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Abstract

We present a spectral-element discontinuous Galerkin lattice Boltzmann method
to solve incompressible natural convection flows based on the Bousinessq ap-
proximation. A passive-scalar thermal lattice Boltzmann model is used to
resolve flows for variable Prandtl number. In our model, we solve the lat-
tice Boltzmann equation for the velocity field and the advection-diffusion
equation for the temperature field, reducing the degrees of freedom com-
pared with the passive-scalar double-distribution model, which requires the
solution of an additional set of evolution equations to resolve the tempera-
ture field. Our numerical solution is represented by the tensor product basis
of the one-dimensional Legendre-Lagrange interpolation polynomials on the
Gauss-Lobatto-Legendre quadrature nodes and body-conforming hexahedral
elements. Within the discontinuous Galerkin framework, we impose bound-
ary and element-interface conditions weakly through the numerical flux. A
fourth-order Runge-Kutta scheme is used for time integration with simple
mass matrix inversion due to fully diagonal mass matrices. We studied nat-
ural convection fluid flows in a square cavity and a horizontal concentric an-
nulus for Rayleigh numbers in the range of Ra=103∼105. Validation of our
numerical approach is conducted by comparing with finite-difference, finite-
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volume, multiple-relaxation-time lattice Boltzmann, and spectral-element
methods. Compared with other methods, our computational results show
good agreement in temperature profiles and Nusselt numbers using relatively
coarse resolutions.

Keywords: Thermal lattice Boltzmann method, Spectral-element method,
Discontinuous Galerkin method, Natural convection flow

1. Introduction

Natural convection flow simulations have been an active area of research
for many years. These flows are set in motion by a buoyancy force, which
occurs as a result of a small density gradient and the presence of an external
force such as gravity. Understanding the behavior of natural convection flows
is important in nuclear reactor design, cooling of electronic equipment, and
determination of heat loss from steam pipes.

In recent decades, thermal lattice Boltzmann methods (TLBMs) have
emerged as reliable methods for simulating natural convection flows. TLBMs
generally fall into two approaches: the multispeed approach and the passive-
scalar approach. The multispeed approach is an extension of the isother-
mal model, where the density distribution function is solely used to describe
the mass, momentum, and temperature [1, 2]. The passive-scalar approach
uses additional equation(s), independent of the density distribution, to de-
scribe the temperature. When viscous heating and compression work due to
pressure are negligible, as is the case in most natural convection flows, the
temperature does not influence the momentum—it is advected and diffused
“passively” [3].

The multispeed approach does have limitations. In particular, it suf-
fers from severe numerical instability and restricts the Prandtl (Pr) number
to a fixed quantity [1]. However, numerous models have been proposed to
rectify these issues. In [4], McNamara et al. were able to improve the stabil-
ity by implementing a Lax-Wendroff advection scheme. Using higher-order
symmetric velocity lattices, Vahala et al. [5] showed better stability proper-
ties over lower-order symmetric lattices. Prasianakis and Karlin [6] built a
model using the standard velocity lattice (D2Q9), which incorporated equi-
librium expansions up to the fourth-order in velocity and correction terms to
the lattice Boltzmann equation (LBE) in order to enhance stability for high
Rayleigh number (Ra) flow. The correction terms also allowed their model to
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investigate variable Pr. Watari and Tsutahara [7] proposed a finite-difference
lattice Boltzmann method (FDLBM), which utilized a second-order upwind-
ing difference scheme, to improve stability. And to investigate variable Pr,
Soe et al. [8] introduced an extended collision matrix without affecting the
stability.

One of the passive-scalar approaches utilizes a double-distribution model
based on the multiple component LBE proposed by Shan and Chen [3]. In
this approach, one component (i.e. density distribution function) represents
motion of the fluid and the other (i.e. energy distribution function) describes
the passive temperature field. Two independent relaxation times are utilized
for each component, thus allowing for variable Pr. In [9], Shan showed that
the double-distribution model enhanced numerical stability over the multi-
speed approach for high Ra. He et al. [10] also proposed a double-distribution
model where the density distribution function recovers the macroscopic mass
and momentum variables while an internal energy density distribution func-
tion recovers the energy. Because the model in [10] directly solves evolution of
the internal energy, a Chapman-Enskog multiscale expansion analysis shows
that viscous heat dissipation and compression work are correctly recovered
in the macroscopic energy equation.

