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Abstract—Remote Procedure Call (RPC) is a technique that
has been largely used by distributed services. This technique,
now more and more used in the context of High-Performance
Computing (HPC), allows the execution of routines to be dele-
gated to remote nodes, which can be set aside and dedicated
to specific tasks. However, existing RPC frameworks assume
a sockets based network interface (usually on top of TCP/IP)
which is not appropriate for HPC systems, as this API does not
typically map well to the native network transport used on those
systems, resulting in lower network performance. In addition,
existing RPC frameworks often do not support handling large
data arguments, such as those found in read or write calls.

We present in this paper an asynchronous RPC interface
specifically designed for use in HPC systems that allows asyn-
chronous transfer of parameters and execution requests and
direct support of large data arguments. The interface is generic to
allow any function call to be shipped. Additionally, the network
implementation is abstracted, allowing easy porting to future
systems and efficient use of existing native transport mechanisms.

I. INTRODUCTION

When working in an heterogeneous environment, it is often
very useful for an engineer or a scientist to be able to distribute
the various steps of an application workflow; particularly so in
high-performance computing where it is common to see systems
or nodes embedding different types of resources and libraries,
which can be dedicated to specific tasks such as computation,
storage or analysis and visualization. Remote procedure call
(RPC) [1] is a technique that follows a client/server model
and allows local calls to be transparently executed onto remote
resources. It consists of serializing the local function parameters
into a memory buffer and sending that buffer to a remote
target which in turn deserializes the parameters and executes
the corresponding function call. Libraries implementing this
technique can be found in various domains such as web services
with Google Protocol Buffers [2] or Facebook Thrift [3], or
in domains such as grid computing with GridRPC [4]. RPC
can also be realized using a more object oriented approach
with frameworks such as CORBA [5] or Java RMI [6] where
abstract objects and methods can be distributed across a range
of nodes or machines.

However, using these standard and generic RPC frameworks
on an HPC system presents two main limitations: the inability

to take advantage of the native transport mechanism to transfer
data efficiently, as these frameworks are mainly designed on
top of TCP/IP protocols; and the inability to transfer very large
amounts of data, as the limit imposed by the RPC interface is
generally of the order of the megabyte. In addition, even if no
limit is enforced, transferring large amounts of data through
the RPC library is usually discouraged, mostly due to overhead
caused by serialization and encoding, causing the data to be
copied many times before reaching the remote node.

The paper is organized as follows: we first discuss related
work in section II, then in section III we discuss the network
abstraction layer on top of which the interface is built, as
well as the architecture defined to transfer small and large
data efficiently. Section IV outlines the API and shows its
advantages to enable the use of pipelining techniques. We then
describe the development of network transport plugins for our
interface as well as performance evaluation results. Section V
presents conclusions and future work directions.

II. RELATED WORK

The Network File System (NFS) [7] is a very good example
of the use of RPC with large data transfers and therefore very
close to the use of RPC on an HPC system. It makes use
of XDR [8] to serialize arbitrary data structures and create a
system-independent description, the resulting stream of bytes
is then sent to a remote resource, which can deserialize and get
the data back from it. It can also make use of separate transport
mechanisms (on recent versions of NFS) to transfer data over
RDMA protocols, in which case the data is processed outside
of the XDR stream. The interface that we present in this paper
follows similar principles but in addition handles bulk data
directly. It also does not limit to the use of XDR for data
encoding, which can be a performance hit, especially when
sender and receiver share a common system architecture. By
providing a network abstraction layer, the RPC interface that
we define gives the ability to the user to send small data and
large data efficiently, using either small messages or remote
memory access (RMA) types of transfer that fully support one-
sided semantics present on recent HPC systems. Furthermore,
all the interface presented is non-blocking and therefore allows



an asynchronous mode of operation, preventing the caller to
wait for an operation to execute before another one can be
issued.

