
Performance of automatic differentiation tools in the dynamic simulation
of multibody systems based on a semi-recursive penalty formulation

Alfonso Callejoa,∗, Sri Hari Krishna Narayananb, Javier Garcı́a de Jalóna, Boyana Norrisb

aInstituto Universitario de Investigación del Automóvil, Universidad Politécnica de Madrid, Madrid, Spain
bMathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, USA

Abstract

Within the multibody systems literature, few attempts have been made to use automatic differentiation for solving forward multibody
dynamics and evaluating its computational efficiency. The most relevant implementations are found in the sensitivity analysis field,
but they rarely address automatic differentiation issues in depth. This paper presents a thorough analysis of automatic differentiation
tools in the time integration of multibody systems. To that end, a penalty formulation is implemented. First, open-chain generalized
positions and velocities are computed recursively, while using Cartesian coordinates to define local geometry. Second, the equations
of motion are implicitly integrated by using the trapezoidal rule and a Newton-Raphson iteration. Third, velocity and acceleration
projections are carried out to enforce kinematic constraints. For the computation of Newton-Raphson’s tangent matrix, instead
of using numerical or analytical differentiation, automatic differentiation is implemented here. Specifically, the source-to-source
transformation tool ADIC2 and the operator overloading tool ADOL-C are employed, in both dense and sparse modes. The
theoretical approach is backed by the numerical analysis of a 1-DOF spatial four-bar mechanism, three different configurations
of a 15-DOF multiple four-bar linkage, and a 16-DOF coach maneuver. Numerical and automatic differentiation are compared
in terms of their computational efficiency and accuracy. Overall, we provide a global perspective of the efficiency of automatic
differentiation in the field of multibody systems.

Keywords: Multibody dynamics, Semi-recursive penalty formulation, Automatic differentiation, Operator overloading,
Source-to-source transformation, ADOL-C, ADIC2

1. Introduction

Multibody systems (MBS) are mechanical systems made up
of rigid or flexible bodies interconnected by perfect or im-
perfect kinematic joints and subject to various forces. These
systems are present in numerous areas of industry, including
mechanisms, robots, vehicles, machinery, wind turbines, and
aerospace engineering. After more than 35 years of simulation
of multibody systems, the development of efficient multibody
methods is still challenging. The kinematic constraints between
the rigid bodies and the presence of closed loops in the mech-
anisms often make the integration of the differential-algebraic
equations (DAEs) tricky, unstable, or slow. Yet, in some appli-
cations such as driving simulators, hardware-in-the-loop appli-
cations, on-board controllers, and optimization algorithms, the
computation of multibody system dynamics in real-time is cru-
cial. In order to improve the efficiency of multibody dynamics
software, several strategies can be adopted, some of which are
efficient formulations, efficient implementations, and parallel
implementations. The first two are addressed here.

Among the great variety of contemporary MBS formulations
[1], penalty schemes have proven to be a robust and efficient

∗Corresponding author. Phone: (+34)913365335
Email address: a.callejo@upm.es (Alfonso Callejo)
URL: http://mat21.etsii.upm.es/mbs/mbs3d/ (Alfonso Callejo)

approach for solving forward MBS dynamics using dependent
coordinates [2, 3]. Basically, they avoid the direct enforcement
of kinematic constraints by introducing penalty terms propor-
tional to the nonfulfillment of constraints. When combined with
implicit integrators and projections, they allow for long integra-
tion time-steps while keeping the simulation stable. One of the
most interesting approaches in this direction was presented in
[4] and is followed here in the preliminary stages. Natural (or
fully Cartesian) coordinates1 are used to define local geometry
and constraint equations. This approach simplifies the model-
ing stage. Positions and velocities are then computed recur-
sively, making the most of the system topology.

For the time integration of the equations of motion, the trape-
zoidal rule with velocity and acceleration projections is used.
This scheme requires the solution of a nonlinear system of
equations, which is generally solved with a Newton-Raphson
algorithm. To that end, the Jacobian matrix of the open-chain
forces with respect to the relative positions and velocities has to
be computed. Because this step takes most of the computation
time, it is worth exploring efficient and accurate ways of differ-
entiating computer functions, while preserving the scalability
of the implementation.

There are several ways of computing the derivative of a math-
ematical function with respect to its independent variables. For

1Cartesian components of points and unit vectors [2].

Preprint submitted to Comput. Methods Appl. Mech. Engrg. June 13, 2013

example, one may apply differential calculus by hand and code
the differentiated functions; this is usually called analytical dif-
ferentiation. A similar but more automated technique is sym-
bolic differentiation, which is based on symbolic mathematical
programs that generate the derivative equations from the orig-
inal function. The derivatives must be generated in the third-
party software, exported, reimplemented, and compiled each
time a change is introduced in the equation; and only purely
analytic equations can be differentiated. This technique thus
has considerable drawbacks from the scalability point of view.

Another way of computing derivatives is through the use
of numerical differentiation (ND) techniques such as finite-
differences. Let f be a scalar function that depends on variable
x. The derivative can be numerically approximated as:

f ′ (x0) ≡
d f
dx

(x0) ≈
f (x0 + h) − f (x0 − h)

2h
, (1)

which corresponds to a centered-difference formula. More ac-
curate formulae can be obtained by evaluating the function in
different points. The advantage of these methods is that they
only require the original function. However, Eq. (1) demands
a very small value of the perturbation h. When h is very small,
two similar numbers are being subtracted in the numerator, and,
because of the limited computer precision, the derivative is less
accurate than the original function. These numerical errors are
unavoidable. Moreover, in the case of vector functions, the
computational cost increases quickly as the problem size grows.

Automatic or algorithmic differentiation (AD) allows dif-
ferentiating a computer function (implemented in Fortran, C,
C++, MATLAB, etc.) and automatically computing both first-
order derivatives (e.g. gradients and Jacobian matrices) and
higher-order derivatives (e.g. Hessian matrices). The develop-
ment time is shorter than using analytical differentiation tech-
niques, and AD generates machine-precision derivatives. In
past investigations with the formulation presented here, the
operator overloading tool ADOL-C [5] was used successfully
[6]. However, a single AD tool was not enough for assessing
the computational efficiency, since different types of AD tools
working on different AD modes might have very different per-
formances. Also, only academic examples were considered.