Since the work of He et al. [10], simpler double-distribution models have
been proposed in the incompressible limit. Both, Palmer et al. [11] and Peng
et al. [12] neglected viscous dissipation entirely and dropped complicated
spatial gradients to study Rayleigh-Bénard convection and natural convec-
tion within a square cavity. In [13], Shi et al. proposed a double-distribution
model that incorporates only viscous heat dissipation to study thermal Cou-
ette flow. Guo et al. [14] proposed a double-distribution model based on the
total energy, which allows for a simpler computation of viscous dissipation
and compression work. Others have proposed smaller lattice velocity models
for the energy distribution functions [15].

The double-distribution model has also been used on irregular or un-
structured grids to handle natural convection flows. Dixit and Babu [16]
employed an interpolation supplemented lattice Boltzmann method [17] on a
nonuniform mesh to study natural convection in a square at high Ra > 106.
Shi et al. [18] extended the method proposed by Guo and Zhao [19] and
used FDLBM on the polar representation of the double-distribution model.
Shu et al. [20] used a Taylor series expansion and least squares-based lattice
Boltzmann method (TLLBM) to solve the double-distribution model. The
TLLBM has proved useful for complex geometries [21]. Finite-volume lattice
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Boltzmann methods have also been proposed and implemented on unstruc-
tured meshes [22]. Although these methods have been applied to isothermal
flows, an extension to either a multispeed or double-distribution model seems
feasible.

Another passive-scalar approach is to solve the macroscopic energy equa-
tion for the temperature, coupling with the isothermal LBE for solving the
velocity. This approach is particularly beneficial for flows with negligible
viscous dissipation, and therefore the macroscopic energy equation simplifies
to an advection-diffusion equation for the temperature. This model elimi-
nates the need to solve multiple equations, based on the Hermite expansion
of the equilibrium distribution function, in the double-distribution model.
In addition, flows with variable Pr number can be investigated. Lallemand
and Luo [23], proposed this type of approach, solving the advection-diffusion
equation for the temperature using a finite-difference method. They showed
enhanced stability for simple Cartesian geometries such as a cubic box. For
complex geometries, however, finite-difference stencils may not have the same
symmetries as the underlying discrete velocity, and extrapolation might cause
loss of local conservation.

Implementation of physically accurate hydrodynamic and thermal bound-
ary conditions is crucial in both the multispeed and passive-scalar models.
Extensive work on boundary treatment techniques has been done and we
refer the reader to the following literature [24]–[30].

In this paper we present a spectral-element discontinuous Galerkin method
applied to a thermal lattice Boltzmann model based on the passive-scale ap-
proach. Our numerical scheme is extended from the previously developed
spectral-element discontinuous Galerkin lattice Boltzmann method (SEDG-
LBM) presented in [31]. In this work, we incorporate the discrete Boltzmann
equation (DBE) and lattice Boltzmann equation (LBE) with a forcing term
resulting from the Bousinessq approximation [9]. This allows us to exam-
ine flows in the incompressible limit for low Mach (Ma) numbers and small
density fluctuations.

We use the SEDG-LBM to solve the density distribution function for
the mass and momentum conservation laws and to determine the temper-
ature field we solve the advection-diffusion (i.e. energy) equation using an
SEDG weak form approximation. We use a high-order spectral-element dis-
continuous Galerkin discretization based on the tensor product basis of the
one-dimensional Legendre-Lagrange interpolation polynomials on the Gauss-
Lobatto-Legendre grid points on body-conforming hexahedral elements. Bounce-
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back boundary conditions are applied weakly through the numerical flux
without the additional effort of interpolation for complex geometries as re-
quired by other lattice Boltzmann (LB) schemes [25, 26, 27].

The paper is organized as follows. In Section 2, we present the govern-
ing equations, namely, the LBE with a Bousinessq approximation and the
advection-diffusion equation. In Section 3, we discuss the formulation of
our numerical scheme. Section 4 demonstrates computational results and
their validation for natural convection heat transfer in a square cavity and
horizontal concentric annulus. We present out conclusions in Section 5.

2. Governing Equations

In this section we describe our governing equations for natural convection
flows. We derive the lattice Boltzmann equation with a forcing term and the
formulation for the collison and streaming steps. We also present a simplified
macroscopic energy equation for incompressible natural convection flows.