The I/O Forwarding Scalability Layer (IOFSL) [9] is another
project upon which part of the work presented in this paper is
based. IOFSL makes use of RPC to specifically forward I/O
calls. It defines an API called ZOIDFS that locally serializes
function parameters and sends them to a remote server, where
they can in turn get mapped onto file system specific I/O
operations. One of the main motivations for extending the
work that already exists in IOFSL is the ability to send not
only a specific set of calls, as the ones that are defined through
the ZOIDFS API, but a various set of calls, which can be
dynamically and generically defined. It is also worth noting
that IOFSL is built on top of the BMI [10] network transport
layer used in the Parallel Virtual File System (PVFS) [11].
It allows support for dynamic connection as well as fault
tolerance and also defines two types of messaging, unexpected
and expected (described in section III-B), that can enable an
asynchronous mode of operation. Nevertheless, BMI is limited
in its design by not directly exposing the RMA semantics that
are required to explicitly achieve RDMA operations from the
client memory to the server memory, which can be an issue
and a performance limitation (main advantages of using an
RMA approach are described in section III-B). In addition,
while BMI does not offer one-sided operations, it does provide
a relatively high level set of network operations. This makes
porting BMI to new network transports (such as the Cray
Gemini interconnect [12]) to be a non-trivial work, and more
time consuming than it should be, as only a subset of the
functionality provided by BMI is required for implementing
RPC in our context.

Another project, Sandia National Laboratories’ NEtwork
Scalable Service Interface (Nessie) [13] system provides a sim-
ple RPC mechanism originally developed for the Lightweight
File Systems [14] project. It provides an asynchronous RPC
solution, which is mainly designed to overlap computation
and I/O. The RPC interface of Nessie directly relies on the
Sun XDR solution which is mainly designed to communicate
between heterogeneous architectures, even though practically
all High-Performance Computing systems are homogeneous.
Nessie provides a separate mechanism to handle bulk data
transfers, which can use RDMA to transfer data efficiently
from one memory to the other, and supports several network
transports. The Nessie client uses the RPC interface to push
control messages to the servers. Additionally, Nessie exposes
a different, one-sided API (similar to Portals [15]), which the
user can use to push or pull data between client and server.
Mercury is different, in that it’s interface, which also supports
RDMA natively, can transparently handle bulk data for the
user by automatically generating abstract memory handles
representing the remote large data arguments, which are easier
to manipulate and do not require any extra effort by the user.
Mercury also provides fine grain control on the data transfer
if required (for example to implement pipelining). In addition,
Mercury provides a higher level interface than Nessie, greatly

reducing the amount of user code needed to implement RPC
functionality.

Another similar approach can be seen with the Decoupled
and Asynchronous Remote Transfers (DART) [16] project.
While DART is not defined as an explicit RPC framework, it
allows transfer of large amounts of data using a client/server
model from applications running on the compute nodes of a
HPC system to local storage or remote locations, to enable
remote application monitoring, data analysis, code coupling,
and data archiving. The key requirements that DART is trying
to satisfy include minimizing data transfer overheads on
the application, achieving high-throughput, low-latency data
transfers, and preventing data losses. Towards achieving these
goals, DART is designed so that dedicated nodes, i.e., separate
from the application compute nodes, asynchronously extract
data from the memory of the compute nodes using RDMA. In
this way, expensive data I/O and streaming operations from the
application compute nodes to dedicated nodes are offloaded,
and allow the application to progress while data is transferred.
While using DART is not transparent and therefore requires
explicit requests to be sent by the user, there is no inherent
limitation for integration of such a framework within our
network abstraction layer and therefore wrap it within the
RPC layer that we define, hence allowing users to transfer data
using DART on the platforms it supports.

III. ARCHITECTURE

As mentioned in the previous section, Mercury’s interface
relies on three main components: a network abstraction layer,
an RPC interface that is able to handle calls in a generic fashion
and a bulk data interface, which complements the RPC layer
and is intended to easily transfer large amounts of data by
abstracting memory segments. We present in this section the
overall architecture and each of its components.

