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Abstract

Wall-bounded flows at high Reynolds number are characterized by high rates of shear at the walls.

Resolving the flow near the wall, is critical to correctly reproducing the turbulence. In the present

paper, we show that the accurate prediction of spatially varying wall shear stress requires additional

near-wall resolution for large eddy simulation. We also demonstrate the advantage of the use of higher

order polynomials for such calculations. The difficulties of resolving derivatives in a weak formulation are

considered. A large eddy simulation of a channel flow is performed in order to examine these difficulties

in a canonical flow. The dependence on resolution and subgrid-scale models is investigated. Results are

compared with direct numerical simulation. A large eddy simulation of a single rod in a periodic array at

Re=64590 is performed. The results of h-refinement and p-refinement are compared. Wall shear stress

and additional results are compared with experimental data. Implications for rod bundle calculations

are discussed.

1 Introduction

Accurate prediction of wall shear stress is critical in the analysis of turbulent wall-bounded flows [24]. It

is important for the production of correct friction factors, turbulent kinetic energy production, the analysis

of heat transfer, and study of fluid-structure interaction. In most flows of engineering interest, the wall

shear stress and viscous stresses are nonuniform since they are functions of the velocity derivatives. In order

to predict the wall shear stress correctly, the regularity and smoothness of the velocity solution need to
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be guaranteed. However, in methods that solve the weak form of the Navier-Stokes equation such as the

spectral element method (SEM), the space of solutions is usually chosen to be less regular than C1 so that

only weak derivatives are guaranteed to exist, and the derivatives do not have the same strict requirement

to converge that the solution does [5]. While approximations of the convergence of derivatives exist, we are

interested in what is seen in practice, especially in the case of underresolved, non-DNS (direct numerical

simulation) flows. We aim to provide guidelines to predict wall shear stress in complex engineering flows at

realistic Reynolds numbers while maintaining the mesh resolution as coarse as possible. The target problem

chosen is the parallel flow in rod bundles.

The prediction of the flow in rod bundles is of fundamental importance in a variety of engineering fields.

It is, for instance, relevant for heat transfer applications such as the design of tube and shell heat exchangers

as well as nuclear reactor core analysis. In nuclear reactor cores, the heat produced by the nuclear fuel

contained within the rods is removed by the coolant flowing through the bundle. To predict with greater

accuracy the behavior and the thermal performance of nuclear reactors, one must to better understand the

underlying hydrodynamics.

Rod bundle flows differ significantly from pipe flow and parallel channel flow [13, 25, 31]. Rod bundles

present flow characteristics that are reminiscent of external flows. Viscous dissipation and wall shear stress

change azimuthally. Coherent structures might develop in the streamwise direction for particularly tight

bundles. Moreover, the flow anisotropy induces secondary flows.

Especially important for nuclear engineering applications is the prediction of the peak fuel temperature

and peak fluid temperature. Ideally, one would compute a temperature solution by prescribing a heat flux

at the boundary or, even better, by performing a conjugate heat transfer calculation. In cases where that is

not possible, the Reynolds analogy can be used to obtain an approximation to the heat transfer from known

values of the wall shear stress.

RANS models developed for internal flows do not usually fare well for rod bundles because of a combina-

tion of the previous points [1,19]. Accounting for more physics and reasonable tuning leads to better results.

However, a more general approach such as large eddy simulation (LES) is desirable to lead to better pre-

dictability and freedom in exploring the design space [18]. In LES the large scales of turbulence are resolved

while the small scale contribution to dissipation is modeled. Wall-resolved LES presents significant advan-

tages when considering conjugate heat transfer calculations. Moreover, it permits exploring the physics of

near-wall turbulence, which dramatically influences heat transfer. Traditionally, wall-resolved LES has been

limited to relatively low Reynolds numbers since the computational cost scales with the Reynolds number.
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One of the purposes of the present work is to test such methodology at Reynolds numbers of engineering

interest and to verify how coarse the grid can be. As part of the Center for the Exascale Simulation of

Advanced Reactors (CESAR) [30] effort, increasingly large simulations are planned comprising full reactor

cores, and accessing the minimal computational requirements is fundamental importance.

