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Abstract—Workflows continue to play an important role
in expressing and deploying scientific applications. In recent
years, the number of scientific applications adoption to high-end
computing has increased significantly. Moreover, a wide variety
of computational sites have emerged with shared access to users
such that a user often has access to multiple sites with a limited
resource allocation at each site. Because of the scarcity and
sparsity in the allocated resources, the user may not be able to
complete an entire workflow at a single site. It is thus beneficial
to run different tasks of a workflow on different sites. For such
cases, judicious scheduling strategy is required in order to map
tasks in the workflow to resources at multiple sites so that the
workload is balanced among sites and the overhead is minimized
in data transfer. The key challenges are that the execution time
of a task varies across different sites and the data transfer rate
varies based on the network capacity and load. In this paper, we
propose a multi-site workflow scheduling technique that tackles
the multi-site task distribution challenge by using data movement
performance modeling. We applied this technique to schedule
an earth observation science workflow over three sites. This
approach, executed via the Swift parallel scripting paradigm,
augments its default schedule and improves the time-to-schedule
by up to 52%.

I. INTRODUCTION

Large-scale applications often involve repetitive data- and
compute-intensive experiments. These applications are often
encoded as workflows and deployed on remote execution sites.
The workflow engine must then schedule tasks over available
system resources and manage data movement among the
tasks. In recent years, execution sites have been significantly
expanded, diversified and specialized. They vary widely in
system characteristics including computation power, memory
bandwidth, file system throughput, and performance of the
networks. With such heterogeneity among sites, different tasks
within the same workflow may perform better at different sites.

In addition to the issue of resource heterogeneity, users
confront logistical constraints in using these systems including
allocation time and software compatibility.

These users often subscribe to a multitude of heterogeneous
sites, spanning geographical regions, connected through vari-
ous types of networks. Unfortunately, the resource allocations
for each site may be limited. It is often desired, therefore, to
deploy a user application over multiple sites in order to best
utilize the resources collectively.

This deployment requires a judicious schedule that effi-
ciently maps individual tasks in the workflow to resources
at multiple sites, balancing the workload among sites and
minimizing the overhead in data transfer. The key challenge is

that the data transfer overhead varies along the communication
pattern and network utilization resulted from a schedule. In
other words, the time-to-solution of a workflow schedule
largely depends on how well tasks in a workflow adapt to
the designated system resources. The above dynamics resulted
by task-resource adaptation makes it difficult to identify an
optimal schedule. To address this issue, one needs to study two
factors: (a) how computation and data movement may change
given a schedule, and (b) how such change would affect the
workflow’s overall time-to-solution. Such knowledge, however,
often remains unknown until the workflow is executed and
profiled for a given schedule, making it almost impossible to
explore and optimize a large number of scheduling possibili-
ties.

In this paper, we propose a multi-site workflow scheduling
technique that tackles these challenges by using data move-
ment performance modeling. We take a user-provided high-
level, empirical performance description of the workflow. The
description is then used to construct a performance model of
the workflow, which projects a given schedule’s performance
behavior with respect to the dynamics of computation and data
movement. Our proposed scheme explore potential schedules
and suggest the best performing schedule according to the
projected workload behavior. The proposed schedule then is
used to deploy the workflow. Our specific contributions are
threefold:

• Development of the notion of workflow skeletons
to capture, explore, and analyze workflow behavior
with regard to dynamics of computation and data
movement.

• Formulation of an algorithm to explore and propose
an optimized schedule, according to the modeled
workflow behavior.

• Integration of the workflow skeleton and the schedul-
ing algorithm into a workflow deployment system.

We demonstrate an implementation of our system using
a mock but realistic scientific application. The application is
coded as Swift [1] scripts. Experiments are run over multiple
sites including large-scale XSEDE [2] infrastructures and
relatively medium-scale institutional resources. We show that
the proposed workflow schedule using our technique augments
Swift’s default schedule and saves up to 52% in time-to-
solution.