A. Overview
The RPC interface follows a client / server architecture. As

described in figure 1, issuing a remote call results in different
steps depending on the size of the data associated with the
call. We distinguish two types of transfers: transfers containing
typical function parameters, which are generally small, referred
to as metadata, and transfers of function parameters describing
large amounts of data, referred to as bulk data.

Every RPC call sent through the interface results in the
serialization of function parameters into a memory buffer (its
size generally being limited to one kilobyte, depending on the
interconnect), which is then sent to the server using the network
abstraction layer interface. One of the key requirements is to
limit memory copies at any stage of the transfer, especially
when transferring large amounts data. Therefore, if the data
sent is small, it is serialized and sent using small messages,
otherwise a description of the memory region that is to be
transferred is sent within this same small message to the server,
which can then start pulling the data (if the data is the input of
the remote call) or pushing the data (if the data is the output
of the remote call). Limiting the size of the initial RPC request
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Fig. 1: Architecture overview: each side uses an RPC processor
to serialize and deserialize parameters sent through the interface.
Calling functions with relatively small arguments results in
using the short messaging mechanism exposed by the network
abstraction layer, whereas functions containing large data
arguments additionaly use the RMA mechanism.

to the server also helps in scalability, as it avoids unnecessary
server resource consumption in case of large numbers of clients
concurrently accessing the same server. Depending on the
degree of control desired, all these steps can be transparently
handled by Mercury or directly exposed to the user.

B. Network Abstraction Layer

The main purpose of the network abstraction layer is
as its name suggests to abstract the network protocols that
are exposed to the user, allowing multiple transports to be
integrated through a system of plugins. A direct consequence
imposed by this architecture is to provide a lightweight
interface, for which only a reasonable effort will be required to
implement a new plugin. The interface itself must defines three
main types of mechanisms for transferring data: unexpected
messaging, expected messaging and remote memory access;
but also the additional setup required to dynamically establish
a connection between the client and the server (although a
dynamic connection may not be always feasible depending on
the underlying network implementation used).

Unexpected and expected messaging is limited to the transfer
of short messages and makes use of a two-sided approach.
The maximum message size is, for performance reasons,
determined by the interconnect and can be as small as a few
kilobytes. The concept of unexpected messaging is used in
other communication protocols such as BMI [10]. Sending
an unexpected message through the network abstraction layer
does not require a matching receive to be posted before it can
complete. By using this mechanism, clients are not blocked and
the server can, every time an unexpected receive is issued, pick
up the new messages that have been posted. Another difference
between expected and unexpected messages is unexpected
messages can arrive from any remote source, while expected
messages require the remote source to be known.

The remote memory access (RMA) interface allows remote
memory chunks (contiguous and non-contiguous) to be ac-
cessed. In most one-sided interfaces and RDMA protocols,
memory must be registered to the network interface controller
(NIC) before it can used. The purpose of the interface defined

in the network abstraction layer is to create a first degree of
abstraction and define an API that is compatible with most
RMA protocols. Registering a memory segment to the NIC
typically results in the creation of a handle to that segment
containing virtual address information, etc. The local handle
created needs to be communicated to the remote node before
that node can start a put or get operation. The network
abstraction is responsible for ensuring that these memory
handles can be serialized and transferred across the network.
Once handles are exchanged, a non-blocking put or get can be
initiated. On most interconnects, put and get will map to the put
and get operation provided by the specific API provided by the
interconnect. The network abstraction interface is designed to
allow the emulation of one-sided transfers on top of two-sided
sends and receives for network protocols such as TCP/IP that
only support a two-sided messaging approach.

With this network abstraction layer in place, Mercury can
easily be ported to support new interconnects. The relatively
limited functionality provided by the network abstraction (for
example, no unlimited size two-sided messages) ensures close
to native performance.

