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REGULARIZING BILEVEL NONLINEAR PROGRAMS BY LIFTING

KATHRIN HATZ ⇤, SVEN LEYFFER† , JOHANNES P. SCHLÖDER‡ , AND HANS GEORG

BOCK§

Abstract. This paper considers a bilevel nonlinear program (NLP) whose lower-level problem
satisfies a linear independence constraint qualification (LICQ) and a strong second-order condition
(SSOC). One would expect the resulting mathematical program with complementarity constraints
(MPCC), whose constraints are the first-order optimality conditions of the lower-level NLP, to satisfy
an MPEC-LICQ. We provide an example which demonstrates that this is not the case. A lifting
technique is presented to remedy this problem. A componentwise lifting of the inequality constraints
of the lower-level problem implies that the resulting MPCC satisfies an MPCC-LICQ which leads
to a faster convergence. We generalize the lifting approach to general MPCCs. Convergence results
and numerical experiments are provided that show the promise of our approach.

Key words. nonlinear programming, bilevel optimization, lifting bilevel programs, mathemati-
cal programs with equilibrium constraints, mathematical programs with complementarity constraints.
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1. Introduction. We are concerned with a special class of optimization prob-
lems with equilibrium constraints that arise from bilevel nonlinear programs of the
form

minimize
x

F (x, y)

subject to minimize
y

f(x, y)

subject to h(x, y) � 0,

(1.1)

where x 2 Rn and y 2 Rm. The inequality constraints are denoted as h(x, y) 2 Rk.
We use upper case letters for the objective function of the upper level problem, F (x, y)
which is assumed to be twice continuously di↵erentiable, and lower case letters for
the objective f(x) and h(x) of the lower level problem, which are also assumed to be
twice continuously di↵erentiable.

For the sake of simplifying the presentation, we have omitted upper level con-
straints and equality constraints in the lower-level problem from (1.1). Equality con-
straints in the lower level problem are readily included, and the same is true for
upper-level equality or inequality constraints G(x) 2 Rl. We can readily extend the
proposed lifting technique provided that the Jacobian of the additional upper-level
constraints r

x

GA(x) with A := {i 2 {1, · · · , l} | G
i

(x) = 0} has full rank with l  n.
We can formulate (1.1) as an MPCC by replacing the lower level NLP by its

necessary optimality conditions:

minimize
x,y,z

F (x, y)

subject to 0 = r
y

L(x, y, z)
0  z ? h(x, y) � 0,

(1.2)
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with the gradient of the Lagrangian given by r
y

L(x, y, z) := r
y

f(x, y)�r
y

h(x, y)T z
and the Lagrange multipliers z 2 Rk. We note, that in the absence of convexity of the
lower-level problem, the MPCC, (1.2), is in general not equivalent to the bilevel NLP,
(1.1). We are not concerned with this issue here. Instead, we investigate practical
algorithms for solving (1.2).

In general, MPCCs violate the Mangasarian-Fromowitz constraint qualification
(MFCQ) at every feasible point; see [5, 22]. This may cause problems for nonlin-
ear solvers. The violation of MFCQ implies that the linear independence constraint
qualification (LICQ) is also violated at every feasible point. Common approaches to
tackle problem (1.2) are based on branch-and-bound methods [4], nonsmooth opti-
mization [19], interior-point methods [14,21], piecewise sequential quadratic program-
ming (SQP) methods [17], or penalization and relaxation techniques [7,12,16,23,25].
Most of these approaches require a computational e↵ort that is significantly larger
than the one of an SQP method applied to an MPCC [10, 11]. Furthermore, the
numerical experience with SQP methods applied to MPCCs is quite promising [10].
Hence, we follow the latter approach. Fletcher et al. [11] provide convergence re-
sults for SQP methods applied to MPCCs under relatively mild assumptions. One
important assumption is that the MPCC satisfies an MPCC-LICQ. In this paper,
we consider the bilevel NLP (1.1) and assume that its lower level satisfies LICQ
and a strong second-order condition (SSOC). One would expect that (1.2) satisfies an
MPCC-LICQ (inherited from LICQ and SSOC of the lower-level NLP), but this is not
the case, and we provide a counterexample. We then propose a componentwise lifting
of the lower-level inequality constraints that can be shown to ensure an MPCC-LICQ
for (1.2). Furthermore, we generalize our approach to lift general MPCCs.

An overview and a general discussion of bilevel programs is provided in [6] and [1].
An idea related to the method described in this paper can be found in [2, 3, 24], and
the references therein. In [2, 3] the authors consider general MPCCs, and introduce
an additional scalar variable to relax the MPCC’s standard equality and inequality
constraint and the complementarity conditions is treated with an exact penalty term.
Global convergence properties based on this formulation are discussed. However,
the reformulated MPCC cannot be shown to guarantee an MPCC-LICQ. In [24], a
smoothing approach for mathematical programs with complementarity constraints is
presented, based on the projection of a suitable set in R3. The author introduces
a regularization approach involving a new concept of tilting stability, discusses the
regularity of the feasible set and presents preliminary numerical results. In contrast
to [2, 3], our approach is able to guarantee MPEC-LICQ at any feasible point. Fur-
thermore, in contrast to [24], our approach does not require a multiphase procedure,
we just solve one MPCC which is the lifted version of the original problem.

This paper is organized as follows. We start with a motivating example showing
that LICQ and SSOC on the lower level do not imply an MPCC-LICQ of the resulting
MPCC. This is followed by a detailed description of the new lifting technique. Finally,
a detailed convergence analysis and numerical results are presented.

2. Lifting for MPCC-LICQ. We start by reviewing a standard NLP con-
straint qualification and second-order conditions for an NLP of the following form

minimize
y

f(x, y)

subject to h(x, y) � 0.
(2.1)

The NLP (2.1) coincides with the lower-level problem of (1.1). We note that x is not
a variable in (2.1). For a given point y⇤ 2 Rm, the active set of (2.1) is denoted by
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A(x, y⇤) := {i 2 {1, · · · , k} | h
i

(x, y⇤) = 0}.
Definition 2.1. The linear independence constraints qualification (LICQ) is

said to hold at y⇤ if the set of active constraint gradients {r
y

h
i

(x, y⇤), i 2 A(x, y⇤)}
is linearly independent.

The set F(x, y) := {y 2 Rm | h(x, y) � 0} denotes the feasible set, L(x, y, z) :=
f(x, y) � h(x, y)T z is the Lagrangian of (2.1) with Lagrange multipliers z 2 Rk and
T (x, y) := {p 2 Rm | r

y

h
i

(x, y)T p = 0, 8i 2 A(x, y) with z
i

> 0 } is the tangent
cone.

Definition 2.2. If

pTr2
y

L(x, y⇤, z⇤)p > 0, 8p 2 T (y⇤)\{0}, (2.2)

then (2.1) is said to satisfy the strong second order condition (SSOC) at (x, y⇤, z⇤).
Next, we briefly review MPCC-LICQ following the notation in [11]. In particular,

we consider two index sets Z1 and Z2 with Z1,Z2 ⇢ {1, · · · , k} and denote their
respective complement in {1, · · · , k} by Z?