2.1. Lattice Boltzmann Equation: Collision and Streaming

We write the discrete Boltzmann equation with a forcing term, where
the collision term is approximated by the Bhatnagar-Gross-Krook, or single-
relaxation-time, operator [32]:

∂fα
∂t

+ eα · ∇fα = −fα − f eq
α

λ
+

(eα − u) ·Gf eq
α

ρc2s
on Ω, (1)

where fα (α = 0, 1, ..., Nα) is the particle density distribution function de-
fined in the direction of the microscopic velocity eα, λ is the relaxation
time, and Nα is the number of microscopic velocity. We consider the two-
dimensional 9-velocity model (D2Q9) associated with eα = (0, 0) for α = 0;
eα = (cos θα, sin θα) with θα=(α − 1)π/2 for α = 1, 2, 3, 4; and eα =√
2(cosφα, sinφα) with φα=(α− 5)π/2 + π/4 for α = 5, 6, 7, 8. The second

term on the right-hand side of Eq. (1) represents the forcing term. G is the
external body force, depending on space and time. We consider a Bousinessq
approximation for G, which will be discussed in Section 4. The equilibrium
distribution function is given by

f eq
α = tαρ

[

1 +
(eα · u)
c2s

+
(eα · u)2

2c4s
− (u · u)

2c2s

]

, (2)
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where ρ is the density, u is the macroscopic velocity, t0 = 4/9, tα=1,4 = 1/9,
and tα=5,8 = 1/36 are the weights, and cs = 1/

√
3 is the speed of sound [33].

We obtain the LBE by discretizing Eq. (1) along characteristics over the
time step δt as shown in [31].

fα(x, t)− fα(x− eαδt, t− δt) = −
∫ t

t−δt

fα − f eq
α

λ
dt′+

∫ t

t−δt

(eα − u) ·Gf eq
α

ρc2s
dt′

(3)
Applying the trapezoidal rule for the integration on the right-hand side of
Eq. (3), we have the following for each term

−
∫ t

t−δt

fα − f eq
α

λ
dt′ ≈ −fα − f eq

α

2τ
|(x−eαδt,t−δt) −

fα − f eq
α

2τ
|(x,t) (4)

and
∫ t

t−δt

(eα − u) ·Gf eq
α

ρc2s
dt′ ≈ δt

(eα − u) ·Gf eq
α

2ρc2s
|(x−eαδt,t−δt)+δt

(eα − u) ·Gf eq
α

2ρc2s
|(x,t),

(5)
where the dimensionless relaxation time is τ = λ/δt with a relation to the
kinematic viscosity by ν = τc2sδt.

We now introduce a modified particle distribution function f̄α and its
corresponding equilibrium distribution function f̄ eq

α [32] defined as

f̄α = fα +
fα − f eq

α

2τ
− (eα − u) ·Gf eq

α

2ρc2s
δt (6)

and

f̄ eq
α = f eq

α − (eα − u) ·Gf eq
α

2ρc2s
δt. (7)

Substituting Eqs. (4)–(7) into Eq. (3), we have

f̄α(x, t) = f̄α(x− eαδt, t− δt)− 1

τ + 1/2

(

f̄α − f̄ eq
α

)

|(x−eαδt,t−δt)

+ δt
(eα − u) ·Gf eq

α

ρc2s
|(x−eαδt,t−δt). (8)

Following the similar manner as in [31], we solve Eq. (8) in two steps:
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• Collision

f̄ ∗
α(x, t− δt) = f̄α(x, t− δt)− 1

τ + 1/2

(

f̄α − f̄ eq
α

)

|(x,t−δt)

+ δt
(eα − u) ·Gf eq

α

ρc2s
|(x,t−δt) (9)

which is followed by the substitution f̄α(x, t− δt) = f̄ ∗
α(x, t− δt).

• Streaming

f̄α(x, t) = f̄α(x− eαδt, t− δt). (10)

The density and momentum can be computed by taking moments as follows:

ρ =

8
∑

α=0

f̄α and ρu =

8
∑

α=0

eαf̄α +
δt

2
G. (11)

The streaming step can be expressed as a solution of the pure advection
equation in an Eulerian framework [34], which can be expressed as follows:

∂f̄α
∂t

+ eα · ∇f̄α = 0. (12)

2.2. Energy Equation: Advection-Diffusion Equation

The temperature is modeled with the macroscopic energy equation. As-
suming the flow to be incompressible and compression work due to pressure to
be negligible, we can simplify the energy equation to the following advection-
diffusion equation:

∂T

∂t
+ u · ∇T = χ∇2T, (13)

where χ = κ
ρcp

is the thermal diffusivity with the specific heat at constant

pressure cp and the thermal conductivity κ.

3. Numerical Discretization

In this section, we describe our computational scheme, including a dis-
continuous Galerkin weak formulation, spectral element discretization, nu-
merical flux, and time-stepping scheme.