The code used for all the calculations performed for the present work is Nek5000 [7, 9], a developed at

Argonne National Laboratory and the target CFD code of CESAR. Nek5000 has demonstrated excellent

parallel performance on petascale level machines when at least 20,000 collocation points are allocated per

MPI process. Nek5000 solves the incompressible Navier-Stokes equations in the weak form using the spectral

element method, a higher-order method in space.

In the present paper we explore the computational requirements to perform LES simulations at high

Reynolds numbers in rod bundles using Nek5000. The objective is to be able to perform full bundle sim-

ulations at the Reynolds numbers encountered in prototype reactors (∼70,000) with the least amount of

computational effort possible while maintaining excellent accuracy for both velocity distribution and wall

shear stress. This implies operating LES at the limit of underresolution, where the method does not guar-

antee a smooth solution of the derivatives. An approach to locally increase the resolution was found to be

required in order to correctly resolve the wall shear stress. In fact, in order to achieve accurate prediction of

wall shear stress in an LES, resolution requirements are greater than what is needed for other measures of

accuracy such as the law of the wall.

Preliminary results for a 37-rod bundle simulation, performed by using the resolution guidelines described

in the present work, are shown in Figure 1. The grid resolution studies presented in this work have been

performed on an infinite array (Figure 1d) for simplicity and reduced computational cost.

In Section 2, the computational methodology is summerized. In Section 3 the issues concerning wall shear

stress are described in more detail. Section 4 contains a systematic study of the effects of underresolution on

the mean flow quantities in the case of channel flow. Section 5 focuses on the target case, the parallel flow in

rod bundles. The results of several calculations are compared and conclusions drawn about best practices.
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(a) Mesh for the 37-rod bundle case (b) Volume rendering of the streamwise velocity

(c) Volume rendering of the streamwise velocity, detail (d) Volume rendering of the single rod arrangement

Figure 1: Results of a 37-rod bundle case.

2 Methodology

Calculations were performed by using the spectral element code Nek5000 [9]. Nek5000 solves the incom-

pressible Navier-Stokes equations.
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In this study the incompressible Navier-Stokes equations are solved in their standard Cartesian form:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(1a)

∂ui
∂xi

= 0 (1b)

along with appropriate boundary conditions. All variables have been nondimensionalized by a characteristic

length δ and velocity scale U ; Re is the Reynolds number.

The domain and equations are discretized following the form of the spectral element method. The spectral

element method solves the Navier-Stokes equations on a given domain by discretizing the solution space into

elements such that the global solution is composed of piecewise polynomial functions with compact support.

The problem is solved as a variational problem in what is known as weak form [5]. (More details are given

in Section 3.) Lagrangian polynomial functions of up to the 23rd degree have been used to discretize the

velocity field in each element in the present work. In the generalized, weighted residual framework, the

present spectral-element method can be classified as a Galerkin method where the test functions and the

basis functions for each element are Lagrange polynomials evaluated on Gauss-Lobatto-Legendre collocations

points for the velocity. The pressure is solved with the same order polynomials as the velocity (PN -PN

formulation).

Equations (1a) and (1b) are integrated in time by using a characteristic scheme as described by Maday et

al. [17]. This method avoids the Courant-Friedrichs-Lewy (CFL) stability constraint in typical semi-implicit

timestepping implementations, allowing greater time steps with CFL values in the range of 3-4.

In all problems considered here, periodic boundary conditions are applied in the streamwise direction. A

dynamic forcing term is calculated at each time step to ensure a fixed flow rate.

The LES calculations carried out in this study use the stabilizing filter of Fischer and Mullen [8]. In this

method, the solution at each time step is explicitly filtered. The filter operator Fα is defined as

Fα := αIN−1 + (1− α)I, (2)

where I is the identity operator and IN is the interpolation operator at the N + 1 GLL nodes. This filter

has the desirable property that it preserves the spectral convergence of SEM. As N →∞, the interpolation

error goes to zero exponentially.
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3 Wall Shear Stress

Nek5000 solves the Navier-Stokes equations using the weak formulation. Given a boundary value problem

on a domain Ω with a solution u ∈ V ,

D[u(x)] = f, x ∈ Ω, (3)

where D is a differential operator, one can recast the equation the problem in a variational form [5], also

know as the weak formulation. In this form, one wants to find u ∈ V such that

(Du, v) = (f, v), ∀v ∈ V, (4)

where (·, ·) is a suitable inner product and v is a test function. One generally chooses the solution space

V ⊂ H1
0 (Ω)d, which is the Sobolev space of functions in L2 that vanish on the boundary and whose first

derivatives are in L2, where d is the dimension.