Few works in the MBS community have thoroughly ad-
dressed AD as a way of differentiating computer functions. In
1996, Bischof [7] used the source transformation tools ADIC
and ADIFOR on a Fortran code to compute vehicle sensi-
tivities, but general performance conclusions were not given.
Three years later, Eberhard and Bischof [8] focused on the time
integration of sensitivities using ADIFOR on a 5-DOF robot
and concluded that AD was less efficient but simpler to imple-
ment than analytical derivatives. Later, in [9], Dürrbaum, Klier
and Hahn proved that the symbolic tool MACSYMA generated
derivatives faster than did ADOL-C for two medium-size pla-
nar and spatial robots. In 2007, Ambrósio, Neto, and Leal [10]
simulated a satellite antenna as a flexible multibody system and
recommended AD over ND for accuracy reasons, even though
with little implementation details. Recently, Hannemann et al.
[11] applied the source transformation tool dcc and an operator
overloading tool to dynamic models. In general, rough descrip-

 X

 Y

 Z

1

2

3

4

5

j k

 X

 Y

 Z

ju ku

jr kr

(b)(a)

1z

2z

3z

4z

5z

Figure 1: (a) Tree-configured MBS. (b) Closure-of-the-loop revolute joint.

tions of AD tools and their implementation are provided; the
results are not compared with other AD tools; and academic
rather than industrial numerical examples are considered. To
the best of the authors’ knowledge, the benefits of exploiting Ja-
cobian sparsity in MBS formulations by using AD has not been
shown before. In this work, both the source-to-source trans-
formation tool ADIC2 [12] and the operator-overloading tool
ADOL-C [5] are used on three numerical examples, namely a
1-DOF spatial four-bar mechanism, a 15-DOF multiple four-
bar linkage and a 16-DOF coach model. These examples are
used as medium to large benchmarks of ND and AD tools, with
special focus on computational efficiency and exploiting sparse
Jacobians.

2. Multibody formulation

In this section, a general-purpose MBS formulation is pre-
sented [4]. The formulation is explained in four steps: (1) the
open-chain recursive differential equations are proposed; (2) the
loops are closed by introducing position penalty terms; (3) the
trapezoidal rule of integration is introduced; and (4) velocity
and acceleration projections are carried out.

2.1. Open-chain equations

In order to apply recursion techniques, the system is con-
sidered as a tree-configured multibody system (see Fig. 1(a)).
In the case of closed-chain systems, certain joints and rods2

are temporarily removed and enforced later through constraint
equations. Cartesian coordinates are used to define the velocity
and acceleration of bodies:

Zi ≡

{
ṡi

ωi

}
(2)

Żi ≡

{
s̈i

ω̇i

}
, (3)

2Slender bodies with two spherical joints and a negligible moment of inertia
around the direction of the axis.

2

where ṡi and s̈i are, respectively, the velocity and acceleration of
the point attached to body i that instantaneously coincides with
the origin of the inertial reference frame. In this way, all bodies
share the same reference point, which brings interesting advan-
tages [13]. The recursive expression of the Cartesian velocities
and accelerations of body i in terms of those of body i − 1 is

Zi = Zi−1 + biżi (4)

Żi = Żi−1 + biz̈i + di. (5)

Note the lack of transformation matrices in the previous
equations. Scalar zi is the relative coordinate of joint i. Vec-
tor bi represents the velocity of the point of body i that coin-
cides with the origin of the global reference frame when żi = 1
and ż j = 0, j , i; and vector di is the increase in accelera-
tion from i − 1 to i when z̈i = 0. Both bi and di depend on the
type of joint between i and i − 1. Here, only revolute and pris-
matic joints (and combinations thereof) are considered. Vectors
ZT ≡ {ZT

1 ,Z
T
2 , ...,Z

T
n } and ŻT ≡ {ŻT

1 , Ż
T
2 , ..., Ż

T
n } group the sys-

tem velocities and accelerations, n being the number of moving
bodies. The virtual power of the inertia and external forces of
the open-chain system can be expressed as

n∑
i=1

Z∗Ti

(
MiŻi −Qi

)
= 0 (6)

M ≡ diag(M1,M2, ...,Mn) (7)

Q ≡ {Q
T
1 ,Q

T
2 , ...,Q

T
n }

T (8)

Mi =

[
miI3 −mig̃i

mig̃i Ji − mig̃ig̃i

]
(9)

Qi =

{
Fi − miω̃iω̃igi

g̃iFi − ω̃iJiωi − mig̃iω̃iω̃igi

}
, (10)

where Mi ∈ R6×6 and Qi ∈ R6×1 are, respectively, the inertia
matrix and the vector of external and velocity-dependent inertia
forces acting on body i; mi is the mass; Ji ∈ R3×3 is the inertia
tensor; gi is the position of the center of gravity (COG); ωi is
the angular velocity vector; and Fi is the applied force vector.
The upper bar indicates reference to the origin of the global
reference frame. The upper tilde transforms the vector into the
associated skew-symmetric matrix, such that, for generic 3 × 1
vectors α and β, α × β = α̃β.

A velocity transformation R ∈ R6n×n between Cartesian (Z)
and relative (ż) velocities is now introduced. Bodies (and their
corresponding input joints) are numbered from the leaves to the
root of the spanning tree. The jth column of matrix R is the
Cartesian velocities of all bodies that are upwards of joint j
when a unit relative velocity is introduced in j, keeping the oth-
ers null; because the origin of the global reference frame is the
reference point for all bodies, these Cartesian velocities happen
to be bi for all bodies, according to Eq. (4).