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of Swift, a workflow script-
ing language, typical scheduling mechanisms and SKOPE, a
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workload modeling framework. Section III presents our opti-
mized scheduling technique based on task-resource adaptation
according to workflow skeletons. Section IV describes our
experimental setup. Section IV-B evaluates the quality of the
proposed schedule by using a real scientific workflow over
multiple sites with distinct characteristics. Section VI discusses
related work. Conclusions are drawn in Section VII.

II. BACKGROUND

In this section we introduce workflow scripting, resource
scheduling, and workload behavior modeling techniques on
which our work is based.

A. Swift: Parallel and Distributed Execution System

Swift [1] is an application-level scripting framework de-
signed for composing ordinary programs into parallel appli-
cations. Applications encoded in Swift have been shown to
execute on multiple computational sites via Swift coasters [3]–
[5] mechanism that implements the pilot jobs paradigm. Swift
provides a simple reactive resource scheduling wherein, based
on an initial ”wave” of jobs, it records the per site job
completion rate and adjusts the proportionate number of jobs to
be sent to these sites. While Swift takes job completion rate per
site into account to adjust the score, additional external stimuli
can be supplied to Swift based on other factors. A new score
can be derived from these factors per site and supplied to Swift
such that a favorable schedule emerges. Executing applications
with an augmented schedule via Swift is one of goals of this
paper. Even though Swift can use GridFTP [6], [7] for high-
speed data movement, it does not take data transfer time into
account while picking the sites for executing the tasks. Our
approach takes data transfer time into account while picking
the sites for the tasks in a workflow.

B. Resource Scheduling

The resource and job scheduling problem is a classic
NP-hard problem. It can be formally stated by resource
and job definitions, and the algorithms vary depending on
characteristics of resources and jobs. For example, job shop
scheduling [8] is for multiple independent jobs with varying
sizes and multiple homogeneous resources/machines. On the
other hand, in the context of distributed computing, jobs may
have dependencies among them and take input data from
remote sites and send output to multiple remote sites. The
sites themselves may also have a broad spectrum of computer
architectures and capacities. In scheduling to take into account
all these factors, sophisticated algorithms are needed.

C. SKOPE: A Workload Behavior Modeling Framework

SKOPE (SKeleton framewOrk for Performance Explo-
ration) is a framework that helps users describe, model, and
explore a workload’s current and potential behavior [9]. It asks
the user to provide a description, called code skeleton, that
identifies a workload’s performance behaviors including data
flow, control flow, and computation intensity. These behavioral
properties are intrinsic to the application and is agnostic of any
system hardware. They are interdependent; the control flow
may determine data access patterns, and data values may affect

control flow. Given different input data, they may result in di-
verse performance outcomes. They also reveal transformation
opportunities and help users understand how workloads may
interact with and adapt to emerging hardware. According to the
semantics and the structures in the code skeleton, the SKOPE
back-end explores various transformations, synthesizes perfor-
mance characteristics of each transformation, and evaluates the
transformation with various types of hardware models.

The workloads targeted by SKOPE include computational
kernels and MPI applications. In this paper, we adopt and
extend SKOPE to model workflows that often have multi-
ple computational tasks with file transfers among them. The
SKOPE front-end is extended with syntax and semantics to
describe files and computational tasks. The resulting code
skeleton is called the workflow skeleton. We further add a
back-end procedure that constructs task graphs from workload
skeletons.

III. SKELETON-BASED MULTISITE WORKFLOW
SCHEDULING

Fig. 1. Skeleton-based workflow scheduling framework

Figure 1 illustrates the overall steps involved in our tech-
nique. In the beginning, the user provides a workflow script
in Swift, in which a workflow is represented as a sequence of
applications, each of which consumes or produces a number
of files. In addition to the workflow description, the user needs
to provide a workflow skeleton using our extended SKOPE to
describe the overall performance properties of the workflow.