In applications, one generally uses analytic functions of either polynomials or trignometric functions to

approximate the unique solution û. Let {VN}∞N=0 represent a family of finite-dimensional subspaces that

cover V . We then look for approximate solutions uN ∈ VN . With Galerkin methods, such as SEM, the

solution space is VN := PN (Ω), the space of polynomials of order N .

The choice of V has implications for the error of the approximate solution and, more important, its

derivative, as found by the weak form of the problem. Sobolev embedding theorems [?] tell us that the

Sobolev space given by

W 1,p(Ω) :=

{
v ∈ Lp(Ω) :

∂v

∂xi
∈ Lp(Ω), i = 1, . . . , d

}
(5)

is embedded W 1,p(Ω) ⊂ C(Ω) as long as p > d. This case obviously holds for d = 1, implying that all

solutions are continuous. Less regularity holds for d ≥ 2, since the existence of finite Lp norms for p > 2

cannot be guaranteed.

The approximation error from using a truncated polynomial expansion for d = 1, as in SEM, is given

as follows. For any element u ∈ H1
w(Ω), the truncated Legendre polynomial expansion PNu :=

∑N
k=0 ûkpk

converges [5] as

‖u− PNu‖L2
w(Ω) ≤ CN−m‖u‖Hm

w Ω. (6)
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More important for the current discussion is the approximation error for the derivatives (·)x := ∂(·)/∂x

given by

‖ux − (PNu)x‖L2
w(Ω) ≈ CN3/2−m, (7)

which means that if u ∈ H1
w(Ω), but u /∈ H2

w(Ω) then (PNu)x does not necessarily converge to ux. The

scenario is even worse for d ≥ 2.

The wall shear stress is defined by

τw := [(τijnj)
2 − (τijninj)

2]
1
2 , (8)

where n is the unit normal of a boundary surface and τij is the stress tensor, defined as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (9)

where µ is the dynamic viscosity. When there is spanwise homogeneity, such as in the case of turbulent

channel flow, the definition of the wall shear stress simplifies to another standard form,

τw = µ
∂u

∂n
, (10)

where n is the normal direction to a boundary.

The results from this section highlight the difficulty of correctly reproducing the wall shear stress. Since

the wall shear stress is derived from derivatives of the solution, it is important that these be correct. In

particular, in a weak formulation, where regularity of the derivatives is not guaranteed, the resolution

requirements to resolve the derivatives of the solution may be more stringent than those to resolve the

solution to a given level of accuracy.

4 Channel flow

The effects of underresolution on the wall shear stress were investigated in the canonical case of turbulent

channel flow. We compare the results of high and low amounts of filtering and of higher-order and lower-

order spectral elements. Channel flow has been studied extensively at low Reynolds numbers. For example,

two calculations are the DNS by Kim, Moin, and Moser [15] with Re = 3300 and the DNS of Moser, Kim,
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and Mansour [22] with Re = 10935, hereafter KMM and MKM, respectively. We will compare our results

with the higher Reynolds number study of MKM.

The focus section of these comparisons in this is the local wall shear stress as a function of the spanwise

position, which is the relevant quantity of interest for rod bundle flows.

4.1 Numerical Model

The domain of the problem is a rectangular channel periodic in the streamwise and spanwise directions, x

and z, respectively. The last two boundaries, normal to the y axis at y = ±δ, have the no-slip boundary

condition applied. All quantities have been nondimensionalized by the channel half-width δ and mean

streamwise velocity U . The streamwise and spanwise dimensions of the domain are chosen to be 2πδ and πδ,

respectively. The bulk Reynolds number is Re = δU/ν, where ν is the kinematic viscosity. The boundary

layer Reynolds number is defined as Reτ = uτδ/ν, where uτ is the shear velocity.

The bulk Reynolds number was chosen to be Re = 10935, which corresponds to Reτ = 590 as in

MKM. Although the domain streamwise and spanwise dimensions were half those in MKM, the effects of

underresolution under investigation are unrelated to the domain reduction. In the most resolved case, the

results for the mean flow are close to those of MKM.