1 and Z?
2 . For any pair Z1,Z2 we define

the relaxed NLP corresponding to the MPCC (1.2) as

minimize
x,y,z

F (x, y)

subject to r
y

L(x, y, z) = 0
h
i

(x, y) = 0 8i 2 Z?
1

z
i

= 0 8i 2 Z?
2

h
i

(x, y) � 0 8i 2 Z1

z
i

� 0 8i 2 Z2.

(2.3)

The term relaxed NLP stems from the fact that if (x⇤, y⇤, z⇤) is a solution of (2.3) and,
in addition, h(x⇤, y⇤)T z⇤ = 0 is satisfied, then it is a solution of the original problem
(1.2). We further define the set of biactive (or second-level degenerate) components
by D := Z1 \ Z2. This implies that (Z?

1 ,Z?
2 ,D) is a partition of {1, · · · , k}. A

solution (x⇤, y⇤) is said to be second-level nondegenerate if D = ;. We now restate
the extension of LICQ to MPCCs.

Definition 2.3. Let z � 0 and x, y be such that h(x, y) � 0, and define index
sets

Z1 = {i 2 {1, · · · , k} | z
i

= 0} and Z2 = {i 2 {1, · · · , k} | h
i

(x, y) = 0}. (2.4)

The MPCC (1.2) is said to satisfy MPCC-LICQ at (x⇤, y⇤) if the corresponding re-
laxed NLP (2.3) satisfies LICQ at (x⇤, y⇤).

In the remainder of this paper we refer to the problem

minimize
x,y,z

F (x, y)

subject to r
y

L(x, y, z) = 0
h(x, y) � 0
z � 0
h(x, y)T z  0,

(2.5)

as the NLP formulation corresponding to MPCC (1.2). Problem (2.5) is formulated
without slacks to keep the notation simple. A reformulation of (2.5) using slacks does
not change the results derived in this paper. Please note that when solving an MPCC
of type (2.5), slacks should be used to achieve a better convergence behavior and to
maintain linear feasibility [11].
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2.1. A Motivating Example. The following example demonstrates that the
MPCC (1.2) in general does not satisfy MPCC-LICQ even if the lower-level problem
of (1.1) satisfies LICQ and SSOC. Consider the following example:

minimize
x

�x+ 2y1 + y2

subject to minimize
y:=(y1,y2)

(x� y1)2 + y22

subject to y1, y2 � 0,

(2.6)

with the solution (x⇤, y⇤1 , y
⇤
2) = (0, 0, 0). LICQ and SSOC are satisfied for the lower

level problem. The gradient of the Lagrangian of the lower level problem is given by

r
y

L(x, y, z) =
✓

�2x+ 2y1 � z1
2y2 � z2

◆
, (2.7)

and the MPCC corresponding to (2.6) is given by

minimize
x,y,z

�x+ 2y1 + y2

subject to 0 =

✓
�2x+ 2y1 � z1

2y2 � z2

◆

0  z ? y � 0.

(2.8)

In the solution, we have z1 = z2 = 0. This means that all constraints are weakly
active at the solution and the relaxed NLP of (2.8) is

minimize
x,y,z

�x+ 2y1 + y2

subject to 0 =

✓
�2x+ 2y1 � z1

2y2 � z2

◆

0 = y
0 = z.

(2.9)

Clearly, (2.9) does not satisfy LICQ because the Jacobian of the constraints (the
columns are the constraints normals) given by

0

BBBB@

2 0 1 0 0 0
0 2 0 1 0 0
�1 0 0 0 1 0
0 �1 0 0 0 1
�2 0 0 0 0 0

1

CCCCA
, (2.10)

has rank 5. This fact implies that the MPCC (1.2) does not satisfy MPCC-LICQ. The
degeneracy problem is caused by the weakly active constraints. However, if the lower
level NLP satisfies strict complementarity, LICQ and SSOC in the solution, then it
can be shown that the resulting MPCC satisfies MPCC-LICQ (see [20], or Remark
2.1).

2.2. Lifting Bilevel NLPs. In the previous section, we have shown that the
bilevel NLP (1.1) does not inherit MPCC-LICQ even if its lower level satisfies LICQ
and SSOC. To fix this problem, we introduce new variables w 2 Rk to define the
following lifting of (1.1):

minimize
x,y,w

F (x, y)+ ⇡ p(w)

subject to minimize
y

f(x, y)

subject to h(x, y) � w,

(2.11)
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where ⇡ 2 R is a constant parameter and p : Rk ! R is a function that drives w to zero
and ensures convergence to a solution of the original unlifted problem. The function
p(w) will be discussed in detail in Section 2.4. However, two possible choices are
p(w) = kwk1 or p(w) = kwk22. The inequality constraints of the lower level problem
are lifted componentwise. This leads to the MPCC

minimize
x,y,z,w

F (x, y)+ ⇡ p(w)

subject to 0 = r
y

L(x, y, z)
0  z ? (h(x, y)�w) � 0.

(2.12)

Example (2.6) shows that in general, SSOC and LICQ of the lower-level problem are
not su�cient to ensure that the MPCC (1.2) satisfies MPCC-LICQ. In addition, we
require a second-level nondegeneracy assumption which is not typically satisfied in
practice. If there are degenerate lower-level components, then we need |D| (which
is at most equal to k) variables to regularize the Jacobian of the active constraint
normals. This observation forms the basis of the following theorem, which also shows
that the lifted problem (2.12) satisfies an MPCC-LICQ.

Theorem 2.1. If the lower level problem of (2.11) satisfies LICQ and SSOC at
(x⇤, y⇤, z⇤, w⇤), then the MPCC (2.12) satisfies MPCC-LICQ at (x⇤, y⇤, z⇤, w⇤).

Proof. We need to show that the relaxed NLP formulation of (2.12) given by

minimize
x,y,z,w

F (x, y)+ ⇡ p(w)

subject to r
y

L(x, y, z) = 0
h
i

(x, y)�w
i

= 0 8i 2 Z?
1

z
i

= 0 8i 2 Z?
2

h
i

(x, y)�w
i

� 0 8i 2 Z1

z
i

� 0 8i 2 Z2,

(2.13)

satisfies LICQ (according to Definition 2.3 with Z1 = {i | z
i

= 0} and Z2 =
{i | h

i

(x, y) � w
i

= 0}). The notation h̃I := (h
i

(x, y) � w
i

| i 2 I) denotes the
subvector of h(x, y) � w whose indices belong to I. We now consider the gradients
of the active constraints of (2.13) with respect to all optimization variables, i.e. with
respect to y, z, w and x (columns are constraint normals):

J :=

0

BBBBBBBBBBB@

r
yy

L(x, y, z) r
y

hZ?
1

r
y

hD
�r

y

hT

Z?
1

�r
y

hT

Z?
2

I

�r
y

hT

D I
�I

�I

r
yx

L(x, y, z) r
x

hZ?
1

r
x

hD

1

CCCCCCCCCCCA

(2.14)

=:

0

BBB@

A B

C D

E F

1

CCCA
, (2.15)

where we have skipped zero entries and assumed that the identity matrices I are of
appropriate size. The columns of (2.14) correspond to the constraints

�
r

y

L(x, y, z), h̃Z?
1
, zZ?