Z = Rż = T diag (b1,b2, ...,bn) ż ≡ TRd ż (11)

Ż = TRd z̈ + TṘd ż. (12)

The connectivity of the mechanism has been defined through
an upper triangular path matrix T ∈ Z6n×6n. Submatrix Ti j is I6

if body i is upwards of joint j, and 06 otherwise. Introducing
Z∗T = RT

d TT ż∗ (from Eq. (11)) and Eq. (12) into Eq. (6),
and knowing that the relative open-chain virtual velocities are
independent, one can eliminate virtual velocities ż∗ and obtain
a new set of differential equations

RT
d TT MTRd︸ ︷︷ ︸

MΣ
d

z̈ = RT
d (TT Q −MΣṘd ż)︸ ︷︷ ︸

QΣ
d

, (13)

where some terms have been grouped for the sake of clarity.
These recursive equations constitute a set of n ODEs describing
the motion of the open-chain system. In closed-loop systems,
the constraint equations coming from the closure of the loops
still need to be enforced.

2.2. Constraint enforcement and implicit integration

Closed-loop dynamic equations can be formulated by adding
the constraint equations to the open-chain dynamic equations,
which have just been obtained. The fulfillment of the position
constraint equations is enforced by introducing a penalty term
into Eq. (13). Then, velocity and acceleration constraints are
imposed by carrying out velocity and acceleration projections.

First, let us add a penalty term to Eq. (13):

MΣ
d z̈ +ΦT

z αΦ = QΣ
d , (14)

where α is the penalization coefficient, Φ ∈ Rm×1 is the vector
of m constraint equations, andΦz ∈ Rm×n is the Jacobian matrix
of the constraint equations with respect to relative positions.
The penalty term has a physical meaning: αΦ is the value of the
penalty forces (one for each constraint equation that is violated)
and the columns ofΦT

z are the directions of the constraint forces
in which penalties are applied. Figure 1(b) shows the way a
closure-of-the-loop revolute joint can be formulated in terms of
natural coordinates (for more details see [13]).

For the integration of Eq. (14), the implicit single-step trape-
zoidal rule with time-step h is used. Relative velocities and
accelerations in time-step j + 1 are written as follows.

ż j+1 =
2
h

z j+1 −

(
2
h

z j + ż j

)
(15)

z̈ j+1 =
4
h2 z j+1 −

(
4
h2 z j +

4
h

ż j + z̈ j

)
︸ ︷︷ ︸

ˆ̈z j

. (16)

By introducing Eqs. (15) and (16) in Eq. (14), a nonlinear
equation f(z j+1) = 0 is obtained:

MΣ
d, j+1z j+1+

h2

4
ΦT

z j+1
αΦ j+1−

h2

4
QΣ

d, j+1 +
h2

4
MΣ

d, j+1
ˆ̈z j = 0, (17)

where MΣ
d = MΣ

d (z), QΣ
d = QΣ

d (z, ż),Φ = Φ(z) andΦz = Φz(z).
Equation (17) is a nonlinear system of equations, that has to

be solved for unknown vector z j+1. To that end, it is customary
to use the Newton-Raphson method, which has a quadratic con-
vergence in the neighborhood of the solution. The use of this

3

iterative method implies the evaluation of a tangent matrix and
a remainder, as indicated next. Let k + 1 be the iteration.

zk+1
j+1 = zk

j+1 + ∆zk
j+1 (18)[

∂f(z)
∂z

]k

j+1
∆zk

j+1 = − [f(z)]k
j+1 . (19)

The solution of Eq. (18) implies the evaluation of the tangent
matrix in Eq. (19). This tangent matrix can be approximated
[4] with the following expression:[

∂f(z)
∂z

]k

j+1
≈

[
MΣ

d +
h
2

C +
h2

4

(
ΦT

z αΦz + K
)]k

j+1
(20)

K ≡ −
∂QΣ

d

∂z
(21)

C ≡ −
∂QΣ

d

∂ż
, (22)

where K ∈ Rn×n and C ∈ Rn×n have been introduced. If the
state vector y ≡ {zT , żT }T ∈ R2n×1 is defined, both matrices can
be grouped as:

J ≡ −
∂QΣ

d

∂y
. (23)

The Jacobian matrix J ∈ Rn×2n is the key computation of this
algorithm. Some authors [4] formulate this matrix analytically,
meaning that the derivatives have to be computed by hand for
the most typical force types (springs, dampers, etc.). This is ob-
viously not the most general-purpose approach and often leads
to error-prone expressions. Numerical differentiation might be
inefficient, and its error is difficult to control. On the other hand,
AD in its various forms can be used as well to calculate these
derivatives with minimal effort from the user and reasonable ef-
ficiency. The following sections investigate the different ways
of computing this Jacobian matrix.

The previous equations impose the dynamics and the fulfill-
ment of the position constraint equations, but the velocity and
acceleration constraints have not been enforced yet. During the
time integration process, Eqs. (15) and (16) yield a set of ve-
locities ż∗ and accelerations z̈∗ that do not satisfy velocity and
acceleration constraints. The reason is that both vectors have
been obtained numerically from the integrator and not by dif-
ferentiating the positions. This problem can be solved through
velocity and acceleration projections [4]. Applying a projection
method with penalty terms, one can obtain a set of velocities ż
that satisfy the constraints. Introducing a weight matrix P, one
can compute the projected velocities as:(

P +
h
4

2

ΦT
z αΦz

)
ż = Pż∗ −

h
4

2

ΦT
z αΦt (24)

P ≡MΣ
d +

h
2

C +
h2

4
K, (25)

where the system matrix in the l.h.s. of Eq. (24) is the tangent
matrix (20). In this way, the matrix factorization can be reused,
and the projection is performed with a low computational cost.

Similarly, the expression of the projected accelerations is(
P +

h
4

2

ΦT
z αΦz

)
z̈ = Pz̈∗ −

h
4

2

ΦT
z αΦ̇zż −

h
4

2

ΦT
z αΦt. (26)

After solving the velocity and acceleration projections, all
constraints (in position, velocity and acceleration) are fulfilled.