The workflow skeleton, or skeleton in short, essentially
models the workflow’s behavior, including the application’s
computation resource requirements, as well as characteristics
of the input and output files. To execute the workflow on
multiple sites, the user selects the resources available and
submits both the workflow script and the skeleton to the
scheduling system. The skeleton then automatically generates
a task graph, where a task refers to one or more applications
grouped as a scheduling unit. The task graph depicts the
tasks’ site-specific resource requirements as well as the data
flow among them. Such a task graph is then used as input
to a scheduling algorithm, which also takes into account
the resource graph that describes the underlying hardware at



TABLE I. EXECUTION SITES AND THEIR CHARACTERISTICS

Site CPU Cores CPU Speed Usable Memory per Node Allocation Remarks
LCRC Blues 310X16=4960 2.60GHz 62.90 GB unlimited Early access, 35 jobs cap

XSEDE Stampede 6400X16=102400 2.70GHz 31.31 GB limited 50 jobs cap
RCC Midway 160X16=2560 2.60GHz 32.00 GB limited Institute-wide access

multiple sites and the network connecting them. The output
of the algorithm is an optimized mapping between the task
graph and the resource graph, which the scheduler then uses
to dispatch the tasks.

In this section, we first introduce workflow skeletons and
how they generate the task graph. We then describe our multi-
site scheduling algorithm.

TABLE II. SYNTAX FOR WORKFLOW SKELETONS

Macros and Data Declarations
File type and size (in KB) :MyFile N

Constant definition :symbol = expr
Array of files :type array[N][M]

Variable def./assign var = expr
Variable range var name=begin:end(exclusive):stride

Control Flow Statements
Sequential for loop for var range {list of statements}

Parallel for loop forall list of var ranges {list of statements}
Branches if(conditional probability){list of statements}

else{list of statements}
Data Flow Statements

file input/load ld array[expri][exprj ]
file output/store st array[expri][exprj ]

Characteristic Statements
Run time (in sec.) comp T

Task description
Application definition def app(arg list){list of statements}

Application invocation call app(arg list)

A. Workflow Skeleton

Given a workflow, its skeleton summarizes the high-level
semantics that relate to its performance behavior. The syntax of
a workflow skeleton is summarized in Table II. In Figure 2(a),
we show the script for the workflow. Its skeleton is listed in
Figure 2(b). The skeleton is structured identically to its original
workflow script in terms of file types, application definitions,
and the control and data flow among the applications. The size
of each type of file are summarized in lines 3-4 of the skeleton.

To describe an application’s distinct behaviors over various
systems, the user can represent the application’s skeleton as
a switch statement where cases correspond to different
hardware systems. In each case are statements describing the
application’s empirically profiled performance characteristics
gathered for that corresponding system and the relationship
between the execution time and the input data. An example
skeleton description of an application is demonstrated by lines
17-35 in Figure 2(b).

A skeleton is parsed by SKOPE into a data structure called
the block skeleton tree (BST). Figure 2(c) shows the BST
corresponding to the skeleton in Figure 2(b). Each node of the
BST corresponds to a statement in the skeleton. Statements
such as application definitions, loops, or branches may en-
capsulate other statements, which in turn become the children
nodes. The loop boundaries and data access patterns can be
determined later by propagating input values.

Given the high-level nature of workflows and the structural
similarity between workflow scripts and skeletons, generating

the workflow skeleton can be straightforward and may be
automated in the future by a source-to-source translator. The
major effort in writing the workflow skeleton falls on profiling
the application over available systems in order to obtain perfor-
mance characteristics. Since a typical workflow is repeatedly
executed, such performance information can be obtained from
historical data, either by explicit user measurement or by
implicit system profiling.

B. Task Graph

A task graph is a directed, acyclic graph describing the per-
formance characteristics of each task and the data movement
among them. Figure 3 illustrates the task graph generated from
the workflow skeleton in Figure 2(b). In a task graph, nodes
refer to tasks and edges refer to data movements. Note that
the structure of the task graph is independent of the hardware
resources. Moreover, a node is annotated with the amount
of computation resources, or the execution time, needed by
the corresponding task for each available system. An edge is
annotated by the amount of data that is transfered from the
source node to the sink node.