2
, zD, h̃D

�
(2.16)
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and the rows of (2.14) correspond to the variables
�
y, zZ?

1
, zZ?

2
, zD, wD, wZ?

1
, wZ?

2
, x

�
. (2.17)

Let J̄ be the submatrix of J that consists of blocks A,B,C and D. We want to show
that the constraint normals of active constraints of (2.13) (columns of (2.14)) are
linearly independent. This statement is equivalent to showing that J̄ has full rank,
which means that J̄ is of rank (m+ k+ |D|) (J is of size (m+ k+ |D|+ |Z?

1 |+ |Z?
2 |+

n) ⇥ (m + k + |D|)). As shown in e.g. [18], Matrix A has full rank since SSOC and
LICQ are assumed to hold for the lower level problem of (2.11). Block D has full
rank since it is a diagonal matrix with nonzeros on the diagonal. The submatrix J̄ of
J has full rank if


A B
C D

� 
q
r

�
=


0
0

�
()


q
r

�
=


0
0

�
. (2.18)

We note that we assume that 0 is a scalar, vector or matrix of zeros of appropriate size.
Using the Schur complement to perform a block Gaussian elimination by multiplying
J̄ from the right with the block matrix


I 0

�D�1C D�1

�
(2.19)

leads to


S
D

BD�1

0 D�1

� 
q
r

�
=


0
0

�
, (2.20)

where S
D

= A�BD�1C is the Schur complement of D. Equation (2.20) implies that
r = 0. It remains to show that S

D

q = 0 , q = 0 which is true if BD�1C = 0. The
structure of BD�1C is as follows:

BDC�1 =


r

y

hD
�2

4
I

I
�I

3

5

2

64
�r

y

hT

Z?
2

�r
y

hT

D

3

75 (2.21)

=


�r

y

hD
�
2

64
�r

y

hT

Z?
2

�r
y

hT

D

3

75 (2.22)

=0, (2.23)

which means that the Schur complement of D has full rank, because A has full rank.
Thus, (2.18) holds and problem (2.11) satisfies MPCC-LICQ.

The proof of Theorem 2.1 points out that not even SSOC and LICQ on the lower
level of (1.1) are su�cient to show that (1.2) satisfies MPCC-LICQ. The matrix of
the active constraint normals (2.14) of the relaxed NLP of (1.2) is of size (n

y

+ n
g

+
k+n

x

)⇥ (n
y

+n
g

+ k+ |D|), and for MPCC-LICQ we need this matrix to have rank
(n

y

+n
g

+k+|D|). This means MPCC-LICQ cannot be achieved without either having
assumptions on the number of upper-level variables n

x

(which is rather restrictive), or
introducing at least |D| new variables (which lifts the MPCC to a higher dimension).

Remark 2.1. MPCC-LICQ is inherited without any modifications only if the
lower level of (1.1) satisfies LICQ and SSOC, and if |D| = ;, which means that there
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











Figure 2.1. The feasible set (in gray) of a complementarity constraint before (left)
and after (right) lifting.

are no degenerate indices. This follows directly from the proof of Theorem 2.1, or can
be found in e.g. [20].

Figure 2.1 illustrates how the lifting changes the feasible set of the complementar-
ity constraint (CC). The feasible set of 0  z ? h(x, y) � 0 for k = 1 is the nonneg-
ative part of both axes. The feasible set of the lifted CC, 0  x ? (h(x, y)�w) � 0,
for k = 1 is shown on the right of Figure 2.1. The original feasible set is now extended
to a third dimension.

2.3. Lifting the Motivating Example. Let us consider the proposed lifting
for Example (2.6):

minimize
x,w:=(w1,w2)

�x+ 2y1 + y2 + ⇡p(w)

subject to minimize
y

(x� y1)2 + y22

subject to y1 � w1

y2 � w2,

(2.24)

where w := (w1, w2) 2 R2 are the additional lifting variables. The corresponding
MPCC is then given by

minimize
x,y,w,z

�x+ 2y1 + y2 + ⇡p(w)

subject to 0 = r
y

L(x, y, z)
0  z ? y � w.

(2.25)

The Jacobian of active constraints of the NLP formulation of (2.25) has now two
additional rows for variables w1 and w2:

0

BBBBBBBB@

2 0 1 0 0 0
0 2 0 1 0 0
�1 0 0 0 1 0
0 �1 0 0 0 1
�2 0 0 0 0 0
0 0 �1 0 0 0
0 0 0 �1 0 0

1

CCCCCCCCA

, (2.26)
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which extends (2.10) by two rows that ensure the Jacobian has full rank. After lifting
Example (2.6), the active constraint gradients of the NLP formulation are linearly
independent and MPCC-LICQ is satisfied for (2.25) everywhere. It remains to discuss
how to drive w to zero in order to solve the original unlifted problem.

2.4. Driving w to Zero. In order to solve the original unlifted problem (1.2),
we have to ensure that w

i

= 0, 8i at the solution. There are several ways to do that.
In the following, we discuss an exact and an inexact penalty function for driving w to
zero, namely

(a) p(w) = kwk1, and (2.27a)

(b) p(w) = kwk22 (2.27b)

The `1-norm penalty (2.27a) is an exact penalty function. It ensures that we solve
the original unlifted problem when choosing ⇡ larger than a threshold ⇡̄ (the exact
convergence behavior is discussed in the next section). However, the exact `1-norm
penalty is a nonsmooth function. Instead of using a numerical method which is able
to handle the nonsmoothness of the function (as proposed in, e.g., [8]), we add the
additional constraint w � 0 which ensures the componentwise nonnegativity of w and
the smoothness of the penalty kwk1. For the lifting of the complementarity constraint
this means that the we cut the two planes in Figure 2.1 at w = 0 and neglect the part
with w < 0 . The proof of Theorem 2.1 and the geometry of the feasible set directly
imply that we keep MPCC-LICQ as long as the additional constraint w

i

� 0, i 2 Rk is
not active at a point where h

i

(x, y) and z
i

are zero for i 2 {1, · · · , k}. Our numerical
experiments clearly indicate that having MPCC-LICQ everywhere but points where
h
i

(x, y) = z
i

= w
i

= 0 still stabilizes the MPCC and leads to a faster convergence.
Furthermore, this approach allows us to use standard NLP solvers.

The squared `2-norm penalty (2.27b) is an analytic function, which is a nice
property since most numerical NLP algorithms assume smoothness of the problem.
However, with an inexact penalty function we have to solve a sequence of problems
where ⇡ ! 1 in order to ensure to converge to a solution of the original unlifted
problem (1.2). This is an undesirable property. However, we decided to also investi-
gate the inexact penalty because our numerical experience clearly shows, that having
MPCC-LICQ everywhere decreases the number of iterations. Furthermore, to avoid
an ill-conditioned Hessian, reformulations such as the one described in [18, Chapter
17] could be used. Both penalty functions are tested in Section 4, and the convergence
properties of penalty (2.27a) are analyzed in the next section.