In standard Newton-Raphson problems, both the value and
the factorization of the tangent matrix (20) can be reused over a
number of iterations so that only a back substitution is needed to
find ∆zk

j+1 in Eq. (19). In this case, however, the tangent matrix
factorization is employed later to solve velocity (24) and ac-
celeration (26) projections. These projections need an updated
version of the tangent matrix (and its factorization) in order to
achieve an accurate enforcement of constraints; hence, reusing
the tangent matrix in the Newton-Raphson iteration is not com-
patible with velocity and acceleration projections. Since the
computational burden of projections is greater, we chose to al-
ways refactorize Newton-Raphson’s tangent matrix and use the
last factorization for projections. In turn, we did reuse Jacobian
matrices (21) and (22) for three Newton-Raphson iterations, as
they are the heaviest tangent matrix components. This approach
has proved to be an effective cost-accuracy tradeoff in real-life
mechanical systems.

3. Automatic differentiation tools

Among the steps of the presented formulation, the compu-
tation of the Jacobian matrix in Eq. (23) is critical for perfor-
mance. In this section, we introduce AD methodology and dis-
cuss how AD is used to produce the derivatives algorithmically.

3.1. Algorithmic differentiation
AD [14, 15] is an approach to obtaining derivative compu-

tations based on source-code implementations of mathematical
functions. AD combines rule-based differentiation of elemen-
tary operators (e.g. addition, subtraction) with derivative ac-
cumulation according to the chain rule of differential calculus.
The derivatives produced by using AD are accurate to machine
precision with respect to the original computation (but not nec-
essarily the original mathematical function; and in the case of
iterative algorithms, convergence rates may differ [16]) and can
be used in many contexts, including numerical optimization,
nonlinear partial differential equation solvers, or the solution of
inverse problems using least squares. Many tools provide AD
for different languages, including Fortran, MATLAB, C, and
C++ (e.g. [14, 17, 18, 15]).

AD tools typically adopt one of two implementation ap-
proaches: operator overloading (in languages that support it)
or source transformation. Operator overloading-based tools are
easier to implement; but because they rely on runtime evalu-
ation of partial derivatives, the ways in which the chain rule
associativity can be exploited to attain better performing deriva-
tive code are limited. On the other hand, source transformation
approaches enable static analysis of program source code, pre-
senting opportunities for optimization over much larger scopes
than a single statement, often resulting in significantly better

4

front-endsOpen64
whirl

EDG/ROSE
Sage III

OpenAD

whirlToXAIF SageToXAIF

Angel
boost
xerces

ADIC2

Open
Analysis

XAIF

xaifBooster
(AD source transformation)

Figure 2: OpenAD component structure and source transformation workflow.

performance of the AD computation. Moreover, the result-
ing code can be tweaked and improved manually if necessary.
However, source transformation-based AD has the same limita-
tions as traditional compilers, which includes complexity of im-
plementing parsing and analysis of general-purpose languages
such as C++, as well as reliance on necessarily conservative
static analysis (e.g., alias analysis), which may lead to the gen-
eration of suboptimal derivative code.

3.2. ADIC2
ADIC2 is a source-to-source transformation AD tool for C

and C++ with support for the forward and reverse modes [12].
It is part of the OpenAD framework [19], illustrated in Fig. 2.
The input code is input to the ROSE compiler framework [20,
21] which is parsed by EDG C/C++ parsers. Once converted
into a ROSE abstract syntax tree (AST), the following processes
occur to generate output derivative code:

1. Canonicalization: Several code constructs are simplified
in order to make the later transformations feasible. For
example, all function calls determined to affect the output
are converted into subroutine calls.

2. Program analysis: The OpenAnalysis framework [22] is
used to analyze the canonicalized code. It generates a
call graph, a control flow graph, define-use and use-define
chains, a scope hierarchy, and alias analysis results.

3. XAIF generation: The results generated by OpenAnaly-
sis and any code statements that affect the output are con-
verted into the XML Abstract Interface Form (XAIF), a
language-independent format to represent code.

4. Derivative propagation: xaifBooster [19] uses transforma-
tion algorithms to convert the input XAIF into derivative
XAIF (AD-XAIF).

5. Conversion of AD-XAIF: The AD-XAIF is parsed and is
converted into ROSE AST nodes.

6. Generation of derivative code: The Rose AST is converted
into C/C++ using Rose’s codegen facility. The output

void speelpenning(double *y,double *x,int n){
int i;
*y = 1.0;
for(i=0; i<n; i++) {

*y = (*y) * x[i] ;
}

}

(a)
#include "ad_types.h"
#include "ad_grad_saxpy -n_dense.h"
void ad_speelpenning(DERIV_TYPE *y,DERIV_TYPE *x,int n){

int ad_i;
DERIV_val (*y) = 1.00000;
ADIC_ZeroDeriv (*y);
for (ad_i = 0, ad_i = 0; ad_i < n; ad_i = ad_i + 1) {

DERIV_TYPE ad_prp_1;
ADIC_Initialize (& ad_prp_1);
DERIV_TYPE ad_prp_0;
ADIC_Initialize (& ad_prp_0);
double ad_lin_1;
double ad_lin_0;
ad_lin_0 = DERIV_val(x[ad_i]);
ad_lin_1 = DERIV_val (*y);
DERIV_val (*y) = DERIV_val (*y) * DERIV_val(x[ad_i]);
ADIC_SetDeriv (*y,ad_prp_0);
ADIC_SetDeriv(x[ad_i],ad_prp_1);
ADIC_Sax_2(ad_lin_0 ,ad_prp_0 ,ad_lin_1 ,ad_prp_1 ,*y);

}
}

(b)
typedef struct {

double val;
double grad[ADIC_GRADVEC_LENGTH];

} DERIV_TYPE;

(c)

Figure 3: Example of the use of ADIC2.

#include "adolc/adolc.h"
void speelpenning(double *yp ,double *xp ,int n){

adouble *x = new adouble[n];
adouble y = 1;
trace_on (1);
for(i=0; i<n; i++) {

x[i] <<= xp[i];
y *= x[i];

}
y >>= *yp;
delete [] x;
trace_off (1);

}

(a)
#include "adolc/adolc.h"
void speelpenning_driver(double* g,double *xp ,int n){

double* g = new double[n];
gradient(1,n,xp,g);

}

(b)

Figure 4: Example of the use of ADOL-C.

code can be compiled with a runtime library provided by
ADIC2 and executed to generate derivatives.