C. RPC Interface and Metadata

Sending a call that only involves small data makes use of the
unexpected / expected messaging defined in III-B. However,
at a higher level, sending a function call to the server means
concretely that the client must know how to encode the input
parameters before it can start sending information and know
how to decode the output parameters once it receives a response
from the server. On the server side, the server must also
have knowledge of what to execute when it receives an RPC
request and how it can decode and encode the input and output
parameters. The framework for describing the function calls
and encoding/decoding parameters is key to the operation of
our interface.

Client Server

id1 ... idN id1 ... idN

1. Register call
and get request id

1. Register call
and get request id

2. Post unexpected
send with request id

and serialized parameters
3. Pre-post receive
of server response

2. Post unexpected receive of
request / Test completion of
previous sends of responses

3. Execute call

4. Test completion of
send / receive requests

4. Post send with
serialized response

Fig. 2: Asynchronous execution flow of RPC call. The receive
buffer is pre-posted, allowing the client to get other work done
while the call is remotely executed and the response is sent
back.



One of the important points is the ability to support a set
of function calls that can be sent to the server in a generic
fashion, avoiding the limitations of a hard-coded set of routines.
The generic framework is described in figure 2. During the
initialization phase, the client and server register encoding and
decoding functions by using a unique function name that is
mapped to a unique ID for each operation, shared by the client
and server. The server also registers the callback that needs to
be executed when an operation ID is received with a function
call. To send a function call that does not involve bulk data
transfer, the client encodes the input parameters along with
that operations ID into a buffer and send it to the server using
an unexpected messaging protocol, which is non-blocking. To
ensure full asynchrony, the memory buffer used to receive
the response back from the server is also pre-posted by the
client. For reasons of efficiency and resource consumption,
these messages are limited in size (typically a few kilobytes).
However if the metadata exceeds the size of an unexpected
message, the client will need to transfer the metadata in separate
messages, making transparent use of the bulk data interface
described in III-D to expose the additional metadata to the
server.

When the server receives a new request ID, it looks up the
corresponding callback, decodes the input parameters, executes
the function call, encodes the output parameters and starts
sending the response back to the client. Sending a response back
to the client is also non-blocking, therefore, while receiving
new function calls, the server can also test a list of response
requests to check their completion, freeing the corresponding
resources when an operation completes. Once the client has
knowledge that the response has been received (using a wait/test
call) and therefore that the function call has been remotely
completed, it can decode the output parameters and free the
resources that were used for the transfer.

With this mechanism in place, it becomes simple to extend
it to handle bulk data.

D. Bulk Data Interface

In addition to the previous interface, some function calls
may require the transfer of larger amounts of data. For these
function calls, the bulk data interface is used and is built
on top of the remote memory access protocol defined in the
network abstraction layer. Only the RPC server initiates one-
sided transfers so that it can, as well as controlling the data
flow, protect its memory from concurrent accesses.

As described in figure 3, the bulk data transfer interface
uses a one-sided communication approach. The RPC client
exposes a memory region to the RPC server by creating a
bulk data descriptor (which contains virtual memory address
information, size of the memory region that is being exposed,
and other parameters that may depend on the underlying
network implementation). The bulk data descriptor can then
be serialized and sent to the RPC server along with the
RPC request parameters (using the RPC interface defined in
section III-C). When the server decodes the input parameters,

Client Server

1. Register local memory
segment and get handle

1. Register local memory
segment and get handle

2. Send serialized
memory handle

3. Post get operation
using local/deserialized

remote handles 4. Test completion
of remote get

Fig. 3: Transfer mechanism when doing an RPC requires large
data to be sent to the server.

it deserializes the bulk data descriptor and gets the size of the
memory buffer that has to be transferred.