2.5. Local Convergence Properties. Fletcher et al. [11] provide convergence
results for SQP methods applied to MPCCs under relatively mild conditions. One
important assumption for the convergence to strongly stationary points is that the
MPCC satisfies MPCC-LICQ. This condition keeps the multipliers bounded and en-
sures a fast local convergence. We now derive an assumption which is weaker than
MPCC-LICQ for problems of type (1.2) and for penalty (2.27a). The analysis in [11]
centers around the relaxed NLP

minimize
x,y,z

F (x, y)

subject to r
y

L(x, y, z) = 0
z
i

= 0 8i 2 Z?
2

h
i

(x, y) � 0 8i 2 Z1

z
i

� 0 8i 2 Z2.

(2.28)
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Without loss of generality and to keep the notation simple, we assume Z?
1 = ;. The

Lagrangian of (2.28) is given by

L(x, y, z,�, µ, ⌫) := F (x, y)�r
y

L(x, y, z)T�� zTµ� h(x, y)T ⌫, (2.29)

with Lagrange multipliers � 2 Rm, µ =: (µ1, µ2) 2 R|Z?
2 |+|Z2| with µ2 � 0 and

⌫ 2 R|Z1| with ⌫ � 0. Dual feasibility of (2.28) is given as

r
x

L(x, y, z,�, µ, ⌫)= r
x

F (x, y)�r
yx

L(x, y, z)T��r
x

h(x, y)T ⌫ = 0
r

y

L(x, y, z,�, µ, ⌫)= r
y

F (x, y)�r
yy

L(x, y, z)T��r
y

h(x, y)T ⌫ = 0
r

z

L(x, y, z,�, µ, ⌫) = �r
y

h(x, y)T� �µ= 0.
(2.30)

Combining conditions (2.30), feasibility of (2.28) and complementary slackness

h
i

(x, y)⌫
i

= 0 8 i 2 Z1 and µ2izi = 0 8 i 2 Z2, (2.31)

gives us the KKT conditions of (2.28). Now consider the relaxed lifted NLP

minimize
x,y,z,w

F (x, y) + ⇡kwk1
subject to r

y

L(x, y, z) = 0
z
i

= 0 8i 2 Z?
2

h
i

(x, y)� w
i

� 0 8i 2 Z1

z
i

� 0 8i 2 Z2.

(2.32)

To simplify the analysis, we will replace w by w = w+ � w� with w+, w� � 0 and
kwk1 = w+ +w�, giving rise to the following conditions for dual feasibility of (2.32):

r
x

L(·) = r
x

F (x, y)�r
yx

L(x, y, z)T��r
x

h(x, y)T ⌫ = 0
r

y

L(·) = r
y

F (x, y)�r
yy

L(x, y, z)T��r
y

h(x, y)T ⌫ = 0
r

z

L(·) = �r
y

h(x, y)T� �µ = 0
r

w

+L(·) = ⇡ e +⌫ �⇠+= 0
r

w

�L(·)= ⇡ e �⌫ �⇠�= 0,

(2.33)

where the dependencies of L are skipped for a compact presentation, e denotes a vector
of ones of appropriate size, and ⇠+, ⇠� are the Lagrange multipliers for w+, w� � 0.
We note, that in order to keep the notation intuitive, L in (2.30) denotes the La-
grangian of (2.28), and L in (2.33) denotes the Lagrangian of (2.32). In the following,
(x, y, z) is called a KKT point of (2.28) if the KKT conditions (as described in,
e.g., [11]) are satisfied at (x, y, z). We can now state the following two propositions.

Proposition 2.1. Let (x⇤, y⇤, z⇤) be a KKT point of (2.28) and assume that
⇡ > k⌫⇤k1. Then it follows that (x⇤, y⇤, z⇤, w⇤) with w⇤ = 0 is a KKT point of
(2.32).

Proof. Clearly, the first three equations of (2.33) are satisfied at (x⇤, y⇤, z⇤). We
also see that ⇠+ = ⇡e+ ⌫⇤ � 0 since ⇡, ⌫ � 0. With w⇤ = 0 we get complementarity
for the constraints w+, w� � 0. It remains for us to show that ⇠� = ⇡e� ⌫⇤ � 0, but
we choose ⇡ > k⌫⇤k1 = max

i

⌫⇤
i

, hence ⇠� � 0.
Proposition 2.2. Let (x⇤, y⇤, z⇤, w⇤) be a KKT point of (2.32). If w⇤ = 0, then

it follows that (x⇤, y⇤, z⇤) is a KKT point of (2.28).
Proof. Dual feasibility of (2.28) (equation (2.30)) directly follows from (2.33).

The same holds true for the nonnegativity of µ⇤
2 and ⌫⇤ in the solution of (2.28).

Given that w⇤ = 0, we have primal feasibility and complementarity for the unlifted
problem (2.28).
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This result means that if we solve (2.32) with the solution (x⇤, y⇤, z⇤, w⇤) and
w⇤ = 0, the point (x⇤, y⇤, z⇤) is also a KKT point of (2.28), and we can now apply
the convergence analysis from [11]. Furthermore, this means that instead of requiring
MPCC-LICQ in the convergence proof of [11], it su�ces for MPCCs arising from
bilevel NLPs like problem (1.2) to require LICQ and SSOC for the lower-level NLP.
LICQ and SSOC are reasonable assumptions which are satisfied for most well-posed
problems. Hence, in order to have bounded multipliers and a faster convergence in
practice for bilevel NLPs with LICQ and SOSC on the lower level, is su�ces to lift the
complementarity constraint as described in (2.12) and to choose a ⇡ that is su�ciently
large. Without lifting the complementarity constraint, we would have to require
strict complementarity of the lower-level problem (|D| = 0) in order to guarantee
MPCC-LICQ. This is a rather restrictive conditions which is already violated in simple
examples like the one described in(2.6).

As discussed in the last section, the `1-norm is a nonsmooth function, but we wish
to use standard SQP methods which usually require the objective and the constraints
to be at least twice continuously di↵erentiable. If we now assume that F, g and h are
twice continuously di↵erentiable functions, and if we add the additional constraint
w � 0 to (2.32), we obtain the smooth problem

minimize
x,y,z

F (x, y) + ⇡
P

k

i=1 wi

subject to r
y

L(x, y, z) = 0
z
i

= 0 8i 2 Z?
2

h
i

(x, y)� w
i

� 0 8i 2 Z1

z
i

� 0 8i 2 Z2

w � 0

(2.34)

which is su�ciently smooth for standard SQP methods. The disadvantage of the
additional constraint w � 0 is that we cannot guarantee MPCC-LICQ anymore at
points (x, y, z, w) with h

i

(x, y) = z
i

= w
i

= 0 for at least one i 2 {1, · · · , k}. However,
in the next section we show that our lifting technique still stabilizes the MPCC and
leads to a faster convergence. We now briefly investigate how the convergence results
from Propositions 2.1 and 2.2 change for (2.34). The only di↵erence in the proof will
be in the dual feasibility conditions (2.33), where the last two equations have to be
replaced by

r
w

L(·) = ⇡ e+ ⌫ � ⇠ = 0, (2.35)

where ⇠ is the Lagrange multiplier for w � 0. We have to ensure that ⇠ = ⇡e+ ⌫ � 0,
which is true since ⇡, ⌫ � 0. This implies that Proposition 2.1 and Proposition 2.2
also hold for problem (2.34). Moreover, the additional assumption on ⇡ is not needed
anymore.