Note that a task is a scheduling unit that may refer to a
group of application invocations. Since often only a handful
of sites are available and a workflow may contain parallel
for loops that can easily spawn hundreds or thousands of
homogeneous tasks, it is necessary to group multiple applica-
tion invocations into one scheduling unit in order to improve
the efficiency of the scheduling algorithm. Grouping can be
achieved by simply transforming nested parallel for loops
in the workflow skeleton into a two level nested loop, where
the inner loop defines a task with a number of application
invocations, and the outer loop is sized according to the desired
number of tasks, which is a predefined constant according
to the available number of sites. In this work, we adopt the
heuristic where iterations of a parallel for loop are grouped
into a number of tasks no more than 10 times the number of
sites. Such a granularity enables the scheduler to balance the
workloads among sites, and at the same time does not lead to a
significant overhead in probing a large number of possibilities.

C. Procedural Task Graph Generation

Generating a task graph from a workflow skeleton involves
three major steps. First, we obtain the data footprint for each
task. Second, we construct the data flow among dependent
tasks. Third, we derive the symbolic expression to express the
execution time of a task over different systems.

The key of our technique is data movement analysis, for
which we apply array section analysis using bounded regular
section (BRS) [10]. BRS has been conventionally used to study
stencil computation’s data access patterns within loops. It is
adopted in our study to analyze data access patterns over arrays
of files. In BRS, an array access can be regarded as a function
that maps a range of loop iterators to a set of elements over the



Fig. 2. Workflow script (a), skeleton (b), and the corresponding block skeleton tree (c) for a pedagogical workflow.

Fig. 3. Task graph for the workflow shown in Figure 2(a).

array. In this paper, we refer to the range of loop iterators as
a tile (T) and the set of accessed array elements as a pattern
(P). For example, suppose A is a 2-D array of files and an
application accesses A[r][c] in a nested for loop with two
iterators, r and c. The tile corresponding to the loop is denoted
T(r, c) = {r : hrl : ru : rsi; c : hcl : cu : csi}, where each
of the three components represents the lower bound, upper
bound, and stride, respectively. The overall pattern accessed
within this loop is denoted A[hrl : ru : rsi][hcl : cu : csi],
which is summarized by P(A[r][c],T(r, c)). Patterns can be
intersected or unioned.

To obtain the data footprint of a task, we identify its corre-
sponding node in the BST and obtain the tile T corresponding
to one iteration of all loops in its ancestor nodes (i.e., the
outer loops) and all iterations of its child nodes (i.e., the
inner loops). Given an access to a file array, A, we apply T to
obtain a pattern, P(A,T), which symbolically depicts the data
footprint of the task.

We then build the data flow among tasks. First, we scan all
BST nodes that correspond to tasks. Pairs of nodes producing

and consuming the same array of files become candidate
dependent tasks. Next, we perform intersection operations
between produced and consumed patterns to determine the
exact pattern that caused the dependency. The size of the
dependent patterns is the amount of data movement associated
with an edge in the task graph.

Then, we derive the execution time of each task for
different systems. We simply traverse the BST of the code
skeleton once for each site; in each traversal, the switch
statement in each application is evaluated, and its execution
time for that particular site is obtained. We then aggregate the
per application execution time into the per task execution time
by multiplying it with the number of applications within a task.

The resulting task graph is output in the form of an
adjacency list. It is then passed to the scheduler algorithm to
generate an optimized mapping among the tasks and resources.

D. Multisite Scheduling

We use a joint scheduling algorithm [11] that takes into
account both compute resources and network paths. In dis-
tributed workflow scheduling, data movement among sites
are not trivial, especially when the data size is big and
network resources are not abundant. That means independent
scheduling of compute resource and network paths may not
give a near optimal schedule. Our scheduling algorithm [11]
considers both resources holistically by converting a schedul-
ing problem into a network flow problem. In order to schedule
parallel jobs in a workflow while considering concurrently
runnable jobs at a compute resource, a new notion of task-
resource affinity has been devised by taking into account the
number of concurrently runnable jobs at computation sites.
Task clustering based on our algorithm is discussed later in
this section.

In addition to the task graph of a workflow, our scheduling
algorithm also needs a resource graph which describes the
underlying hardware architecture to generate an optimized
schedule. Figure 4 (a) illustrates an example of the resource
graph. Nodes and edges denote compute resources and network
paths among those resources. Even though a network path can



span multiple physical network links, we use only one logical
link between two sites because we cannot setup paths at our
discretion in these experiments. However, if we have control
over network path setup in connection-oriented networks, a
physical network topology can be used as a resource graph
so that our algorithm finds appropriate network paths for data
transfers.
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Fig. 4. (a) Resource graph model (b) Resource graph in our experiments.