In the case of an RPC request that consumes large data
parameters, the RPC server may allocate a buffer of the size
of the data that needs to be received, expose its local memory
region by creating a bulk data block descriptor and initiate
an asynchronous read / get operation on that memory region.
The RPC server then waits / tests for the completion of the
operation and executes the call once the data has been fully
received (or partially if the execution call supports it). The
response (i.e., the result of the call) is then sent back to the
RPC client and memory handles are freed.

In the case of an RPC request that produces large data
parameters, the RPC server may allocate a buffer of the size
of the data that is going to be produced, expose the memory
region by creating a bulk data block descriptor, execute the
call, then initiate an asynchronous write / put operation to the
client memory region that has been exposed. The RPC server
may then wait/test for the completion of the operation and
send the response (i.e., the result of the call) back to the RPC
client. Memory handles can then be freed.

Transferring data through this process can be transparent
for the user, especially since the RPC interface can also take
care of serializing / deserializing the memory handles along
with the other parameters. This is particularly important when
non-contiguous memory segments have to be transferred. In
either case memory segments are automatically registered on
the RPC client and are abstracted by the memory handle
created. The memory handle is then serialized along with
the parameters of the RPC function and transferring large data
using non-contiguous memory regions therefore results in the
same process described above. Note that the handle may be
variable size in this case as it may contain more information
and also depends on the underlying network implementation
that can support registration of memory segments directly.

IV. EVALUATION

The architecture previously defined enables generic RPC
calls to be shipped along with handles that can describe
contiguous and non-contiguous memory regions when a bulk
data transfer is required. We present in this section how one



can take advantage of this architecture to build a pipelining
mechanism that can easily request blocks of data on demand.

A. Pipelining Bulk Data Transfers

Pipelining transfers is a typical use case when one wants
to overlap communication and execution. In the architecture
that we described, requesting a large amount of data to be
processed results in an RPC request being sent from the RPC
client to the RPC server as well as a bulk data transfer. In a
common use case, the server may wait for the entire data to
be received before executing the requested call. However, by
pipelining the transfers, one can in fact start processing the
data while it is being transferred, avoiding to pay the cost of
the latency for an entire RMA transfer. Note that although we
focus on this point in the example below, using this technique
can also be particularly useful if the RPC server does not have
enough memory to handle all the data that needs to be sent, in
which case it will also need to transfer data as it processes it.

A simplified version of the RPC client code is presented
below:
1 #define BULK_NX 16
2 #define BULK_NY 128
3

4 int main(int argc, char *argv[])
5 {
6 hg_id_t rpc_id;
7 write_in_t in_struct;
8 write_out_t out_struct;
9 hg_request_t rpc_request;

10 int buf[BULK_NX][BULK_NY];
11 hg_bulk_segment_t segments[BULK_NX];
12 hg_bulk_t bulk_handle = HG_BULK_NULL;
13

14 /

*

Initialize the interface

*

/

15 [...]
16 /

*

Register RPC call

*

/

17 rpc_id = HG_REGISTER("write",
18 write_in_t, write_out_t);
19

20 /

*

Provide data layout information

*

/

21 for (i = 0; i < BULK_NX ; i++) {
22 segments[i].address = buf[i];
23 segments[i].size = BULK_NY * sizeof(int);
24 }
25

26 /

*

Create bulk handle with segment info

*

/

27 HG_Bulk_handle_create_segments(segments,
28 BULK_NX, HG_BULK_READ_ONLY, &bulk_handle);
29

30 /

*

Attach bulk handle to input parameters

*

/

31 [...]
32 in_struct.bulk_handle = bulk_handle;
33

34 /

*

Send RPC request

*

/

35 HG_Forward(server_addr, rpc_id,
36 &in_struct, &out_struct, &rpc_request);
37

38 /

*

Wait for RPC completion and response

*

/

39 HG_Wait(rpc_request, HG_MAX_IDLE_TIME,
40 HG_STATUS_IGNORE);
41

42 /

*

Get output parameters

*

/

43 [...]
44 ret = out_struct.ret;
45

46 /

*

Free bulk handle

*

/

47 HG_Bulk_handle_free(bulk_handle);

48

49 /

*

Finalize the interface

*

/

50 [...]
51 }

When the client initializes, it registers the RPC call it wants
to send. Because this call involves non contiguous bulk data
transfers, memory segments that describe the memory regions
are created and registered. The resulting bulk_handle is
then passed to the HG_Forward call along with the other call
parameters. One may then wait for the response and free the
bulk handle when the request has completed (a notification
may also be sent in the future to allow the bulk handle to be
freed earlier, and hence the memory to be unpinned).