Corollary 2.1. Let (x⇤, y⇤, z⇤) be a KKT point of (2.28). Then (x⇤, y⇤, z⇤, w⇤)
is also a KKT point of (2.34) with w⇤ = 0. And vice versa, if (x⇤, y⇤, z⇤, w⇤) is a
KKT point of (2.34) and if w⇤ = 0, then (x⇤, y⇤, z⇤) is also a KKT point of (2.28).

3. Lifting General MPCCs. In this section, we discuss the generalization
of our lifting approach to general MPCCs (which do not originate from a bilevel
program). In particular, we consider

minimize
x:=(x1,x2),y

F (x, y)

subject to 0  h(x, y)
0  x1 ? x2 � 0,

(3.1)
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with x1, x2 2 Rn, y 2 Rm and h(x, y) 2 Rk. The relaxed NLP of (3.1) is given by

minimize
x,y

F (x, y)

subject to 0  h(x, y)
0 = x1 8i 2 Z?

1

0 = x2 8i 2 Z?
2

0  x1 8i 2 Z1

0  x2 8i 2 Z2,

(3.2)

with Z1 = {i 2 {1, · · · , n} | x1i = 0} and Z2 = {i 2 {1, · · · , n} | x2i = 0}. Lifting
general MPCCs of the form (3.2) leads to the following problem:

minimize
w,x:=(x1,x2),y

F (x, y) + ⇡p(w)

subject to 0  h(x, y)� w
0  x1 ? x2 � 0.

(3.3)

The relaxed NLP for this MPCC is given by:

minimize
x,y,w

F (x, y) + ⇡p(w)

subject to 0  h(x, y)� w
0 = x1 8i 2 Z?

1

0 = x2 8i 2 Z?
2

0  x1 8i 2 Z1

0  x2 8i 2 Z2,

(3.4)

where the constraints h(x, y) are lifted with variables w 2 Rk. The lifting of general
MPCCs is not as elegant as in the bilevel case because of the lack of information
about the structure of the constraints h(x, y) � 0. However, lifting still guarantees
linearly independent constraint normals. To see this, we consider the Jacobian of
active constraints of the lifted relaxed NLP (3.4):

J :=

0

BBBBBBBBBBBB@

�I
r

x

1Z?
1

h I

r
x1Dh I

r
x

2Z?
2

h I

r
x2Dh I

r
x

1Z?
2

h

r
x

2Z?
1

h

r
y

h

1

CCCCCCCCCCCCA

where the notation x
jI := (x

ji

| i 2 I) denotes the subvector of x
j

whose indices
belong to I for j = 1, 2. The column of J correspond to the constraints

(h� w, x1Z?
1
, x1D, x2Z?

2
, x2D) (3.5)

and the rows of J correspond to the variables

(w, x1Z?
1
, x1D, x2Z?

2
, x2D, x1Z?

2
, x2Z?

1
, y). (3.6)
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Zero entries are skipped. Clearly, the Jacobian J has full column rank without any
restrictions on the structure of the constraint function h(x, y). More general comple-
mentarity constraints of the form

0  G(x) ? H(x) � 0 (3.7)

can easily be treated by introducing slack variables. No further restrictions on the
functions G,H are needed, since G and H are then lifted in the same way as the
inequalities h(x, y) � 0. This result is in contrast to [11] where we assumed that
parts of rG,rH have full rank. It is straightforward to show that the convergence
results for the exact penalty from Section 2.5 remain true for the lifted general MPCC
(3.4) with p(w) = kwk1. Numerical test are promising and show that lifted MPCCs
behave in the same way as lifted bilevel NLPs. The computational results are discussed
in detail in the next section.

4. Numerical Results. We test the lifting approach for bilevel NLPs and for
general MPCCs described in Sections 2 and 3. We compare the performance without
lifting (formulation (2.5)), with the lifted `1-penalty approach (2.27a) including the
additional constraint w � 0, with the lifted `2-penalty (2.27b). As test problems we
use the MacMPEC collection [13] and Example (2.6) described in Section 2.1. We first
compare all MPCCs arising from bilevel problems – 47 problems in total, excluding
problems that are unchanged by the lifting such as kth1.

The performance of filterSQP for the 47 bilevel test problems without lifting,
and with `1-lifting using the penalty functions (2.27a) and `2-lifting (2.27b) is shown
in Figure 4.1. The plots can be interpreted as a probability distribution that a solver
outperforms all other solvers. The performance profiles are generated as described
in [9,15]. The performance measure is the number of iterations, which is a consistent
measure given that all problems have been solved with filterSQP in AMPL. For each
problem p 2 P := {1, · · · , 47} and solver s 2 S with S := {filterSQP, filterSQP lift `1,
filterSQP lift `2}, we define

t
p,s

:= iterations required to solve problem p by solver s. (4.1)

The performance ratio is defined by

r
p,s

:=
t
p,s

min{t
p,s

0 : s0 2 S} , (4.2)

the probability for solver s 2 S that a performance ratio r
p,s

is within a factor ⌧ 2 R
of the best possible ratio is denoted as

⇢
s

(⌧) :=
1

|P| |{p 2 P : r
p,s

 ⌧}|.

The profile in Figure 4.1 shows ⌧ versus ⇢
s

(⌧).
Table 4.1 shows the number of iterations, the objective value in the solution and

the penalty parameter ⇡ for each problem and each approach. The theoretical results
from Section 2.2 are confirmed for our motivating Example (2.6). Without lifting,
12 iterations are needed to solve the problem. Lifting with penalty (2.27b) ensures
MPCC-LICQ for all x 2 R, y 2 R and w 2 R2 and the number of iterations decreases
from 12 to 7 iteration. Using penalty (2.27a) and the additional constraints w � 0
leads to 8 iterations. The decrease is even large for ex9.2.2 from 22 to 9 iterations
for penalty (2.27b).
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Figure 4.1. Performance profile of filterSQP for bilevel problems from MacMPEC.