All cases have been averaged over an advective time of at least 500 δ/U at a time step of ∆t = 0.02 δ/U .

In addition, quantities were averaged over statistically homogeneous directions, x and z, and about the plane

of symmetry y = 0.
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(a) M1: Cases A, B, H, I, J. (8, 8, 8; 7) (b) M2: Case C. (8, 8, 16; 7)

(c) M3: Cases D, E, F, G. (8, 8, 16; 9)

Figure 2: Meshes for channel flow with (Ex, Ey, Ez;N).

4.2 Results

In this section we consider how varying parameters of the computational method affect the solution: first,

the Nek5000 filter parameters; second, spanwise resolution; third, streamwise resolution; and fourth, explicit

SGS models.
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Table 1: Channel flow parameters for setups studied.

Re = 10935, Reτ = 590
Ex Ey Ez N ∆x+

max y+
1 ∆z+

max τw,m(×10−3) ∆τmax α, M Case
8 8 8 7 96.5 1.5 48.2 2.46 0.28 0.05, 2 A
8 8 8 7 96.5 1.5 48.2 2.89 0.49 0.005, 1 B
8 8 16 7 96.5 1.5 24.1 2.65 0.04 0.05, 2 C
8 8 16 9 76.2 0.94 19.0 2.87 0.02 0.05, 2 D

2.88 MKM

Each case computed used one of three meshes. The streamwise normal cross-section of each mesh is

shown in Fig. 2, and the cases that used each mesh are listed. Mesh M2 was created from M1 by doubling

the number of spanwise elements. Mesh M3 has the same number of elements as M2 but with order N = 9,

instead of N = 7. Shown are all nthe spectral element nodes.

All cases are summarized in Table 1. Listed is the number of elements in each direction Ex, Ey, Ez; the

order of spectral elements N ; the maximum streamwise mesh spacing ∆x+
max; the first grid point away from

the wall y+
1 ; the maximum spanwise mesh spacing ∆z+

max; the mean wall shear stress τw,m; the maximum

deviation of τw from the mean; the filter level α; and number of modes filtered M . The values (·)+ shown in

the table are normalized by the mean wall shear stress τw,m of MKM, so that cases calculated on the same

mesh have the same wall coordinates, despite having different values of mean wall shear stress. However, in

the figures presented all data have been normalized by the values of the corresponding calculation.

4.2.1 Effect of Filter

To examine the effect filter strength, we compare two setups of the same resolution. The high-filter case

A had the filter parameters α = 0.050, M = 2. The low-fiter case B had α = 0.005, M = 1. These are

summarized in Table 1.

In the spanwise wall shear stress profile (Fig. 3a), we clearly see the element boundaries at each spike.

This effect is due to the lack of strong continuity requirements of the spectral element method at the element

boundaries (Section 3). The wall shear stress τw is computed from the derivatives, which are not required

to be continuous across element boundaries. We also see that the variation in the profile is of the same form

but that the high filter shows a decrease in the magnitude of the spikes.

We quantify the effect of filtering on the wall shear stress τw by the maximum peak deviation from the

mean in the spanwise variation of the wall shear stress ∆τmax = maxx∈Ω |τw(x) − τw,m|/τw,m. The value

is 28% for the high filter, and the value is 49% for the low filter. These values may seem to indicate that

a higher filter is better. However, by comparing the mean wall shear stress values with the MKM case, we
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see that this is not true. The high-filter case predicts τw,m = 2.46 × 10−3, and the low-filter case predicts

τw,m = 2.89×10−3; according to MKM, τw,m = 2.88×10−3. While greater filtering of the solution decreases

the spikes in the streamwise variation of τw, it also inaccurately reduces the mean value.

The effects of a low value of τw,m are also noticed by looking at the mean streamwise velocity profile

(Fig. 3b). Here we see that the underprediction of τw,m in the case of the high filter results in overpredicting

the mean streamwise velocity. We also see that the low filter fits the expected law of wall quite well. However,

using the mean wall shear stress as a measure of the fidelity of the result is not recommended because, as we

see in the spanwise profile of τw, an accurate mean does not indicate that the result is correct throughout

the domain.