Table III shows network bandwidth among our execution
sites. The network bandwidths among them is measured by
iperf benchmark tool. Figure 4 (b) is the resource graph
corresponding to Table I. The bandwidth values in Table III
are associated with edges in Figure 4.

TABLE III. DISK-TO-DISK BANDWIDTH BETWEEN SUBMIT AND
EXECUTION SITES

Site LCRC XSEDE RCC
Blues Stampede Midway

Submit Host 896 Mbit/s 592.88 Mbit/s 430 Mbit/s

We next set the resource capacities, C
n

, which represents
computation power at site n, associated with nodes in Figure 4.
d
i

denotes the amount of compute resource that task i demands
and d

i

is associated with task i. So di
Cs

represents how fast
a task demand, d

i

, can be processed by compute resources
at site s, C

s

. C
s

and d
i

are relative values. To describe that
task i takes 1 sec at compute resource site s, we can assign
either 100 or 10 to both of C

s

and d
i

. We have execution
time of a task i on site s, ti

s

through performance modeling.
Equation 1 is task-resource affinity equation where CE

s

is a
random variable of the number of concurrently runnable tasks
at site s. We assume that we do not have a fixed reservation at
computation site and we know the probability of job exeuction
from job queues. We define task-resource affinity as t

i
s

E(CEs)
.

t

i
s

E(CEs)
is the expected run time per task if multiple tasks are

run at computation site s. For example, if 10 same parallel
tasks are run at a site that can run 10 tasks at the same time,
the expected run time per task is one tenth of the tasks’s run
time.

ti
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E(CE
s

)

=

d
i

C
s

(1)

Equation 1 means task-resource affinity equals di
Cs

, which
is the runtime of task i at site s. We can thus set C

s

for a
computation resource site with fewest computation resource
to 100. Then for each task, we can get d

i

and assign this to
the corresponding task in the workflow. To compute C

n

, when

n 6= s, we can use Equation 2, where T is a set of tasks.
Since C

n

can be arbitrary values relative to d
i

according to
Equation 1, we should normalize C

n

regarding the base case
by Equation 2.
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Equation 2 averages affinities of tasks to resources. We can
easily extend our model such that resource affinity per task is
considered. For instance, while t1 can be executed two times
faster on site 1 than on site 2, t2 may have similar execution
times regardless of sites. We can define di

s

representing the
demand of task i at site s so that we can assign different
demands of tasks per each resource to the edges of the auxiliary
graph. [11]

Now we are ready to run the scheduling algorithms and
getting the schedule from it. However, the task graph in Figure
2 (c) has 634 parallel tasks, which could result in much higher
execution time of the scheduling algorithms. In this paper, we
partition the parallel tasks into 10 groups with same number of
tasks, 63–64, and use this reduced task graph for scheduling.
If the resulting schedule maps different groups to the same
resource we can group them into one group again. In this
way, we can find the better partitions for parallel tasks in part
if a large size of task graph is given. Previously, partitioning
techniques for multiple same-level tasks, called task clustering
[12], groups all the tasks into fixed number of partitions (e.g.,
2 or 4) with the same number of tasks to reduce scheduling
overhead or task queue wait time. With our algorithm or
combined with other workflow scheduling heuristics, better
task clustering will lead to improved makespans of workflows.
For example, after HEFT schedules the whole workflow by
grouping all same-level tasks into one logical task, our al-
gorithm can do online task clustering/scheduling for proper
partitions when the workflow management system is ready to
dispatch the logical task.

IV. EXPERIMENTAL SETUP

In this section we introduce the application and computa-
tion sites used in our experiments.