Using the exact penalty (2.27a), for 28 of 48 problems we use ⇡ = 1. The largest
⇡ in this setting is ⇡ = 20. For both settings (penalty (2.27a) and penalty (2.27b)),
the lifting is not sensitive with respect to the initial value for w. It some cases it helps
to choose the initial for w such that h(x, y) � w or even h(x, y) = w is satisfied at
the initial point. For penalty (2.27b), the largest value of ⇡ for driving w to zero is
1E6. However, this is only the case for 2 of 48 problems. For 12 problems, ⇡ = 1
is su�cient. For most of the remaining problems we use ⇡ = 1E4 or ⇡ = 1E5.
Practical experience shows that for lifting with the inexact penalty, it is reasonable to
choose ⇡ to be in the same order of magnitude as max(F (x0, y0),NVAR, 1E4), where
x0, y0 are the initial values for x, y and NVAR is the total number of variables of the
problem. For lifting with the exact penalty, ⇡ = 1 is a reasonable choice. If the initial
penalty parameter ⇡ is not su�ciently large to drive w to zero in the solution, ⇡ has
to be increased. In Table 4.1, (I) means that the problem is locally infeasible and
(ERR) stands for an IEEE error in the AMPL function evaluations. For problem
design-cent2, design-cent3 and design-cent21, infeasibility has been detected
or an error occurred with and without lifting. For six other problems without lifting
the problem is locally infeasible, but after lifting the problem (independent of the
penalty we use), filterSQP converges to a solution. There are three problems that
could not be solved, neither the unlifted nor the lifted problem.

In total, for all bilevel test problems, the number of iterations with lifting has de-
creased from 273 to 222 iterations for penalty (2.27a), and to 205 for penalty (2.27b)
as shown in Figure 4.1 and Table 4.1. Even though we loose MPCC-LICQ when using
the exact penalty with w � 0 for points where h

i

(x, y) = z
i

= w
i

= 0 for at least one
i 2 {1, · · · , k}, Figure 4.1 shows that the performance of filterSQP lift l1 is the
best. The performance of filterSQP lift l2 is worse than the `1-lifting, but still
better than filterSQP without lifting.

We now consider general MPCCs from the MacMPEC collection [13] which do not
arise from bilevel problem – 118 problems in total. Again, note that if lifting does not
change the problem formulation, the problem is skipped. Table 4.2 shows the number
of iterations, the objective value in the solution and the penalty parameter ⇡ for each
problem and each approach, and the performance profile is illustrated in Figure 4.2.
The total number of iterations decreases from 1288 for the unlifted problem to 871 for
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Figure 4.2. Performance profile of filterSQP for general MPCCs from MacMPEC.

the `1-lifted problem, and to 1090 for the `2-lifted problem. The performance profile in
Figure 4.2 clearly shows that filterSQP lift l1 performs best. Ten problems could
not be solved (neither lifted nor unlifted) because of infeasibility. In Table 4.2, (no
conv) means that the trust region becomes too small, (w 6= 0) means that we were not
able to drive w to zero, and (fail QP) means that the QP solver exits with an error. For
fourteen problems, filterSQP detected infeasibility in the unlifted problem, but after
lifting (independent of the penalty), filterSQP converges to a solution. There is one
problem of special interest, which is problem scholtes4, known for a solution which
is a B-stationary point that is not strongly stationary. Without lifting, filterSQP
detects infeasibility. After lifting, the problem can be solved and filterSQP converges
to the reported solution. There are two problems, where filterSQP without lifting
converges, but we cannot get a solution for the lifted problem (independent of the
penalty we use).

For a better understanding of the convergence behavior of filterSQP applied
to MPCCs with and without lifting, we take a closer look at problem incidset1-8.
Figure 4.3 shows the convergence behavior without lifting and with `1-lifting, where
the constraint violation on the y-axis is plotted on a logarithmic scale. Except for
the last iteration, Figure 4.3 indicates a linear rate of convergence for the unlifted
problem, whereas with lifting, we obtain a superlinear rate of convergence.
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Figure 4.3. Convergence behavior of incidset1-8.
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In summary, lifting the complementarity constraint (independent of the penalty
function) leads to a more stable method with a better convergence behavior, for bilevel
programs, but also for general MPCCs. Practical experience and the performance
profiles 4.1 and 4.2 show, that lifting with the exact penalty performs best, and if we
converge to a KKT-point of the `1-lifted problem with w⇤ = 0, we can guarantee that
this is also a KKT-point of the original unlifted problem. Furthermore, the lifting
proposed in this paper does not require a tailored solver, standard SQP-solver can be
used after adapting the problem formulation.

filterSQP lift `1 filterSQP lift `2 filterSQP
iter. pen. objf. iter. pen. objf. iter. objf.

bard1m 3 3 17 3 1.50E+04 17 3 17
bard2m 3 2 -6598 3 1.00E+04 -6598 3 -6598
bard3m 4 2 -12.68 4 1.00E+04 -12.68 4 -12.68

design-cent-31 94 2 0 89 1.00E+00 0 126 0
desilva 2 1 -1 2 1.00E+00 -1 2 -1
hs044-i 4 1 17.09 4 1.00E+05 17.09 4 17.09
portfl1 6 1 1.50E-005 3 1.00E+04 1.50E-005 6 1.50E-005
portfl2 5 1 1.46E-005 3 1.00E+04 1.46E-005 6 1.46E-005
portfl3 4 1 6.27E-006 4 1.00E+00 6.27E-006 4 6.27E-006
portfl4 4 1 2.18E-006 4 1.00E+02 2.18E-006 4 2.18E-006
portfl6 4 1 2.36E-006 3 4.00E+00 2.36E-006 4 2.36E-006
hs044-i 4 1 17.09 4 1.00E+05 17.09 4 17.09

liswet1-050 1 1 0.16 2 1.00E+05 0.14 1 0.16
liswet1-100 1 1 0.16 3 1.00E+04 0.14 1 0.16
liswet1-200 1 1 0.17 5 1.00E+04 0.15 1 0.17

sl1 1 1 0 1 1.00E+00 0 1 0
bard1 3 3 17 3 1.00E+05 17 3 17
bard2 1 1 6598 1 1.00E+06 6598 1 6598
bard3 2 1 -12.68 2 1.00E+04 -12.68 4 -12.68

bilevel1 3 3 0 3 1.00E+05 0 4 -60
bilevel2 2 1 -6600 2 1.00E+06 -6600 6 -6600
bilevel3 6 5 -20 5 1.00E+05 -20 7 -15.82
ex9.1.1 1 1 -13 1 1.00E+00 -13 1 -13
ex9.1.3 2 20 -29.2 2 1.00E+05 -29.2 2 -29.2
ex9.1.4 1 1 -37 2 1.00E+04 -37 4 -37
ex9.1.5 3 1 -1 2 1.00E+00 -1 3 -1
ex9.1.6 2 3 -21 2 1.00E+05 -21 2 -21
ex9.1.7 5 15 -23 6 1.00E+05 -23 3 -23
ex9.1.8 2 1 -3.25 2 1.00E+04 -3.25 2 -3.25
ex9.1.9 2 2 3.11 2 1.00E+04 3.11 2 3.11
ex9.1.10 1 1 -3.25 2 1.00E+04 -3.25 2 -3.25
ex9.2.1 1 1 2 1 1.00E+05 2 1 2
ex9.2.2 22 7 100 9 1.00E+05 100 22 100
ex9.2.4 3 1 0.5 3 1.00E+00 0.5 3 0.5
ex9.2.5 3 10 9 3 1.00E+00 9 7 9
ex9.2.6 3 1 -1 3 1.00E+00 -1 3 -1
ex9.2.7 2 10 17 2 1.00E+05 17 2 17
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ex9.2.8 3 1 -1.5 3 1.00E+00 -1.5 3 -1.5
Example (2.6) 8 1 0 7 1.00E+03 0 12 0

ex9.2.3 3 1 5 3 1.00E+05 5 (I)
ex9.2.9 1 1 2 1 1.00E+00 2 (I)

bilin 3 8 5.6 4 1.00E+04 5.6 (I)
design-cent-1 5 2 1.86 5 1.00E+04 1.86 (I)
design-cent-4 1 1 0 1 1.00E+00 0 (I)
design-cent-2 (I) (I) (I)
design-cent-3 (ERR) (ERR) (ERR)

design-cent-21 (I) (I) (I)