4.2.2 Effect of Spanwise Resolution

We compare the effects of spanwise resolution by considering cases A, C, and D, where the filtering is the

same but the mesh parameters change. Case C has had the number of spanwise elements doubled, and case D

has further had the order increased from N = 7 to N = 9. The increase in elements improved τw,m modestly,

raising it from 2.46 to 2.65. However, it reduced the spikes in τw from ∆τmax = 0.28 to ∆τmax = 0.04. The

mean streamwise profile is improved marginally. The increase in element order from case C to case D further

reduces ∆τmax, while predicting a τw,m very close to the DNS value. The mean streamwise profile of D is

also very close to the expected value.

The turbulent kinetic energy k+ = 1
2 (u2 + v2 +w2)/u2

τ is calculated for each setup and shown in Fig. 3d

alongside the MKM data. Another effect of underresolution can be observed in the overprediction of k+ near

the wall. The effect is substantial in the underresolved cases A and C. In the more resolved case D, k+ only

slightly overpredicts the peak. In all cases, k+ is underpredicted away from the wall. Also, one can see in

Fig. 3d an indicator of the lack of resolution in the y direction; the turbulent kinetic energy contains peaks

in case A near element boundaries at y+ ≈ 140 and y+ ≈ 320, similar to what was seen with the wall shear

stress.

While streamwise and wall-normal resolution has been increased from case C to case D, the spanwise

variation in the mean value of the wall shear stress is most heavily dependent on the spanwise resolution.

In the following section, the stress will be shown to vary little with the streamwise resolution. In fact, the

resolution in the streamwise direction will affect the streamwise variation of the wall shear stress, but that

is not primary focus of the present comparisons.
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Figure 3: High-filter and low-filter cases.
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Figure 4: Highest resolution mesh, stretched by a factor αz. Cases E and F have αz = 5/4, and case D has
αz = 3/2. Additionally, case F has filtering turned off in wall elements.
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Figure 5: Low-resolution mesh with various filters: A - standard Nek5000 filter with α = 0.05, M = 1; H -
dynamic Smagorinsky with van Driest damping; I - same as A but with no filtering in the spanwise direction;
J - d4 filter with hyperviscosity formulation.

4.2.3 Streamwise Resolution

In addition to comparing the effects of spanwise resolution, we investigated the effects of decreasing the

streamwise resolution of case D. Using the same mesh, we extended the domain in the streamwise direction

by a factor αz, reducing the streamwise resolution relative to case D by 1/αz. The results of two cases of

this kind are summarized in Table 2.

In cases E and G we see that the decrease in resolution leads to more filtering and, thus, a lower τw,m.

This was clear from considering the setups above. As a result, the mean profile is seen to lie above the

expected law of the wall (Fig. 4a). We note that the effect is modest, even for a decrease in streamwise
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resolution of 1/3. Cases E and G are still within the recommended level of resolution for an LES, indicating

that within these bounds the quality of an LES does not vary strongly with streamwise resolution.

The effect of removing filtering along the boundary was also considered. This was achieved by manually

turning off the filtering mechanism for all elements that touch the no-slip boundary. Case Fis this setup. We

see that the τw,m is overpredicted. This overprediction leads to the mean streamwise velocity profile falling

below the expected values (Fig. 4b). This result is likely due to the highest wavenumber, unstable modes

gathering energy, since they are not removed by the filter.

4.2.4 SGS Models

To determine whether the mesh imprinting seen in the underresolved case was characteristic of the specific

LES filter used, we simulated the channel flow with two other subgrid scale models and a modification of the

standard Nek5000 spectral filter. The first, case H, used the dynamic Smagorinsky model with van Driest

damping applied. The second, case I, used an anistropic spectral filter that applied only in the streamwise

and wall-normal directions. The third, case J, used a hyperviscosity formulation.

We consider only the qualitative effects shown in Fig. 5. We notice that the results of the anisotropic

filter in case I differ only slightly from case A. Case H produces results similar to the low-filter case B, where

τw,m is slightly overpredicted and ∆τmax is large. Case J is observed to be inaccurate.

The main observation is that the effect of underresolution is independent of the exact subgrid scale model

used. The same mesh imprinting is seen in each case.