A. Application Characteristics

We use a mock application–MODIS (modis.gsfc.nasa.gov),
derived from NASA’s MODIS (Moderate Resolution Imaging
Spectroradiometer) instrument aboard the Terra and Aqua
satellites. The workflow model for this application is depicted
Figure 5 shows the workflow model with data and job numbers
for each computational stage. The application involves reading
satellite data, processing it for land-usage classification and
colorization. The two dominating tasks are ‘analyzelanduse’
and ‘colormodis’. The execution time of instances of each
of these tasks are homogeneous, as shown in figure 6. For
the current work, we use a set of 317 image tiles but the
application could be scaled up with a larger number of image
tiles and multiple operations on them.



Fig. 5. MODIS application workflow depiction.
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Fig. 6. MODIS application execution time distribution for different tasks. The
two tasks dominating MODIS workflow are ’getlanduse’ and ’colormodis’. As
seen in the plot, ‘getlanduse’ tasks are shorter with about 2.6 seconds whereas
the ‘colormodis’ tasks are longer with 8.8 seconds execution time.

B. Computation Sites

We selected three execution sites–XSEDE Stampede,
LCRC (Laboratory Computing Resource Center) Blues and
RCC (Research Computing Center) Midway to demonstrate
our approach. We identify their characteristics and utility.
A summarized characterization of these sites is tabulated in
Table I.

XSEDE (www.xsede.org) is an NSF-funded, national cy-
berinfrastructure comprising multiple large-scale computation
systems on sites across the United States. Stampede is one
of the supercomputing systems offered by XSEDE. Stampede
runs the SLURM scheduler for submitting user jobs.

LCRC Blues (www.lcrc.anl.gov/about/blues) is a recently-
acquired cluster available to science users at the Argonne
National Laboratory. The Blues cluster is a new system not
in production mode as of this writing; the system is available
for early access. Blues runs the PBS scheduler.

RCC Midway (rcc.uchicago.edu) is the University of
Chicago Research Computing Center cluster supporting Uni-
versity wide high-end computational needs. The cluster has
multiple resource partitionings dedicated to specialized com-
puting such as HPC, HTC and GPU computing and runs a
SLURM batch queue scheduler.

V. EVALUATION

In this section we present an evaluation of our approach.
We use the MODIS application workflow encoded in Swift for

these evaluations.

We chose 16 cpu-cores on each of the three clusters (Blues,
Midway and Stampede) resulting in a capability of running
48 application jobs in parallel across these clusters. We use a
remote machine for application submissions. Application input
data is stored on the disk on this remote machine.

We ran the application on individual sites to identify the
makespan time on each site. This involves the total amount
of time spent in data movement, execution, site-scheduler
overhead and Swift’s startup and shutdown overhead. Figure 7
shows the application makespan for each site. The least exe-
cution time on Blues can be attributed to a higher bandwidth
from submit host and the lightly loaded queues (Blues is an
early access system and is not opened for production use yet).

We then evaluate the workflow performance over multiple
sites. In the first set of experiments, we use the default
scheduler in Swift and merely tune a configuration parameter,
“throttle”, which controls the number of parallel jobs to send
to sites and hence the number of parallel data transfers to
sites. The default scheduler distributes an equal number of
jobs to each of the execution sites. It can be observed from
figure 8 that higher “throttle” results in larger makespan. This
is because higher “throttle” value results in more parallel jobs
and thus more input data files in each batch sent to the execu-
tion sites. As the number of files increases, the transfer time
increases. Also, since these files are transferred concurrently, it
can cause network congestion and disk I/O contention resulting
in increased transfer time. Makespan decreases as we tune the
“throttle” to match the number of available cpu cores.

In the second set of experiments, we alter the Swift script
and distribute the jobs according to a schedule proposed by
our scheme. The first such schedule, shown by the bar labeled
‘sched1’ takes the data movement into account assigns 256,
124 and 256 jobs to Stampede, Midway and Blues respectively.
The second proposed schedule takes the difference in job
execution time of ‘landuse’ and ‘colormodis’ into account and
assigns 124, 256 and 256 jobs to Stampede, Midway and Blues
respectively. Based on the resource description, our scheme
automatically picks the optimal “throttle” value.