The pipelining mechanism happens on the server, which
takes care of the bulk transfers. The pipeline itself has here
a fixed pipeline size and a pipeline buffer size. A simplified
version of the RPC server code is presented below:
1 #define PIPELINE_BUFFER_SIZE 256
2 #define PIPELINE_SIZE 4
3

4 int rpc_write(hg_handle_t handle)
5 {
6 write_in_t in_struct;
7 write_out_t out_struct;
8 hg_bulk_t bulk_handle;
9 hg_bulk_block_t bulk_block_handle;

10 hg_bulk_request_t bulk_request[PIPELINE_SIZE];
11 void *buf;
12 size_t nbytes, nbytes_read = 0;
13 size_t start_offset = 0;
14

15 /

*

Get input parameters and bulk handle

*

/

16 HG_Handler_get_input(handle, &in_struct);
17 [...]
18 bulk_handle = in_struct.bulk_handle;
19

20 /

*

Get size of data and allocate buffer

*

/

21 nbytes = HG_Bulk_handle_get_size(bulk_handle);
22 buf = malloc(nbytes);
23

24 /

*

Create block handle to read data

*

/

25 HG_Bulk_block_handle_create(buf, nbytes,
26 HG_BULK_READWRITE, &bulk_block_handle);
27

28 /

*

Initialize pipeline and start reads

*

/

29 for (p = 0; p < PIPELINE_SIZE; p++) {
30 size_t offset = p * PIPELINE_BUFFER_SIZE;
31 /

*

Start read of data chunk

*

/

32 HG_Bulk_read(client_addr, bulk_handle,
33 offset, bulk_block_handle, offset,
34 PIPELINE_BUFFER_SIZE, &bulk_request[p]);
35 }
36

37 while (nbytes_read != nbytes) {
38 for (p = 0; p < PIPELINE_SIZE; p++) {
39 size_t offset = start_offset +
40 p * PIPELINE_BUFFER_SIZE;
41 /

*

Wait for data chunk

*

/

42 HG_Bulk_wait(bulk_request[p],
43 HG_MAX_IDLE_TIME, HG_STATUS_IGNORE);
44 nbytes_read += PIPELINE_BUFFER_SIZE;
45

46 /

*

Do work (write data chunk)

*

/

47 write(buf + offset, PIPELINE_BUFFER_SIZE);
48

49 /

*

Start another read

*

/

50 offset += PIPELINE_BUFFER_SIZE *
51 PIPELINE_SIZE;
52 if (offset < nbytes) {



53 HG_Bulk_read(client_addr,
54 bulk_handle, offset,
55 bulk_block_handle, offset,
56 PIPELINE_BUFFER_SIZE,
57 &bulk_request[p]);
58 } else {
59 /

*

Start read with remaining piece

*

/

60 }
61 }
62 start_offset += PIPELINE_BUFFER_SIZE
63 * PIPELINE_SIZE;
64 }
65

66 /

*

Free block handle

*

/

67 HG_Bulk_block_handle_free(bulk_block_handle);
68 free(buf);
69

70 /

*

Start sending response back

*

/

71 [...]
72 out_struct.ret = ret;
73 HG_Handler_start_output(handle, &out_struct);
74 }
75

