.246
128 0.000 3.269 7.620 5.177 12.846
160 0.000 12.649 8.050 6.989 8.563
256 0.000 4.575 8.468 7.340 10.024
320 0.000 2.208 8.818 6.709 13.105
376 6.005 3.186 8.132 7.206 7.456
512 0.000 10.269 11.794 6.472 9.090
640 0.000 2.674 20.058 14.072 10.292
800 0.000 7.435 5.996 6.182 8.770
1024 0.000 6.645 4.985 5.966 13.241

Note: The value is typeset in italics (bold) when a variant is significantly worse (better)
than NN according to a t-test with significance (alpha) level 0.05.

approaches, and parallel implementations of the above algorithms [17]. We refer
the reader to [17,19] for a survey for static load balancing approaches. Recently,
in [20], a genetic algorithm was adopted for tasks scheduling and load balanc-
ing in heterogeneous parallel multiprocessor system. Nonetheless, the domain-
specific constraints of the CICE component make the search problem hard and
prevents the straightforward adoption of heuristic search algorithms [21]. In order
to handle these constraints effectively, the search algorithms need a sophisticated
constraint-handling mechanism; consequently they loose generality and become
problem-specific.

The idea of using machine learning in load-balancing has received consid-
erable attention for dynamic strategies. Examples include neural network [22],
decision tree [23], and reinforcement learning approaches [24]. However, to the
best of our knowledge, the adoption of machine-learning approaches for appli-
cation and architecture specific static load-balancing has not been investigated
before. Finally, this is the first work on the use of machine learning approaches
for analyzing the sensitivity of the load-balancing parameters.

6 Summary and Outlook

We developed a machine-learning-based approach for static load-balancing prob-
lem and applied it for load balancing the CICE component of the CESM run-
ning on BG/P. We deployed a machine-learning method as a diagnostic tool for
analyzing the sensitivity of the load-balancing parameters on the runtime and
provided an explanation for inadequacy of the analytical performance model.
The main contribution of the paper is the development and empirical analysis
of the machine-learning-based algorithm that allowed us to load balance the
CICE component of the CESM on BG/P with significant savings in core-hour
usage. Compared to the current practice of expert-knowledge-based enumeration

over feasible parameter configurations, we showed that the proposed algorithm
requires 6x fewer evaluations to find the optimal load-balancing configurations.

A inherent limitation of our algorithm consists in the sequential evaluation
of parameter configurations that will affect the wall clock time. To address this
issue, we will develop unsupervised learning methods to partition the feasible set
into a number of similar groups and learning those regions in parallel. To that
end, we will investigate parallel machine-learning algorithms. Since the inefficient
processor allocations of CICE component can affect overall scaling of the CESM,
we will use the proposed approach and assess the overall performance of the
CESM. Furthermore, two projects, Climate-Science Computational End Station
Development and Attributing Changes in the Risk of Extreme Weather and
Climate, granted computational time on ALCF’s BG/P and Q supercomputers
under the DOE INCITE program will directly benefit from this work. We are
planning to investigate the effectiveness of the proposed algorithm for load-
balancing various climate simulations in these projects.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computing Research, under Contract DE-AC02-06CH11357. An award
of computer time was provided by the Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) program. This research used resources of the
Argonne Leadership Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357.

References

1. B. Metz, O. Davidson, P. Bosch, R. Dave, and L. Meyer, “Contribution of work-
ing group III to the fourth assessment report of the Intergovernmental Panel on
Climate Change,” 2007.

2. “MINOTAUR: A toolkit for MINLP,” http://wiki.mcs.anl.gov/minotaur/index.
php/Main Page.

3. 2013, http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.
pdf.

4. C. M. Bishop et al., Pattern Recognition and Machine Learning. Springer, New
York, 2006, vol. 1.

5. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
6. M. A. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support vector

machines,” Intelligent Systems and Their Applications, IEEE, vol. 13, no. 4, pp.
18–28, 1998.