7



3.1. Weak Formulation of the LB Advection Equation

We formulate a weak form of Eq. (12) defined on the computational do-
main Ω = ∪E

e=1Ω
e with nonoverlapping elements Ωe. Choosing proper test

functions φα and multiplying it to Eq. (12) and integrating by parts twice
with a numerical flux term F∗

α introduced in the similar manner as in [31],
we obtain the following weak formulation:

(

∂f̄α
∂t

+∇ · Fα(f̄), φα

)

Ωe

=
(

n ·
[

Fα(f̄)− F∗
α(f̄)

]

, φα

)

∂Ωe , (14)

where Fα(f̄) = eαf̄α represents the flux vector with the microscopic velocities
eα = (eαx, eαy) and n = (nx, ny) is the unit normal vector pointing outward
on the element boundary ∂Ωe.

The numerical flux F∗
α(f̄) = F∗

α(f̄ , f̄
+) in Eq. (14) is a function of the

local solution f̄α and the neighboring solution f̄+
α at the interfaces between

neighboring elements. We choose the Lax-Friedrichs flux in [31, 35] expressed
as the following:

n · (Fα − F∗
α) =

{

(n · eα)[f̄α − f̄+
α ] for n · eα < 0,

0 for n · eα ≥ 0.
(15)

When n · eα < 0, we can write

n · (Fα − F∗
α) = (nxeαx + nyeαy)f̄α + (n+

x eαx + n+
y eαy)f̄

+
α . (16)

The proper upwinding scheme, inherent in the Lax-Friedrichs flux, allows
momentum transfer at the element interface to depend only on those particles
that are entering into the element.

Boundary conditions are weakly imposed through the numerical flux. The
wall boundary condition, with specific details provided in [24, 31], is given
as follows:

f̄α − f̄+
α =

{

f̄α − f̄α∗ − 2tαρ0(eα · ub)/c
2
s for n · eα < 0

0 for n · eα ≥ 0,
(17)

where f̄α∗ is the particle distribution function moving in the opposite direc-
tion of f̄α, ub is the macroscopic velocity prescribed at the wall boundary,
and ρ0 is the reference density, chosen to be unity.
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3.2. Weak Formulation of the Advection-Diffusion Equation

Applying the incompressible assumption and expressing Eq. (13) as a
system of first-order equations [35], we have

∂T

∂t
+∇· (uT ) = ∇·q, (18)

q = χ∇T. (19)

We define a flux vector by F(T ) = uT = (uxT, uyT ) and introduce numerical
fluxes F∗, q∗ and T ∗. Similarily as in Eq. (14) [31], we define proper test

functions φ̄ and ¯̄φ and obtain a set of weak formulation for Eqs. (18)–(19) as

(

∂T

∂t
+∇· (F(T )− q), φ̄

)

Ωe

=
(

n · [q∗ − q]− n · [F∗ − F], φ̄
)

∂Ωe (20)

(

q− χ∇T, ¯̄φ
)

Ωe
= χ

(

n [T ∗ − T ] , ¯̄φ
)

∂Ωe
. (21)

We use the Lax-Friedrich flux for F∗ in Eq. (21), defined by

F∗(T, T+) =
1

2

[

F(T ) + F(T+)
]

+
C

2

[

n(T − T+)
]

, (22)

where

C = max

∣

∣

∣

∣

n · ∂F
∂T

∣

∣

∣

∣

= max |nu| , (23)

and the central flux for q∗ and T ∗ in Eqs. (21)–(20),

q∗ =
1

2

[

q + q+
]

and T ∗ =
1

2

[

T + T+
]

. (24)

We have nonhomogeneous wall boundary conditions defined as below for
the different variables [35].
(i) Nonhomogeneous wall boundary conditions for T , i.e., T = f(t):

T+ = −T + 2f, q+ = q, (uT )+ = uT . (25)

(ii) Nonhomogeneous wall boundary conditions for q, i.e., q = f(t):

T+ = T, q+ = −q + 2f(t), (uT )+ = uT . (26)
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3.3. Spectral Element Discretizations

We seek a local approximate solution uN on Ωe expressed by the finite
expansion of the basis ψij(ξ, η) as

uN(x, y, t) =

N
∑

i,j=0

(uN)ijψij(ξ, η), (27)

where (uN)ij = uN(xi, yj, t) represents the approximate solution uN on the
nodal points (xi, yj) at time t and ψij(ξ, η) = li(ξ(x))lj(η(y)), or simply
ψij , is the tensor product basis of the one-dimensional Legendre-Lagrange
interpolation polynomials

li(ξ) = N(N + 1)−1(1− ξ2)L′
N(ξ)/(ξ − ξi)LN (ξi) for ξ ∈ [−1, 1], (28)

based on the Gauss-Lobatto-Legendre (GLL) quadrature nodes ξi where
LN(ξ) is the Nth-order Legendre polynomial. The physcial domain (x, y) ∈
Ωe is mapped to the reference domain (ξ, η) ∈ [−1, 1]2, through the Gordon-
Hall mapping [36].