76 int main(int argc, char *argv[])
77 {
78 /

*

Initialize the interface

*

/

79 [...]
80 /

*

Register RPC call

*

/

81 HG_HANDLER_REGISTER("write", rpc_write,
82 write_in_t, write_out_t);
83

84 while (!finalized) {
85 /

*

Process RPC requests (non-blocking)

*

/

86 HG_Handler_process(0, HG_STATUS_IGNORE);
87 }
88

89 /

*

Finalize the interface

*

/

90 [...]
91 }

Every RPC server, once it is initialized, must loop over
a HG_Handler_process call, which waits for new RPC
requests and executes the corresponding registered callback (in
the same thread or new thread depending on user needs). Once
the request is deserialized, the bulk_handle parameter can
be used to get the total size of the data that is to be transferred,
allocate a buffer of the appropriate size and start the bulk data
transfers. In this example, the pipeline size is set to 4 and the
pipeline buffer size is set to 256, which means that 4 RMA
requests of 256 bytes are initiated. One can then wait for the
first piece of 256 bytes to arrive and process it. While it is
being processed, other pieces may arrive. Once one piece is
processed a new RMA transfer is started for the piece that is
at stage 4 in the pipeline and one can wait for the next piece,
process it. Note that while the memory region registered on
the client is non-contiguous, the HG_Bulk_read call on the
server presents it as a contiguous region, simplifying server
code. In addition, logical offsets (relative to the beginning
of the data) can be given to move data pieces individually,
with the bulk data interface taking care of mapping from the
continuous logical offsets to the non-contiguous client memory
regions.

We continue this process until all the data has been read / pro-
cessed and the response (i.e., the result of the function call) can
be sent back. Again we only start sending the response by call-
ing the HG_Handler_start_output call and its comple-

tion will only be tested by calling HG_Handler_process,
in which case the resources associated to the response will be
freed. Note that all functions support asynchronous execution,
allowing Mercury to be used in event driven code if so desired.

B. Network Plugins and Testing Environment

Two plugins have been developed as of the date this paper is
written to illustrate the functionality of the network abstraction
layer. At this point, the plugins have not been optimized for
performance. One is built on top of BMI [10]. However, as
we already pointed out in section II, BMI does not provide
RMA semantics to efficiently take advantage of the network
abstraction layer defined and the one-sided bulk data transfer
architecture. The other one is built on top of MPI [17], which
has only been providing full RMA semantics [18] recently
with MPI3 [19]. Many MPI implementations, specifically those
delivered with already installed machines, do not yet provide
all MPI3 functionality. As BMI has not yet been ported to
recent HPC systems, to illustrate the functionality and measure
early performance results, we only consider the MPI plugin
in this paper. This plugin, to be able to run on existing HPC
systems limited to MPI-2 functionality, such as Cray systems,
implements bulk data transfers on top of two-sided messaging.
In practice, this means that for each bulk data transfer, an
additional bulk data control message needs to be sent to the
client to request either sending or receiving data. Progress on
the transfer can then be realized by using a progress thread or
by entering progress functions.

For testing we make use of two different HPC systems. One
is an Infiniband QDR 4X cluster with MVAPICH [20] 1.8.1,
the other one is a Cray XE6 with Cray MPT [21] 5.6.0.

C. Performance Evaluation

As a first experiment, we measured the time it takes to
execute a small RPC call (without any bulk data transfer
involved) for an empty function (i.e., a function that returns
immediately). On the Cray XE6 machine, measuring the
average time for 20 RPC invocations, each call took 23 µs.
This time includes the XDR encoding and decoding of the
parameters of the function. However, as pointed out earlier,
most HPC systems are homogeneous and thus don’t require
the data portability provided by XDR. When disabling XDR
encoding (performing a simple memory copy instead) the
time drops to 20 µs. This non-negligible improvement (15%)
demonstrates the benefit of designing an RPC framework
specifically for HPC environments.