Table 2: Channel flow parameters for setups studied

Re = 10935, Reτ = 590
αz ∆x+

max τw,m(×10−3) Filter at Wall Element? Case
1 76.2 2.87 Y D

5/4 95.3 2.86 Y E
5/4 95.3 3.06 N F
3/2 114 2.80 Y G

2.88 MKM

4.3 Discussion

For wall-resolved LES, the recommended level of resolution is usually given as [10,23]

50 ≤ ∆x+ ≤ 150, ∆y+
1 < 1, 15 ≤ ∆z+ ≤ 40 (11)
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for “flat platelike” configurations where the x direction is streamwise, the y direction is wall normal, y+
1 is

the first point away from the wall, and the z direction is spanwise (homogeneous).

We have found that these recommendations were sufficient criteria to produce the correct mean streamwise

velocity, total shear stress, and mean wall shear stress. However, they were not sufficient to correctly

reproduce the wall shear stress across the entire spanwise direction. The cases with ∆z+
max = 48.2 showed

clear mesh imprinting on the wall shear stress values due to the local filtering within each element. For the

cases with ∆z+
max ' 20, we found that the spikes were greatly reduced. The most resolved case, which is

well within the resolution guidelines, still showed minimal mesh imprinting in the wall shear stress. A more

stringent requirement of ∆z+
max ≤ 20 is more appropriate for the resolution of a spanwise-varying quantity,

such as τw. However, a requirement such as maximum grid spacing does not take into account the increased

wave number resolution inherent in high-order methods. As demonstrated in Section 5, a higher order is

preferable to a fine mesh.

We have also found that increased filter amplitudes are not effective in reducing the resolution require-

ments. In fact, while increasing the regularity of the solution, high-amplitude filters adversely affect the

calculation by removing too much of the near-wall turbulent energy. The end result is less accurate mean

flow values.

5 Rod Bundle Flow

Turbulent flow through rod bundles is composed of complex energy production and transport mechanisms

that arise from the interactions of the flow with the walls and with gaps, leading to flow patterns similar to

those found both in pipes and in compound channels joined by a narrow gap [2–4,6,11–14,19–21,26–29,31].

The problem has been studied with numerous experiments and computations by the nuclear engineering

community because of its application to safe and efficient nuclear hydraulic design.

In 1998, Krauss and Meyer, hereafter KM, published results of a systematic study they conducted on an

experimental setup of a 37 rod bundle [16]. Their bundle consisted of an array of triangular pitch that they

could vary. They reported on two studies in this bundle. In the one study, the rods were arranged with a

pitch-to-diameter ratio of P/D = 1.12, wall-to-diameter ratio of W/D = 1.06, and bulk Reynolds number

Reb = 64590. In the other study the parameters were P/D = 1.06, W/D = 1.03, and Reb = 38754. We

are concerned with the former. In their study, they measured mean flow properties for both momentum and

heat in a central channel of the rod bundle, including turbulence intensity of the velocities, turbulent kinetic
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energy, wall shear stress, and Reynolds stresses. Measurements were made by hot wire anemometry using

a three-wire probe. In further investigations, they provided substantial evidence for the existence of a gap

vortex street responsible for strong interchannel mixing through the rod gaps.

5.1 Computational Model

In our study, we conducted calculations of the flow around a single rod in a periodic array. The domain

and parameters were chosen to match those of a central rod in the bundle of the Krauss Meyer experiment

and to contain two flow subchannels. The domain was periodic in the spanwise direction, so that opposite

faces on the hexagon were connected. Streamwise periodicity is also used. The pitch-to-diameter ratio of

the array was P/D = 1.12. Geometry and coordinates are shown in Figure 6. The Reynolds number was

Re = 64590 based on the hydraulic diameter Dh of one flow channel. The length of the domain was at least

L = 2πDh.1 The time step in advective time units ta = Dh/Ub was ∆t = 0.0005 ta.

Statistics were gathered over a time of 10-20 advective time units. Symmetries in the flow were used to

further average the data of a minimal flow element. Therefore, the statistics were gathered over an effective

time of 250-570 advective time units, depending on the particular case.

P

W

(a) Rod bundle configuration of Krauss and Meyer, with
outline of single rod geometry indicated.

I

II

III

I

II

III θ,v

r,uz,w

(b) Single rod in periodic array with periodicity in the
plane labeled by I, II, III. Coordinate system and mini-
mal flow element shown by the thick (red) line.