Table 4.1: Numerical results for bilevel problems from MacMPEC.

filterSQP lift `1 filterSQP lift `2 filterSQP

bar-truss 13 100010166.6 37 1.00E+06 10166.6 10 10166.6
dempe 39 1 28.25 8 1.00E+05 49 58 28.25

df-1 2 1 0 2 1.00E+00 0 2 0
flp2 1 1 0 1 1.00E+00 0 1 0

flp4-1 3 1 0 3 1.00E+00 0 3 0
flp4-2 3 1 0 3 1.00E+00 0 3 0
flp4-3 3 1 0 3 1.00E+00 0 3 0
flp4-4 3 1 0 3 1.00E+00 0 3 0

gnash10 7 1 -230.82 7 1.00E+05 -230.82 8 -230.82
gnash11 7 1 -129.91 7 1.00E+05 -129.91 7 -129.91
gnash12 8 1 -36.93 7 1.00E+05 -36.93 8 -36.93
gnash13 8 1 -7.06 8 1.00E+05 -7.06 12 -7.06
gnash14 14 1 -0.18 8 1.00E+04 -0.18 24 -0.18
gnash15 9 100 -354.7 8 1.00E+05 -354.7 17 -354.7
gnash16 12 1 -241.44 7 1.00E+05 -241.44 14 -241.44
gnash17 8 1 -90.75 9 1.00E+05 -90.75 12 -90.75
gnash18 14 100 -25.7 8 1.00E+05 -25.7 14 -25.7
gnash19 7 1 -6.12 8 1.00E+05 -6.12 9 -6.12

gnash10m 7 1 -230.82 8 1.00E+05 -230.82 11 -230.82
gnash11m 7 1 -129.91 7 1.00E+05 -129.91 12 -129.91
gnash12m 8 1 -36.93 9 1.00E+05 -36.93 10 -36.93
gnash13m 8 1 -7.06 8 1.00E+04 -7.06 11 -7.06
gnash14m 8 1 -0.18 8 1.00E+04 -0.18 31 -0.18
hakonsen 10 1 24.37 10 1.00E+04 24.37 10 24.37

incid-set1-8 19 1 0.23 27 1.00E+00 0 29 0.23
incid-set1-16 40 1 0.17 39 1.00E+00 0 28 0.17
incid-set1c-8 23 1 0.23 19 9.00E+00 0 29 0.23
incid-set1c-16 37 1 0.17 22 1.00E+00 0 28 0.17
incid-set2-32 1 1 0 1 1.00E+00 0 169 0.02

monteiro 8 1000 37.53 10 1.00E+06 38.25 9 37.53
monteiroB 8 1000 827.86 10 1.00E+06 828.04 9 827.86
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nash1 1 1 0 1 1.00E+00 0 5 0
outrata31 7 3 3.21 7 1.00E+04 3.21 8 3.21
outrata32 7 2 3.45 7 1.00E+04 3.45 8 3.45
outrata33 6 2 4.6 6 1.00E+04 4.6 7 4.6
outrata34 6 1 6.59 6 1.00E+04 6.59 6 6.59

pack-comb1-8 5 1 0.6 6 1.00E+03 0.6 8 0.6
pack-comb1-16 9 110 0.62 10 1.00E+03 0.6 19 0.62
pack-comb1c-8 6 1 0.6 8 1.00E+03 0.6 8 0.6
pack-comb1c-16 7 27 0.62 10 1.00E+03 0.82 5 0.62
pack-comb2-8 8 14 0.67 10 1.00E+05 0.67 8 0.67
pack-comb2-16 10 30 0.73 36 1.00E+05 0.72 37 0.73
pack-comb2c-8 9 15 0.66 9 1.00E+04 0.67 6 0.67
pack-comb2c-16 10 30 0.73 10 1.00E+04 0.7 15 0.73

pack-rig1-4 8 2 0.72 10 1.00E+05 0.72 8 0.72
pack-rig1-8 14 3 0.79 11 1.00E+05 0.79 14 0.79
pack-rig1-16 27 3 0.83 23 1.00E+05 0.82 62 0.83
pack-rig1c-4 5 10 0.72 5 1.00E+05 0.72 6 0.72
pack-rig1c-8 8 10 0.79 8 1.00E+05 0.79 9 0.79
pack-rig1c-16 7 1 0.83 11 1.00E+05 0.82 11 0.83
pack-rig1p-4 6 1 0.6 7 1.00E+04 0.6 7 0.6
pack-rig1p-8 16 3 35.94 22 1.00E+06 0.73 12 35.94
pack-rig1p-16 27 7 264.48 27 1.00E+06 0.72 18 264.5

pack-rig2-4 8 2 0.69 11 1.00E+05 0.69 9 0.69
pack-rig2-8 9 6 0.77 16 1.00E+05 0.78 9 0.78
pack-rig2c-4 4 2 0.71 8 1.00E+05 0.71 7 0.71
pack-rig2c-8 7 8 0.8 8 5.00E+05 7 0.8
pack-rig2p-4 6 1 0.6 6 1.00E+04 0.6 6 0.6
pack-rig2p-8 15 6 46.68 22 1.00E+07 0.76 19 46.68
pack-rig2p-16 19 400 625.94 31 1.00E+06 -14.44 25 625.93

qpec-100-1 6 2 0.1 5 1.00E+04 0.1 7 0.1
qpec-100-2 6 3 -6.59 9 1.00E+05 -3.84 7 -6.26
qpec-100-3 4 2 -5.48 5 1.00E+05 -5.38 5 -5.48
qpec-100-4 4 5 -4.06 4 1.00E+05 -1.44 5 -3.6
qpec-200-1 4 5 -1.93 9 1.00E+05 -1.93 10 -1.94
qpec-200-2 11 3 -23.88 15 1.00E+05 -22.69 11 -24.04
qpec-200-3 10 3 -1.92 11 1.00E+06 -1.93 11 -1.95
qpec-200-4 4 3 -6.04 5 1.00E+06 -6.04 5 -6.22
ralphmod 59 1 -683.03 44 1.00E+01 -683.03 64 -683.03
scholtes1 3 1 2 3 1.00E+04 2 4 2
scholtes2 2 4 15 2 1.00E+07 15 2 15

stackelberg1 4 1 -3266.67 4 1.00E+06 -3266.67 4 -3266.67
tap-09 8 1 109.15 11 1.00E+04 109.15 8 109.13