Let us denote our approximate solutions by f̄N
α for the density distri-

bution functions, TN for the temperature, and qN = (qNx , q
N
y ) for the aux-

iliary function and express each component in the form of (27). Choosing
ψîĵ = l̂i(ξ(x))lĵ(η(y)) with a different index set for each test function φα, φ̄,

and ¯̄φ and plugging the approximate solutions into the corresponding weak
formulations Eqs. (14), (18), and (19), we get a set of semidiscrete schemes

dfα
dt

+M−1D1fα = M−1R1fα, (29)

dT

dt
+M−1D2T−M−1Dq = M−1(Rq−R2T), (30)

qx − χM−1DxT = χM−1RxT, (31)

qy − χM−1DyT = χM−1RyT, (32)

where the solution vectors are defined by fα = [(f̄N
α )ij], T = [TN

ij ], and
q = (qx,qy) with qx = [(qNx )ij], and qy = [(qNy )ij] on a local element. The
mass matrix is defined as

M = (ψij , ψîĵ)Ωe = J(M̂ ⊗ M̂), (33)

where M̂îi =
∑N

k=0 l̂i(ξk)li(ξk)wk is the one-dimensional mass matrix with
the quadrature weight wk defined on the reference domain [−1, 1] and J =
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diag(Jij) represents the value at each node on Ωe. The one-dimensional
mass matrix is diagonal because of the orthogonal property of the Legendre-
Lagrange interpolation polynomials on the GLL nodes, and thus the two-
dimensional mass matrixM is also diagnal. The gradient matrices are defined
by

D1 = eαxDx + eαyDy, D2 = Dx(ux) +Dy(uy), and Dq = Dxqx +Dyqy,(34)

where the differentiation matrices can be represented by a tensor product
form of the one-diemensional differentiation matrix D̂ = [D̂îi] = l′i(ξî) as

Dx =

(

∂ψij

∂x
, ψîĵ

)

= GξxJ [M̂ ⊗ M̂D̂] +GηxJ [M̂D̂ ⊗ M̂ ], (35)

Dy =

(

∂ψij

∂y
, ψîĵ

)

= GξyJ [M̂ ⊗ M̂D̂] +GηyJ [M̂D̂ ⊗ M̂ ], (36)

where Gξx = diag(Gξx
ij ), G

ξy = diag(Gξy
ij ), G

ηx = diag(Gηx
ij ), and Gηy =

diag(Gηy
ij ) represent the geometric factors ∂ξ

∂x
, ∂ξ

∂y
, ∂η

∂x
, and ∂η

∂x
, respectively,

and their values at each node (xi, yj). The surface integrations acting on
the boundary nodes on each face of the local element in Eqs. (29)–(32) are
represented by

R1fα =
4

∑

s=1

N
∑

k=0

Rs
k

{

n · [Fα(f̄)− F∗
α(f̄)]

}

wkJ
s
k , (37)

R2T =

4
∑

s=1

N
∑

k=0

Rs
k {n · [F∗(T )ij − F(T )ij]}wkJ

s
k , (38)

Rq =
4

∑

s=1

N
∑

k=0

Rs
k

{

n · [q∗
ij − qij]

}

wkJ
s
k , (39)

RxT =

4
∑

s=1

N
∑

k=0

Rs
k{nx[(T )

∗
ij − (T )ij]}wkJ

s
k , (40)

RyT =
4

∑

s=1

N
∑

k=0

Rs
k{ny[(T )

∗
ij − (T )ij]}wkJ

s
k , (41)

where Rs
k{·} extracts the information of {·} at the nodes situated on each

face of the local element for the face number s and Js
k is the surface Jacobian

at the nodes on each face.
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The semidiscrete schemes for Eqs. (29)–(30) can be written simply as

dfα
dt

= L1fα, (42)

dT

dt
= L2T+Dq+Rq, (43)

where L1 = M−1(−D1 + R) and L2 = M−1(−D2 − R). We have shown
the matrix structures and eigenvalue distributions for the spatial operator of
Eq. (42) in [31]. Figures 1(a) and 1(b) respectively show the matrix structure
and eigenvalue distribution for the spatial operator in Eq. (43) with periodic
boundary conditions. A uniform spectral element mesh is used with the
number of elements E = 3 × 3 and the approximation order N = 3. For
convenience, we set the velocity u = (1, 1) and χ = 1. The eigenvalue
distributions reside all on the negative half-plane so that we can choose the
fourth-order, five-stage Runge-Kutta (RK) time integration method [37] with
the stability region slightly larger and with less memory than those of the
classical RK methods.