7. C. E. Rasmussen and C. K. Williams, “Gaussian processes for machine learning
(adaptive computation and machine learning),” 2005.

8. S. Haykin, Neural Networks: A Comprehensive Foundation, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1994.

9. E. J. Atkinson and T. M. Therneau, “An introduction to recursive partitioning
using the rpart routines,” Rochester: Mayo Foundation, 2000.

http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.pdf
http://www.cesm.ucar.edu/events/ws.2012/Presentations/SEWG2/craig.pdf

10. R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2013. [Online]. Available:
http://www.r-project.org

11. L. V. Kale and S. Krishnan, CHARM++: a portable concurrent object oriented
system based on C++. ACM, 1993, vol. 28, no. 10.

12. K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, “A load balancing
framework for adaptive and asynchronous applications,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 15, no. 2, pp. 183–192, 2004.

13. K. J. Barker and N. P. Chrisochoides, “An evaluation of a framework for the
dynamic load balancing of highly adaptive and irregular parallel applications,” in
Proceedings of the 2003 ACM/IEEE conference on Supercomputing. ACM, 2003,
p. 45.

14. C. Huang, G. Zheng, L. Kalé, and S. Kumar, “Performance evaluation of adaptive
mpi,” in Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming. ACM, 2006, pp. 12–21.

15. C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero, “A dynamic scheduler for
balancing hpc applications,” in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, 2008, p. 41.

16. R. Sharma and P. Kanungo, “Dynamic load balancing algorithm for heterogeneous
multi-core processors cluster,” in Communication Systems and Network Technolo-
gies (CSNT), 2014 Fourth International Conference on. IEEE, 2014, pp. 288–292.

17. Y. Hu and R. Blake, “Load balancing for unstructured mesh applications,” Parallel
and Distributed Computing Practices, vol. 2, no. 3, pp. 117–148, 1999.

18. T. D. Braun et al., “A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems,” Journal
of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837, 2001.

19. S. Ichikawa and S. Yamashita, “Static load balancing of parallel PDE solver for
distributed computing environment,” in Proc. 13th Int’l Conf. Parallel and Dis-
tributed Computing Systems, 2000, pp. 399–405.

20. M. Effatparvar and M. Garshasbi, “A genetic algorithm for static load balancing
in parallel heterogeneous systems,” Procedia-Social and Behavioral Sciences, vol.
129, pp. 358–364, 2014.

21. P. Balaprakash, S. M. Wild, and P. D. Hovland, “Can search algorithms save large-
scale automatic performance tuning?” in Int. Conf. on Computational Science,
2011.

22. Y. Jia and J.-Z. Sun, “A load balance service based on probabilistic neural net-
work,” in International Conference on Machine Learning and Cybernetics, vol. 3.
IEEE, 2003, pp. 1333–1336.

23. M. A. Dantas and A. R. Pinto, “A load balancing approach based on a genetic ma-
chine learning algorithm,” in 19th International Symposium on High Performance
Computing Systems and Applications (HPCS 2005). IEEE, 2005, pp. 124–130.

24. T. Helmy and S. Shahab, “Machine learning-based adaptive load balancing frame-
work for distributed object computing,” in Advances in Grid and Pervasive Com-
puting. Springer, 2006, pp. 488–497.

http://www.r-project.org

The submitted manuscript has been created by
the UChicago Argonne, LLC, Operator of Ar-
gonne National Laboratory (Argonne) under Con-
tracts No. DE-AC02-06CH11357 and DE-FG02-
05ER25694 with the U.S. Department of Energy.
The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to
the public, and perform publicly and display pub-
licly, by or on behalf of the Government. The NCAR
is sponsored by the National Science Foundation.

	Machine-Learning-Based Load Balancing for Community Ice Code Component in CESM
	Prasanna Balaprakash, Yuri Alexeev, Sheri A. Mickelson, Sven Leyffer, Robert Jacob, and Anthony Craig