Figure 3 is an example of the use of ADIC2. Figure 3(a) is
the classic example attributed to Speelpenning, and Fig. 3(b)
is the corresponding output generated by ADIC2. The ADIC2
runtime library defines a structure called DERIV TYPE (shown
in Fig. 3(c)) that contains a value field and an array field that
holds derivative values. The size of the array field is the number
of independent variables. Operations to manipulate the array

5

fields are defined within the library as well. At the end of the
computation, the array fields of the dependent variable form the
Jacobian matrix.

Because Jacobians can be sparse, using an array size that ef-
fectively computes a full Jacobian can be inefficient. Further-
more, for large Jacobians, not enough memory may be avail-
able to allocate an array for each DERIV TYPE variable. There-
fore, ADIC2 implements a framework to exploit Jacobian spar-
sity [23]. Specifically, given a function QΣ

d : R2n×1 → Rn×1

whose Jacobian matrix J ∈ Rn×2n (see Eq. (23)) is sparse,
ADIC2 employs the following framework to efficiently com-
pute matrix J using the following four steps:

1. Determine the sparsity pattern of matrix J.
2. Using a coloring on an appropriate graph of J, obtain an

n × p seed matrix S with the smallest p that defines a par-
titioning of the columns of J into p groups.

3. Compute the numerical values in the compressed matrix
B ≡ JS.

4. Recover the numerical values of the entries of J from B.

In step 1, the output derivative code is compiled with a run-
time library called SparsLinC, which is used to detect the struc-
ture of the Jacobian. In step 2, the coloring package Col-
Pack [24] is used. The number of colors p used to parti-
tion the Jacobian dictates the number of columns in the com-
pressed matrix and consequently the new size of the array in
the DERIV TYPE structure. When computing the compressed
matrix, having a smaller array can result in a performance im-
provement, provided that the overheads of the steps 1, 2, and 4
can be offset.

3.3. ADOL-C
ADOL-C is an operator overloading AD tool for C and C++

with support for the forward and reverse modes [25]. It gener-
ates gradients, Jacobians, Hessians, Jacobian × vector products,
Hessian × vector products, and the like. Figure 4 is an example
of the use of ADOL-C. Figure 4(a) is the Speelpenning exam-
ple coded to obtain derivatives using ADOL-C, and Fig. 4(b) is
the driver used to run the derivatives. ADOL-C defines a type
called adouble to be used for active variables in the compu-
tation. Derivative calculation is based on a function represen-
tation created during the taping phase that starts with a call to
the routine trace on provided by ADOL-C, and is finalized by
calling the ADOL-C routine trace off.

Jacobians can be computed by ADOL-C in three different
modes: forward, reverse and sparse. According to ADOL-C
guidelines, the reverse mode should be used when the num-
ber of independent coordinates is twice the number of depen-
dent coordinates or larger; otherwise the forward mode should
be employed. In the present formulation, the size of the Jaco-
bian lies in between. To compute a sparse Jacobian efficiently,
ADOL-C follows a technique similar to that of ADIC2.

4. Results

Five different mechanical systems are simulated in order to
assess the accuracy and efficiency of AD tools in the presented

X
Y

Z
1z

2z

3z

4z

cL
rL

fL

gL

Figure 5: Schematic view of the spatial four-bar mechanism.

Figure 6: 3D view of the spatial four-bar mechanism.

Table 1: Jacobian matrices for the different models.

System Indeps. Deps. Nonzeroes Colors
Spatial four-bar 8 4 20 6
1 × 15 four-bar 90 45 1410 60
4 × 15 four-bar 270 135 4290 60
7 × 15 four-bar 900 450 7170 60
Coach 66 33 1078 62

formulation. The first one is a 1-DOF spatial four-bar mecha-
nism. The second, third, and fourth examples are three different
configurations of a 15-DOF multiple-four bar linkage. The fifth
is a 16-DOF coach performing a lane-change maneuver. In all
cases, gravity acts in the −Z-direction. All simulations have
been run on two different platforms. Platform gcc-1 is a dual
Intel R© XeonTM (8 processors at 2.66 GHz) with 32 GB RAM
running Ubuntu 12.04. Platform gcc-2 is an Intel R© CoreTM i7
machine at 2.93 GHz with 6 GB RAM running Ubuntu 12.04.

The simulation time is 5 s in all experiments except for the
coach case, where 2 s are simulated. Three different time-steps
(1, 10, and 20 ms) have been tested, in order to capture the ef-
fect of the time-step length on the simulation accuracy and ef-
ficiency. To monitor the physical accuracy of the formulation,
an energy balance is carried out. Kinetic and potential ener-
gies and the work of nonconservative forces are computed over
time and summed. The variation in the total energy of the sys-
tem (or numerical drift) is provided for each of the integrator

6

z1

loop 1

X

Y

Z

loop nz

loop 1

loop ny

znz

Figure 7: Schematic view of generic multiple four-bar linkage. Figure 8: 3D view of the 1 × 15 multiple four-bar linkage.

time-steps, showing how longer time-steps make the implicit
integrator numerically competitive but physically less accurate.

For each system, derivatives are obtained first by employing
centered-difference ND as in (1). Then, ADOL-C is run in the
forward, reverse, and sparse modes, and ADIC2 is run in the
forward and sparse modes. For each case, the time to complete
the simulation, the numerical drift, and the number of Jacobians
computed are noted.

4.1. Spatial four-bar mechanism

The first model under study is the 1-DOF spatial four-bar
mechanism shown in Figs. 5 and 6. The lengths of the crank,
connecting rod, follower, and ground link are, respectively,
Lc = 1.5 m, Lr = 4 m, L f = 2 m, and Lg = 5 m. Each bar
k has mass mk = Lk and negligible inertia around the direction
of the axis. The only initial condition is ż4(t = 0) = −0.1 rad/s.
Row 1 of Table 1 lists the number of independents, dependents,
nonzeroes, and colors used to partition the Jacobian. The size of
the Jacobian in this model is quite small and is not very sparse,
as can be seen in Fig. 10(a).