4. Computational Results

In this section, we show computational results and validation for two
benchmark problems on natural convection flows in a square cavity and a
horizontal concentric annulus in two dimensions.

4.1. Parameter Setting for Benchmark Studies

For natural convection flows, we consider a Bousinessq approximation [9]
with the forcing term G in Eqs. (1) and (11) defined as

G = ρgβ(T − To), (44)

where To = (Th + Tc)/2 is the average of the two different temperatures
(Th > Tc), g is the gravitational acceleration, and β is the thermal expansion
coefficient, which is constant in space and time in the framework of the
Bousinessq approximation.

We characterize natural convection flows with two nondimensional num-
bers, the Rayleigh number (Ra) and the Prandtl number (Pr). Both are
defined in the following way

Ra =
β|g|(Th − Tc)L

3

νχ
and Pr =

ν

χ
, (45)
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with periodic boundary conditions
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Figure 2: Geometry and boundary conditions of natural convection in a square cavity.

where L is a characteristic length of the computational domain. As men-
tioned above, χ is the thermal diffusivity, and ν is the kinematic viscosity.
We define the characteristic velocity

U∗ =

√

Ra

Pr

ν

L
. (46)

We ensure our characteristic velocity is in the low Mach number regime,
typically Ma = 0.01, so that

U∗ ≤ csMa. (47)

The dimensionless relaxation time τ is determined through the relation ν =
τc2sδt where we determine the time-step size δt from CFL = maxα |eα|δt

∆xmin

= 0.1,
where ∆xmin is the minimum grid spacing in our mesh.

4.2. Natural Convection in a Square Cavity

We performed steady-state natural convection flow simulations in a square
cavity. The geometry is shown in Figure 2. The initial velocity is set as
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u ≡ (0, 0) and the initial density ρ ≡ 1. The wall boundary conditions for
the velocity fields are given as ub = (0, 0) and the nonhomogeneous Dirichlet
boundary conditions for the temperature as T (0, y, t) = Th and T (L, y, t) =
Tc. The adiabatic boundary conditions are set as ∂T

∂y
|(x,0,t) = ∂T

∂y
|(x,L,t) = 0.

Table 1: Convergence of Nuo, Numax
o , and Numin

o for Ra = 103

SEDG-LBM (N) Nuo Numax
o Numin

o

3 1.1165 1.5261 0.6847
5 1.1177 1.5063 0.6916
7 1.1178 1.5063 0.6913
9 1.1178 1.5063 0.6913

Wang et al. [39] 1.1178 1.5063 0.6912
De Vahl Davis [41] 1.117 1.505 0.692

Table 2: Convergence of Nuo, Numax
o , and Numin

o for Ra = 104

SEDG-LBM (N) Nuo Numax
o Numin

o

3 2.2236 3.7078 0.5413
5 2.2447 3.5303 0.5863
7 2.2448 3.5306 0.5852
9 2.2448 3.5309 0.5851

Wang et al. [39] 2.2448 3.5310 0.5849
Hortmann et al. [40] 2.24475 3.53087 -
De Vahl Davis [41] 2.238 3.528 0.586

Figure 3 shows the streamlines and isotherms of the square cavity flows at
Ra = 103, 104, 105. The effect of Ra is evident in these figures. In particular,
a given isotherm is passively advected throughout the domain to greater
degree as Ra increases.

Simulations are performed on a uniform spectral element mesh with E =
256 and a fixed polynomial order of N = 5, involving the total number
of grids N = (N + 1)2E. Figure 4 demonstrates good convergence of the
temperature profiles with increasing polynomial order N on the same mesh.
The profiles are shown at the horizontal line y = 0.5 and at the vertical line
x = 0.5.