It can be noted from the results in figure 8, we achieve
a minimum makespan with an informed schedule and saving
the effort of fine tuning with throttle changes. Our scheme
achieves a 52% improvement in makespan over the default
scheme (‘th:123’ in the Figure) and a 10% improvement over
the best performance obtained with manual tuning (‘th:48’ in
the Figure). In complex and large real workflows interfaced
with multiple remote sites, such fine tuning might be expensive
or impossible. This makes our scheme valuable by making
informed decision on how the jobs will be distributed across
execution sites and relieving the user from manual tuning.

VI. RELATED WORK

Large scale applications have been shown to benefit sig-
nificantly on heterogeneous systems [13] for data-intensive
science [14] and under multiple sites infrastructure [15], [16].
We demonstrate the value of these arguments in a realistic
scenario. There has also been much prior work on workflow
management and performance modeling, which we discuss
below.
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A. Workflow Management

Some of the well-known workflow management systems
include Condor DAGMan [17], Pegasus [18], Taverna [19] and
makeflow [20]. Condor DAGMan provides a minimal set of
keywords for directed acyclic graph (DAG)-based workflows.
The workflow model of Condor DAGMan does not require
additional information other than task precedence requirements
given by a DAG. Pegasus requires task execution time informa-
tion related to each task in a workflow. Swift provides a rich set
of keywords for parallel task execution. However, it does not
utilize task execution time except job completion rate per site.
These differences among workflow management systems result
in different scheduling capabilities. Condor DAGMan is only
capable of best-efforts batch-mode scheduling while Pegasus
deploy heuristics such as heterogeneous-earliest-finish-time
(HEFT), considering task execution time and/or data transfer
times.

Our work differ from those previous work in two aspects.
First, our scheduler takes into account the variance of task’s
execution time over different sites and data affinity among the
tasks. HEFT or other heuristics use averaged execution times

of a task over every possible resources or try earliest/latest
completion task first approach. These heuristics do not con-
sider the resource affinity per task effectively, and performance
would be worse combined with data transfer requirements.
Second, instead of having users manually measure tasks’ exe-
cution time and data transfer overhead for individual schedules,
we model the relationships between a schedule and its resulting
task execution time and data transfer overhead. As a result, we
can project the overall time-to-solution without executing each
possible schedule, which may not be feasible.

Simulation studies on multi-site resources have been done
in the past such as Workflowsim [21] on generic wide-scale
environments and more recently on European Grids [22].
While they provide detailed analysis of workflow deployment,
simulations take a significant amount of time. Our work models
the high level behavior of workflows so that the scheduler
can suggest an optimized schedule online when deploying a
workflow.

Overall, our approach based on workflow skeleton captures
the application characteristics while offloading the execution
responsibility to Swift which leads to a better division of
responsibility. This approach makes our work distinct and a
valuable contribution to e-science community.

B. Performance Modeling

Performance modeling has been widely used to analyze
and optimize workload performance. Application or hardware
specific models have been used in many scenarios to study
workload performance and to guide application optimiza-
tions [23], [24], where applications are usually run at a small
scale to obtain knowledge about the execution overhead and
their performance scaling. Snavely et al. developed a general
modeling frameworks [25] that combine hardware signatures
and application characteristics to determine the latency and
overlapping of computation and data movement. An alternative
approach uses black-box regression, where the workload is
executed or simulated over systems with different settings,
to establish connections between system parameters and run
time performance [26]–[29]. All the above techniques target
computational kernels and parallel applications.

SKOPE [9] provides a generic framework to model work-
load behavior. It has been used to explore code transforma-
tions when porting computational kernels to emerging parallel
hardware [30], [31]. We apply the same principles in modeling
kernels and parallel applications and extend SKOPE to model
workflows. In particular, we propose workflow skeletons and
use that to generate task graphs, which are in turn used to
manage workflow.

VII. CONCLUSION

In this paper, we proposed a multi-site scheduling approach
for scientific workflows using performance modeling. We
introduced the notion of workflow skeletons and extended the
SKOPE framework to capture, analyze and model the com-
putational and data movement characteristics of workflows.
We developed a resource and task aware scheduling algorithm
that utilizes the task graph generated using the workflow
skeleton and the resource graph generated using the resource



description. We incorporated our aproach into Swift, a script-
based workflow framework and showed that our approach can
improve the total execution time of the workflows by as much
as 52%.
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