Computation times are shown in Table 2. Columns contain
the elapsed times of the different differentiation methods (ND,
AD with ADOL-C, and AD with ADIC2), and rows contain
the different platforms used in the simulations. In this exam-
ple, elapsed times are at the limit of what can be measured with
standard timing functions. Nevertheless, a trend can already be
observed: AD times are about the same as ND times, and sparse
modes seem to be the fastest way of running AD. However, dif-
ferences in AD modes and tools are not yet clearly quantifiable.

4.2. Multiple four-bar linkage

The second sample model is a multiple four-bar linkage,
made up of a series of concatenated four-bar mechanisms in
the Y- and Z-directions. The number of quadrilaterals in both
directions is denoted as ny and nz, respectively. Three different
ny×nz cases are considered: 1×15, 4×15, and 7×15. See Fig.

7 for a generic case and Fig. 8 for the 1 × 15 case. All joints in
the system are parallel X-direction revolute joints, and all bod-
ies are contained in the YZ-plane. Only the top joints are fixed;
all bars are moving bodies. Bars have a uniformly distributed
mass of 1 kg and a length of 1 m. The system is considered as a
three-dimensional multibody system for the sake of generality.
The only initial condition is ż1(t = 0) = π/3 rad/s. Rows 2−4 of
Table 1 list the number of independents, dependents, nonzeroes,
and colors used to partition the Jacobian for the 1 × 15, 4 × 15,
and 7× 15 cases, respectively. The Jacobians are sparse and the
number of colors used to partition the Jacobian is considerably
lower than the number of independent variables. This implies
that for this model, ADIC2’s sparse mode requires much less
stack memory than ADIC2’s dense mode.

The main objective of the multiple four-bar linkage experi-
ments is to assess the effect of the problem size on the com-
putational cost of Jacobian matrix (23). All three systems are
15-DOF systems, but they differ in the number of rigid bodies
(45, 135, and 450, respectively). For a given number of DOFs,
the higher the number of bodies (and thus joints), the higher the
number of constraint equations.

Computation times are shown in Table 3. Several observa-
tions can be made for this models. First, both AD tools (ADIC2
and ADOL-C) have a very similar efficiency. Second, AD times
are shorter than ND times in the 4 × 15 and 7 × 15 cases. Mul-
tiple four-bar systems with a high ratio of rigid bodies per DOF
seem to favor AD performance. The reason is that the size of
the compressed matrix is much smaller than the number of in-
dependent variables. This fact coincides with previous investi-
gations using ADOL-C in similar contexts [6] and proves that
ADIC2 follows the same trend. Third, because the grad field of
DERIV TYPE is statically allocated, ADIC2-generated code ex-
ceeded the available stack space in the machine for the two in-
feasible cases. Fourth, ADOL-C’s forward mode is faster than
ADOL-C’s reverse mode.

7

Table 2: Simulation results of the spatial four-bar mechanism.

h (ms) Platform Elapsed Time (s) Numerical #
ND ADOL-C ADIC2 Drift (%) Jacobians

Forward Reverse Sparse Forward Sparse

1 gcc-1 0.38 0.63 0.77 0.49 0.44 0.42
+0.413 5000gcc-2 0.36 0.62 0.91 0.54 0.32 0.30

10 gcc-1 0.04 0.06 0.80 0.04 0.04 0.04
+0.345 500gcc-2 0.05 0.08 0.09 0.06 0.04 0.05

20 gcc-1 0.02 0.30 0.30 0.04 0.02 0.02
−0.666 250gcc-2 0.03 0.05 0.05 0.03 0.03 0.03

Table 3: Simulation results of the multiple four-bar linkages.

Case h (ms) Platform Elapsed Time (s) Numerical #
ND ADOL-C ADIC2 Drift (%) Jacobians

Forward Reverse Sparse Forward Sparse

1 × 15

1 gcc-1 44.80 82.13 49.51 51.17 69.03 51.85
−0.000 5000gcc-2 36.49 59.23 44.17 39.45 55.51 37.71

10 gcc-1 5.12 8.45 5.04 5.36 7.20 6.32
−0.015 500gcc-2 3.78 6.05 4.59 4.14 5.79 4.20

20 gcc-1 2.93 4.76 2.98 3.12 4.12 3.39
−0.057 287gcc-2 2.23 3.50 2.70 2.40 3.71 2.51

4 × 15

1 gcc-1 486.23 1,064.92 889.21 284.73 922.82 309.83
+0.000 5000gcc-2 453.45 673.61 538.85 205.57 665.96 214.49

10 gcc-1 58.16 106.19 92.77 34.27 97.43 39.09
−0.015 500gcc-2 50.38 72.86 58.19 25.26 71.64 28.27

20 gcc-1 34.58 60.78 53.97 20.33 55.65 23.82
−0.058 279gcc-2 29.85 41.33 33.28 15.13 41.16 17.34

7 × 15

1 gcc-1 1,870.84 3,688.65 3,041.90 1,147.13 3,468.08 1,103.67
+0.000 5000gcc-2 1,682.25 2,025.48 1,909.90 672.06 Infeasible Infeasible

10 gcc-1 243.85 409.49 346.91 168.81 395.48 167.31
−0.015 500gcc-2 198.65 249.65 216.26 96.87 258.26 106.26

20 gcc-1 146.90 241.64 202.23 102.68 228.39 103.38
−0.058 275gcc-2 116.18 145.88 123.16 59.90 149.04 66.38

Table 4: Simulation results of the coach dynamic maneuver.

h (ms) Platform Elapsed Time (s) Numerical #
ND ADOL-C ADIC2 Drift (%) Jacobians

Forward Reverse Sparse Forward Sparse

1 gcc-1 48.68 75.43 58.96 66.92 55.19 58.20
+3.742 5000gcc-2 36.01 57.93 55.14 50.46 54.44 52.88