We also show the convergence of the Nusselt number Nuo along the axis
x = 0, where the Dirichlet boundary condition T = Th is specified. We
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(a) Ra = 103, Pr = 0.7

(b) Ra = 104, Pr = 0.7

(c) Ra = 105, Pr = 0.7

Figure 3: Streamlines (left) and isotherms (right) of natural convection cavity flow; E =
256 and N = 5.
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(b) Temperature Profile at y = 0.5

Figure 4: Temperature profiles for natural convection square cavity flow at Ra = 1000,
demonstrating convergence of the solution for increasing N = 3, 5, 7 with E = 256.
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Table 3: Convergence of Nuo, Numax
o , and Numin

o for Ra = 105

SEDG-LBM (N) Nuo Numax
o Numin

o

3 4.3187 9.5203 0.3362
5 4.5191 7.6878 0.7310
7 4.5216 7.7184 0.7295
9 4.5216 7.7189 0.7286

Wang et al. [39] 4.5214 7.7161 0.7279
Hortmann et al. [40] 4.52164 7.72013 -
De Vahl Davis [41] 4.509 7.717 0.729

compute the Nusselt number defined by

Nuo =

∫ 1

0

qx|x=0dy, (48)

where

qx = uxT − ∂T

∂x
. (49)

In Tables 1–3, we demonstrate the convergence studies of the Nusselt number
for varying polynomial order N = 3, 5, 7, 9, including local minimum and
maximum values, with validation to those by Wang et al. [39], Hortmann et
al. [40] and De Vahl Davis. [41]. Our results show good agreement compared
with the results of others.

4.3. Natural Convection in a Horizontal Concentric Annulus

We studied steady-state natural convection flows inside a horizontal con-
centric annulus. The geometry and boundary conditions of the problem are
provided in Figure 5.

We set the initial velocity u ≡ (0, 0) and the initial density ρ ≡ 1.
Wall boundary conditions for the velocity field are ub = (0, 0), and tem-
perature boundary conditions are given as T (r = ri, ϕ, t) = Th = 1 and
T (r = ro, ϕ, t) = Tc = 0. We use the radius ratio ro

ri
= 2.6 and the character-

istic length L = ro − ri.
Figure 6 shows the streamlines and isotherms of the horizontal annulus

cavity flows at Ra = 103, 104, 5 × 104 on a spectral element mesh (see Fig-
ure 7(a)) with E = 512 and N = 5. Again, the effect of Ra is evident. In
particular, a given isotherm is passively advected throughout the domain to
greater degree as Ra increases.
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Figure 5: Geometry and boundary conditions of natural convection in a horizontal con-
centric annulus.

We also compute the average Nusselt number Nuavg defined by

Nuavg =
1

2
(Nuinner +Nuouter), (50)

where

Nuinner = −1

π

∫ π
2

−π
2

ri
∂T

∂r
|r=ridϕ, (51)

Nuouter = −1

π

∫ π
2

−π
2

ro
∂T

∂r
|r=rodϕ. (52)

Tables 4–6 show convergence of the average Nusselt number Nuavg on Mesh A
as increasing N = 3, 5, 7, 9. We compare our results with those by Kuehn and
Goldstein [42], who solve the Navier-Stokes equations by a finite-difference
method. When compared with the results by Kuehn and Goldstein, our
results are within 5% accuracy.

We examined details of the difference between our SEDG-LBM results
and those from [42] in the temperature profiles at ϕ = −π

2
, 0, π

2
, demonstrat-

ing the comparison in Figure 8. We observe that the SEDG-LBM results
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(a) Ra = 103, Pr = 0.7

(b) Ra = 104, Pr = 0.7

(c) Ra = 5× 104, Pr = 0.7

Figure 6: Streamlines (left) and isotherms (right) of natural convection in a horizontal
annulus, using N = 5 on Mesh A.
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agree well with those by Kuehn and Goldstein for ϕ = 0. However, we ob-
serve some discrepancy in the range of r∗ = 0.1 ∼ 0.3 and r∗ = 0.2 ∼ 0.9 for
the cases of ϕ = −π

2
and ϕ = π

2
, respectively, as shown in Figure 8. These

explain the discrepancy in the comparison of Nuavg in Tables 4–6.
Given this difference in Nuavg and temperature profile, we further seek

to verify our results against another benchmark. For this study, we simulate
natural convection within a horizontal concentric annulus using Nek5000 [38],
the open-source Navier-Stokes solver based on the spectral element method.
Using Nek5000 on Mesh A with a high polynomial approximation, N = 11,
we determine temperature profiles and average Nusselt numbers and use
this data as new benchmarks. Our SEDG-LBM simulations are performed
on Mesh B (see Figure 7(b)) with E = 256. Figure 9 demonstrates the
convergence of temperature profiles for our SEDG-LBM results ϕ = −π

2
, 0, π

2

for Ra = 5 × 104 and Pr = 0.7, showing good agreement with those of
Nek5000.