The second experiment consists of testing the pipelining
technique for bulk data transfers previously explained between
one client and one server. As shown in table I, on Cray XE6
pipelining transfers can be particularly efficient when requests
have already completed while other pipeline stages are being
processed, allowing us to get very high bandwidth. However,
the high injection bandwidth on this system makes it difficult to
get good performance for small packets (such as the bulk data
control messages due to the emulation of one-sided features
on this system) particularly when data flow is not continuous.
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Fig. 4: Bandwidth test on QDR 4X InfiniBand cluster using MVAPICH.
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transfer and 16MB pipeline buffer size.

Fig. 5: Bandwidth test on Cray XE6 using Cray MPT.

TABLE I: Bandwidth of bulk data transfers using pipelining
technique on Cray XE6 and a total buffer size of 16MB.

Pipeline buffer size (kB) Time (s) Bandwidth (MB/s)

4096 0.009790 1634.25
2048 0.002927 5466.76
1024 0.014937 1071.16
512 0.002984 5362.62
256 0.003204 4993.14
128 0.013967 1145.57
64 0.005027 3182.69
32 0.018209 878.69
16 0.024311 658.14
8 0.051070 313.30
4 0.043660 366.46

Finally we evaluated the scalability of the RPC server
by evaluating the total data throughput while increasing the

number of clients. Figures 4 and 5 show the results for a
QDR InfiniBand system (using MVAPICH) and the Cray XE6
system respectively. In both cases, in part due to the server side
bulk data flow control mechanism, Mercury shows excellent
scalability, with throughput either increasing or remaining stable
as the number of concurrent clients increases. For comparison,
the point to point message bandwidth on each system is shown.
On the InfiniBand system, Mercury achieves about 70% of
maximum network bandwidth. This is an excellent result,
considering that the Mercury time represents an RPC call
in addition to the data transfer, compared to the time to send a
single message for the OSU benchmark. On the Cray system,
performance is less good (about 40% of peak). We expect
that this is mainly due to the relatively poor small message
performance of the system, combined with the extra control
messages caused by the one-sided emulation. However, it is



also possible that the low performance is caused by a system
limitation, considering that Nessie’s performance for a similar
operation (read) [22] shows the same low bandwidth, even
though it is using true RDMA by bypassing MPI and using
the interconnect’s native uGNI API instead.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the Mercury framework. Mercury
is specifically designed to offer RPC services in a High-
Performance Computing environment. Mercury builds on
a small, easily ported network abstraction layer providing
operations closely matched to the capabilities of contemporary
HPC network environments. Unlike most other RPC frame-
works, Mercury offers direct support for handling remote calls
containing large data arguments. Mercury’s network protocol
is designed to scale to thousands of clients. We demonstrated
the power of the framework by implementing a remote write
function including pipelining of large data arguments. We
subsequently evaluated our implementation on two different
HPC systems, showing both single client performance and
multi-client scalability.

With the availability of the high-performing, portable,
generic RPC functionality provided by Mercury, IOFSL can be
simplifed and modernized by replacing the internal, hard coded
IOFSL code by Mercury calls. As the network abstraction layer
on top of which Mercury is built already supports using BMI for
network connectivity, existing deployments of IOFSL continue
to be supported, at the same time taking advantage of the
improved scalability and performance of Mercury’s network
protocol.

Currently, Mercury does not offer support for canceling
ongoing RPC calls. Cancellation is important for resiliency in
environments where nodes or network can fail. Future work
will include support for cancellation.

While Mercury already supports all required functionality to
efficiently execute RPC calls, the amount of user code required
for each call can be further reduced. Future versions of Mercury
will provide a set of preprocessor macros, reducing the user’s
effort by automatically generating as much boiler plate code
as possible.

The network abstraction layer currently has plugins for BMI,
MPI-2 and MPI-3. However, as MPI RMA functionality is
difficult to use in a client/server context [23], we intend to add
native support for Infiniband networks, and the Cray XT and
IBM BG/P and Q networks.
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