10 gcc-1 5.06 7.60 6.20 6.64 5.60 5.94
+3.731 506gcc-2 3.69 5.88 5.78 5.18 5.74 5.41

20 gcc-1 2.70 4.04 3.19 3.51 3.01 3.26
+3.808 268gcc-2 2.03 3.13 2.99 2.74 2.98 2.91

8

4.3. Coach dynamic maneuver

The coach under study is a Noge Touring 345 vehicle with
frame from Mercedes-Benz. A general view of the coach model
is shown in Fig. 9. A coordinate-measuring machine has been
used on the unloaded real coach to obtain global dimensions
and the position of key suspension points and joints. The coach
has two axles: the front one has two wheels and the rear one
four (assembled as two sets of dual wheels). The total mass of
the loaded coach is 17,048 kg. The front suspension system is
independent, while the rear one is a rigid axle. Suspension elas-
ticity is provided through six air springs and two stabilizer bars,
and damping through six regular dampers. The air spring force
is considered linear w.r.t. the elongation of the spring, whereas
the damping force is modeled as a piecewise bilinear function
w.r.t. the relative velocity of the ends. On the other hand, sta-
bilizer bars are modeled as an angular spring between both bar
ends, neglecting bending stiffness. All vehicle parameters have
been measured when possible, and estimated otherwise. The
torsion stiffness of the bodywork, is considered by dividing the
bodywork in two separate bodies linked by a revolute joint with
a torsion spring acting along the X-direction.

The steering coordinate δ corresponds to the rotation of the
steering actuator, which acts on the steering rods through the
steering mechanism. In the considered simulation, the coach
performs a 2-second lane-change maneuver. To that end, coor-
dinate δ is kinematically guided by a predefined steering func-
tion δ(t) = 0.013 sin t [rad], t ∈ [0, 2]. For the tire forces, Pace-
jka’s Magic Formula [26] is used to compute the contact point
and the six contact forces (three linear forces and three torques).
Also, a speed control is implemented so that the vehicle speed
is always 50 km/h. The resulting model is a 16-DOF multibody
system. Row 5 of Table 1 lists the number of independents, de-
pendents, nonzeroes and colors used to partition the Jacobian,
which in this model is not sparse (see also Fig. 10(c)).

Computation times are shown in Table 4. In this case, AD
times are slightly longer than ND times. Both for ADIC2 and
ADOL-C, the benefits of the sparse mode are almost unnotice-
able due to the dense nature of the Jacobian. Finally, ADOL-C’s
forward mode is faster than ADOL-C’s reverse mode.

4.4. Discussion

When Jacobian matrices are considered naively to be dense,
ADIC2 and ADOL-C codes are always slower than ND code.
This result may be due to overheads in the implementation of
ADIC2’s and ADOL-C’s runtime libraries. Furthermore, be-
cause of the nature of Newton’s method, Jacobian accuracy is
not essential for rapid numerical convergence. In fact, the in-
herent machine-precision accuracy of AD has almost no effect
on the number of iterations required by Newton’s algorithm to
solve the nonlinear system of equations (17). Thus, in this for-
mulation all methods converge in the same number of iterations.

The sparsity of the Jacobian has a vital effect on performance.
Figure 10 shows the sparsity patterns of three models used here.
The multiple four-bar linkage model is quite sparse and it has
been exploited by both AD tools. While sparsity could certainly
be exploited for the ND approach as well [27], the multibody

Figure 9: 3D view of the coach maneuver.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

0 10 20 30 40 50 60

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

(a)

(b)

(c)

Figure 10: Sparsity pattern of (a) the spatial four-bar example, (b) the 7 × 15
multiple four-bar linkage, and (c) the coach.

9

code used in this work is not easily amenable to such exploita-
tion. The code was implemented without initially considering
Jacobian sparsity, and modifying it requires nontrivial formula-
tion changes. On the other hand, exploiting sparsity via ADIC2
and ADOL-C is as easy as changing drivers and using different
runtime libraries during code compilation. When the Jacobian
is sparse, ADIC2 and ADOL-C sparse Jacobians are faster than
using the dense ND approach.

Considering the problem as a whole, the results suggest that
AD cannot be accepted or rejected over ND by looking at just
the computational efficiency of the code. Several aspects such
as ease of implementation, development time, accuracy, Jaco-
bian structure, and scalability should also be assessed.

5. Conclusions

A general-purpose multibody dynamics code, together with
two academic examples and a realistic coach model, have been
used to evaluate the performance of automatic differentiation
tools in the context of multibody systems. Two different C/C++

tools for the automatic generation of derivatives have been used:
the source transformation tool ADIC2 and the operator over-
loading tool ADOL-C. Both tools were relatively easy to use
and provided accurate derivatives. The MBS simulation code is
the most complex use case that ADIC2 has been applied to, and
has required several enhancements to the tool.

When the Jacobians are considered to be dense, derivatives
generated by AD are slower that using the finite-differences ap-
proach. However, support for sparse Jacobians can be provided
by ADIC2 and ADOL-C in a direct way. Sparse AD derivatives
are faster for certain systems than using the finite-differences
approach without exploiting sparsity.

Whenever AD is faster than ND, probably no other differen-
tiation method can generate more accurate and more efficient
Jacobian matrices with such a short development time. Tech-
niques like analytical (or manual) differentiation, which could
provide machine-precision and efficient derivatives, would be
nearly infeasible for complex formulations like the one consid-
ered here, and definitely not as scalable. Nevertheless, there is
still room for the improvement of AD performance.

Overall, advantages and disadvantages of state-of-the-art
tools for the automatic differentiation of C/C++ codes in the
field of multibody dynamics have been presented rigorously.

Acknowledgments
This work was supported by the U.S. Dept. of Energy Of-

fice of Science Applied Mathematics Program (DE-AC02-
06CH11357), the Spanish Ministry of Science and Innovation
(TRA2009-14513-C02-01) and the Government of Navarra.