TraficSignalCycle-1 3 1 56.73 8 1.00E+05 54.96 4 56.73
TraficSignalCycle-2 3 1 54.34 8 1.00E+04 52.57 4 54.34
TraficSignalCycle-3 2 1 88.84 16 1.00E+04 87.07 1 88.84
TraficSignalCycle-4 4 1 80.81 31 1.00E+05 79.04 9 80.84
TraficSignalCycle-5 3 1 103.24 25 1.00E+05 101.47 1 103.24
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TraficSignalCycle-6 3 1 103.3 26 1.00E+04 101.53 3 103.3
TraficSignalCycle-9 3 1 54.98 6 1.00E+04 53.2 3 54.98

TraficSignalCycle-10 3 1 56.57 15 1.00E+04 54.8 3 56.57
TraficSignalCycle-11 2 1 103.34 20 1.00E+04 101.57 1 103.34
TraficSignalCycle-13 3 1 88.17 5 1.00E+04 86.4 4 88.17

water-net 95 5 974.39 136 1.00E+07 918.43 149 918.36
b-pn2 33 1 0.09 55 1.00E+06 1020.93 (I)
gauvin 3 7 20 3 1.00E+04 20 (I)

gnash15m 12 1 -354.7 8 1.00E+04 -354.7 (I)
gnash16m 9 1 -241.44 8 1.00E+05 -241.44 (I)
gnash17m 12 1 -90.75 8 1.00E+05 -90.75 (I)
gnash18m 13 1 -25.7 8 1.00E+04 -25.7 (I)
gnash19m 11 1 -6.12 8 1.00E+04 -6.12 (I)
scholtes4 19 1 0 18 1.00E+04 0 (I)
taxmcp 15 11 0.82 16 1.00E+04 0.82 (I)

incid-set1-32 115 1 0.15 51 1.00E+00 0 (I)
incid-set1c-32 56 1 0.15 147 1.00E+00 0 (I)
incid-set2-8 1 1 0 1 1.00E+00 0 (I)

incid-set2-16 1 1 0 1 1.00E+00 0 (I)
incid-set2c-8 21 1 0.02 45 1.00E+04 0.03 (I)
incid-set2c-16 131 100 0 (I) (I)
incid-set2c-32 (I) (no conv) (I)

TraficSignalCycle-7 (I) (w 6= 0) (I)
TraficSignalCycle-8 (I) (w 6= 0) (I)

TraficSignalCycle-12 (I) (w 6= 0) (I)
pack-comb1-32 (no conv) (I) (I)
pack-comb2-32 (fail QP) (fail QP) (I)
pack-comb2c-32 (fail QP) (I) (I)
pack-comb1c-32 (no conv) (no conv) (I)

pack-rig2-16 (I) 28 1.00E+05 0.83 (I)
pack-rig2-32 (I) 145 1.00E+04 0.74 (I)
pack-rig2c-16 (I) 13 5.00E+05 0.92 (I)
pack-rig2c-32 (I) (I) (I)

tap-15 (I) (I) (I)
pack-rig1-32 (no conv) (no conv) 40 0.85
pack-rig1c-32 18 10 0.85 (I) 12 0.85
pack-rig1p-32 61 100 2242.07 (I) 101 2242.06
pack-rig2p-32 (I) (I) 23 871.75

tollmpec 31 100 208.26 (w 6= 0) 11 208.26
tollmpec1 19 100 979.39 (w 6= 0) (I)

Table 4.2: Numerical results for general MPCCs from MacMPEC.

5. Conclusion. We have shown that bilevel nonlinear programs whose lower
level problem satisfies LICQ and SSOC do not in general inherit MPCC-LICQ to the
MPCC that results from replacing the lower level NLP by its first order optimality
conditions. MPCC-LICQ is inherited if strict complementarity is satisfied for the lower
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level problem. However, this is a rather restrictive condition which is not satisfied
for many practical problems. A lifting technique has been presented to fix this lack
of MPCC-LICQ. Componentwise lifting of the lower level inequality constraints leads
to a well-behaved feasible set for which MPCC-LICQ can be guaranteed everywhere.
Two penalty approaches for driving the additional lifting variables to zero in the
solution have been discussed. Furthermore, convergence results for the exact penalty
approach and a generalization of the lifting technique for general MPCCs have been
provided. The proposed method has been tested for all problems from the MacMPEC

test set using filterSQP. The numerical results have clearly shown that lifting leads
to a better convergence behavior for both penalty approaches.
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[14] S. Leyffer, G. López-Calva and J. Nocedal, Interior Methods for Mathematical Programs
with Complementarity Constraints, SIAM Journal on Optimization, 17, 52–77, 2006.

19



[15] Ashutosh Mahajan, Sven Leyffer, and Christian Kirches Solving Mixed-Integer Nonlin-
ear Programs by QP-Diving Preprint ANL/MCS-2071-0312, Argonne National Laboratory,
Mathematics and Computer Science Division, March 2012.

[16] G. H. Lin, M. Fukushima, New relaxation method for mathematical programs with complemen-
tarity constraints, Journal of Optimization Theory and Applications, 118, 81—116, 2003.

[17] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Piecewise sequential quadratic programming for math-
ematical programs with nonlinear complementarity constraints, in Multilevel Optimization:
Algorithms, Complexity and Applications, A. Migdalas, P. Pardalos, and P. Värbrand, eds.,
Kluwer Academic Publishers, 209-–229, 1998.

[18] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Verlag, 2006.
[19] J. Outrata, M. Kocvara and J. Zowe, Nonsmooth Approach to Optimization Problems with

Equilibrium Constraints: Theory, Applications and Numerical Results, Kluwer Academic
Publishers, Dordrecht, 1998.

[20] D. Ralph and S. Wright, Some properties of regularization and penalization schemes for
MPECs, Optimization Methods and Software, 19, 527–556, 2004.

[21] A.U. Raghunathan, L.T. Biegler, Interior point methods for Mathematical Programs with
Complementarity Constraints (MPCCs), SIAM Journal on Optimization, 15, 720–750, 2005.

[22] H. Scheel and S. Scholtes, Mathematical program with complementarity constraints: Sta-
tionarity, optimality and sensitivity, Math. Oper. Res., 25, 1 – 22, 2000.

[23] S. Scholtes, Convergence properties of regularization schemes for mathematical programs with
complementarity constraints, SIAM Journal on Optimization, 11, 918 – 936, 2001.

[24] O. Stein, Lifting mathematical programs with complementarity constraints Mathematical Pro-
gramming, Springer Berlin / Heidelberg, 131, 1, 71 – 94, 2012.

[25] S. Steffensen and M. Ulbrich, A New Relaxation Scheme for Mathematical Programs with
Equilibrium Constraints, SIAM Journal on Optimization, 20, 2504–2539, 2010.

20