In Tables 7–9, we show the convergence of Nuavg with N = 3, 5, 7, 9 by
the SEDG-LBM on Mesh B for Ra = 103, 104, 5 × 104. Our results agree
well with those by Nek5000 simulations with N = 11. These tables show the
advantage of the SEDG approximation. In particular, SEDG-LBM results on
the non-uniform coarse mesh (i.e. Mesh B) which exhibit better resolution
in the boundary layer region is able to achieve the same accuracy as the
SEDG-LBM results determined on the refined mesh (i.e. Mesh A) as given
in Tables 4, 5, and 6.

Table 4: Convergence of Nuavg for Ra = 103

SEDG-LBM (N) on Mesh A Nuavg
3 1.1295
5 1.1325
7 1.1325
9 1.1325

Kuehn and Goldstein [42] 1.083
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(a) Mesh A with E = 512

(b) Mesh B with E = 256

Figure 7: Two different meshes used for the horizontal annulus simulations
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Table 5: Convergence of Nuavg for Ra = 104

SEDG-LBM (N) on Mesh A Nuavg
3 2.0615
5 2.0704
7 2.0705
9 2.0705

Kuehn and Goldstein [42] 2.008

Table 6: Convergence of Nuavg for Ra = 5× 104

SEDG-LBM (N) on Mesh A Nuavg
3 3.0309
5 3.0950
7 3.0956
9 3.0956

Kuehn and Goldstein [42] 2.999

Table 7: Convergence of Nuavg for Ra = 103

SEDG-LBM (N) on Mesh B Nuavg
3 1.2034
5 1.1310
7 1.1325
9 1.1325

Nek5000 (N = 11) 1.1325

Table 8: Convergence of Nuavg for Ra = 104

SEDG-LBM (N) on Mesh B Nuavg
3 2.2195
5 2.0774
7 2.0702
9 2.0705

Nek5000 (N = 11) 2.0705
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Table 9: Convergence of Nuavg for Ra = 5× 104

SEDG-LBM (N) on Mesh B Nuavg
3 3.0218
5 3.1055
7 3.0975
9 3.0958

Nek5000 (N = 11) 3.0956
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Figure 8: Temperature profiles of SEDG-LBM results vs. Reference [42] for horizontal
annulus simulation at Ra = 5 × 104 and Pr = 0.7 for ϕ = π

2
, ϕ = 0, and ϕ = −π

2
.

Polynomial order for SEDG-LBM is N = 9. The nondimensional radius, r∗ is defined as
r∗ = r−ri

L
. SEDG-LBM computations were performed on Mesh (A).
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Figure 9: Temperature profile of SEDG-LBM results vs. Nek5000 [38] for horizontal
annulus simulation at Ra = 5 × 104 and Pr = 0.7 for ϕ = π

2
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.

Polynomial orders for SEDG-LBM are N = 3, 5, 7 and 9. Polynomial order for Nek5000
is N = 11. Both SEDG-LBM and Nek5000 computations were performed on Mesh (B).

5. Conclusions

We have presented a spectral-element discontinuous Galerkin lattice Boltz-
mann method for solving two-dimensional incompressible natural convection
flows. In particular, we have presented results for natural convection in
a square cavity and a horizontal concentric annulus. Our formulation ex-
tends the work done by Min and Lee [31] to incorporate into the discrete
Boltzmann and lattice Boltzmann equations a forcing term that is in ac-
cordance with the Bousinessq approximation. We resolved the temperature
field by applying an SEDG discretization in space to the advection-diffusion
equation and apply boundary conditions weakly through a proper treatment
of the numerical flux based on the Lax-Friedrichs and central Fluxes. We
used a passive-scalar approach that allows us to investigate flows for vari-
able Prandtl number and to compute the temperature field cost-effectively
by solving only one equation, rather than solving multiple equations such
as in the double-distribution approach. We have examined square cavity
flows for Ra = 103 ∼ 105 and flows in a horizontal concentric annulus for
Ra = 103 ∼ 5 × 104, provided with convergence studies in the temperature
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profiles and Nusselt numbers. Computational results show good agreement
with those by a finite-difference method, a finite-volume method, a multiple-
relaxation-time LBM, and a spectral element method [38].

Extension to three dimensions and performance studies in comparison
to other approaches, such as double-distribution thermal lattice Boltzmann
methods, remain as future work.
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