References

[1] O. A. Bauchau, A. Laulusa, Review of contemporary approaches for con-
straint enforcement in multibody systems, J. Comput. Nonlinear Dynam.
3 (2007) 011005.

[2] J. Garcı́a de Jalón, E. Bayo, Kinematic and Dynamic Simulation of Multi-
body Systems. The Real-Time Challenge, Mechanical engineering series,
Springer-Verlag, New York, 1994.

[3] E. Bayo, R. Ledesma, Augmented lagrangian and mass-orthogonal pro-
jection methods for constrained multibody dynamics, Nonlinear Dynam-
ics 9 (1996) 113–130.

[4] J. Cuadrado, D. Dopico, M. Gonzalez, M. A. Naya, A combined penalty
and recursive real-time formulation for multibody dynamics, Journal of
Mechanical Design 126 (2004) 602–608.

[5] A. Griewank, D. Juedes, J. Utke, ADOL–C, a package for the automatic
differentiation of algorithms written in C/C++, ACM Trans. Math. Soft-
ware 22 (1996) 131–167.

[6] A. Callejo, J. Garcı́a de Jalón, Automatic differentiation of forces in for-
ward multibody dynamics, in: ECCOMAS Multibody Dynamics 2011,
J.C. Samin, P. Fisette (eds.), Springer, 2011.

[7] C. H. Bischof, On the automatic differentiation of computer programs
and an application to multibody systems (1996) 41–48.

[8] P. Eberhard, C. Bischof, Automatic differentiation of numerical integra-
tion algorithms, Mathematics of Computation 68 (1999) pp. 717–731.

[9] A. Dürrbaum, W. Klier, H. Hahn, Comparison of automatic and sym-
bolic differentiation in mathematical modeling and computer simulation
of rigid-body systems, Multibody System Dynamics 7 (2002) 331–355.

[10] J. A. C. Ambrósio, M. A. Neto, R. P. Leal, Optimization of a complex
flexible multibody systems with composite materials, Multibody System
Dynamics 18 (2007) 117–144.

[11] R. Hannemann, W. Marquardt, U. Naumann, B. Gendler, Discrete first-
and second-order adjoints and automatic differentiation for the sensitivity
analysis of dynamic models, Procedia Computer Science 1 (2010) 297 –
305. ICCS 2010.

[12] S. H. K. Narayanan, B. Norris, B. Winnicka, ADIC2: Development of a
component source transformation system for differentiating C and C++,
Procedia Computer Science 1 (2010) 1845–1853. ICCS 2010.

[13] J. Garcı́a de Jalón, A. Callejo, A. F. Hidalgo, Efficient solution of maggi’s
equations, Journal of computational and nonlinear dynamics 7 (2012).

[14] M. Berz, C. Bischof, G. Corliss, A. Griewank (Eds.), Computational Dif-
ferentiation: Techniques, Applications, and Tools, SIAM, Philadelphia,
PA, 1996.

[15] A. Griewank, On automatic differentiation, in: M. Iri, K. Tanabe (Eds.),
Mathematical Programming: Recent Developments and Applications,
Kluwer Academic Publishers, Dordrecht, 1989, pp. 83–108.

[16] A. Griewank, C. H. Bischof, G. F. Corliss, A. Carle, K. Williamson,
Derivative convergence for iterative equation solvers, Optimization Meth-
ods and Software 2 (1993) 321–355.

[17] J. Utke, OpenAD: Algorithm Implementation User Guide, Technical
Memorandum ANL/MCS–TM–274, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 2004.

[18] C. H. Bischof, L. Roh, A. Mauer, ADIC — An extensible automatic
differentiation tool for ANSI-C, Software–Practice and Experience 27
(1997) 1427–1456.

[19] OpenAD, OpenAD Web Page, http://www.mcs.anl.gov/OpenAD/,
2013.

[20] D. Quinlan, ROSE Web Page, http://rosecompiler.org, 2013.
[21] M. Schordan, D. Quinlan, A source-to-source architecture for user-

defined optimizations, in: JMLC’03: Joint Modular Languages Con-
ference, volume 2789 of Lecture Notes in Computer Science, Springer
Verlag, 2003, pp. 214–223.

[22] M. M. Strout, J. Mellor-Crummey, P. Hovland, Representation-
independent program analysis, SIGSOFT Softw. Eng. Notes 31 (2006)
67–74.

[23] S. H. K. Narayanan, B. Norris, P. Hovland, D. C. Nguyen, A. H. Ge-
bremedhin, Sparse jacobian computation using ADIC2 and ColPack,
Procedia Computer Science 4 (2011) 2115 – 2123. Proceedings of the
International Conference on Computational Science, ICCS 2011.

[24] A. H. Gebremedhin, D. Nguyen, M. Patwary, A. Pothen, ColPack: Soft-
ware for Graph Coloring and Related Problems in Scientific Computing,
Technical Report, Purdue University, 2011.

[25] A. Walther, A. Griewank, Getting started with ADOL-C, in: U. Naumann,
O. Schenk (Eds.), Combinatorial Scientific Computing, Chapman-Hall
CRC Computational Science, 2012, pp. 181–202.

[26] H. Pacejka, Tire and Vehicle Dynamics, SAE-R, Society of Automotive
Engineers, Incorporated, 2006.

[27] A. R. Curtis, M. J. D. Powell, J. K. Reid, On the estimation of sparse
Jacobian matrices, J. Inst. Math. Appl. 13 (1974) 117–119.

10

http://www.mcs.anl.gov/OpenAD/
http://rosecompiler.org

The submitted manuscript has been created by UChicago Ar-
gonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and oth-
ers acting on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

11

	Introduction
	Multibody formulation
	Open-chain equations
	Constraint enforcement and implicit integration

	Automatic differentiation tools
	Algorithmic differentiation
	ADIC2
	ADOL-C

	Results
	Spatial four-bar mechanism
	Multiple four-bar linkage
	Coach dynamic maneuver
	Discussion

	Conclusions