Figure 6: Cross-section of domain.

1Cases C, D, and E used domains of length L = 8πDh to shorten the time integration needed for statistics.
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Table 3: Rod flow parameters for setups studied

Re = 64590, P/D = 1.12, Filter: α = 0.01, M = 1
Er Eθ Ez N r∆θ+

max ∆zmax y+
1 τw,m(×10−3) case

3 6 13 19 33 136 0.71 2.93 A
6 10 24 11 34 121 0.35 2.75 B
6 39 25 11 8 118 0.62 2.82 C
3 15 15 19 13 119 0.62 2.83 D
3 12 15 23 13 98 0.42 2.83 E

2.41 KM

5.2 Results

We compare the solutions of five different calculations with the experimental data. Parameters for the

calculations are summarized in Table 3. All cases are compared in Fig. 7, where y is the radial distance from

the wall of the rod ŷ is the distance from the rod to the line of maximum velocity at θ = 0. In addition,

further results of the flow calculations are presented for Case D.

5.2.1 Effect of Polynomial Order

In order to compare the effectiveness of using higher-order spectral elements versus lower-order spectral

elements, two different cases with the same number of points in the spanwise direction are compared. The

higher-order case A consists of a mesh of 3 elements radially and 6 elements spanwise in the minimal flow

element, all of order N = 19. The lower-order case B consists of a mesh of 6 elements radially and 10

elements spanwise in the minimal flow element, all of order N = 11.

The mean streamwise velocity profile is found to be robust to changes in the resolution. In Fig. 7b, we

compare the mean in the radial direction at θ = 0 for all cases computed with the log law reported by KM,

u+ = 2.5 ln y+ + 4.5. Case B is slightly closer than A, despite the higher order using only 60 points radially

compared with the lower-order case using 72 points radially. This result indicates that the solution with

fewer points, A, is close to spatial convergence already. Also, we see that the higher-order elements can

effectively capture the same solution with fewer grid points.

In Fig. 7a, we see that the lower-order case has much greater spikes in τw over the the domain θ[◦] = [0, 30].

We note that while the higher-order case is not averaged for a sufficient amount of time to reach statistical

convergence, the spikes have been shown to persist at the element boundaries regardless of the sample sizes

in other cases. This result indicates that there are higher order modes of the solution that are better resolved

through increasing element order (p-refinement) rather than number of elements (h-refinement).
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Additionally, with the same filter parameters α = 0.01,M = 1 the higher-order case is effectively filtering

away less energy from the domain. A reason is that the filter is applied only at the last few modes, which

are greater in the higher-order case (i.e., the critical wavenumber kc is higher with higher polynomial order).

5.2.2 Refinement Strategy

We now consider cases C, D, and E. Cases C and D used meshes that were refined by increasing the number

of elements in the azimuthal direction near the wall. Away from the wall, the number of elements is smaller

by a factor of 3 through the use of intermediate trapezoidal elements, shown in Fig. 8a. Case E does not

employ this reduction away from the wall.

The main result of the refinement can be seen in Fig. 7a. Here we see that while C and D vary smoothly

as θ, C begins to depart from the experimental data near θ = 10◦. The profile of C also varies almost linearly

with θ, not as expected. It therefore overpredicts τw at θ = 0 and underpredicts in the region θ = [13◦, 20◦].

Case D is closer but deviates from the data at θ = 0, θ = 12.5, and θ = 30. Case E is clearly the best. As

noted in Table 3, the mean value of these three cases differs only slightly.

In all other measures shown, the three do not differ significantly. With regard to the total shear stress,

they compare well to the expected value. The kinetic energy profile for all cases is similar.

5.2.3 Additional Results

Results for other flow properties are shown for case D.

The higher order moments at θ = 0 are shown in Fig. 9. The wall-normal skewness behaves similarly to

that of channel flow (KMM) near the wall, but far away from the wall it grows positively. The streamwise

skewness varies significantly from channel flow, having two additional crossover points, near y+ ≈ 105 and

y+ ≈ 541, where it takes on a small positive value. Above y+ = 541, it maintains a negative value that

varies with distance from the wall. One potential explanation for the region of positive skew would be the

influence of ejection effects. However, these are seen in channel flow as well, without the positive skew.

Another explanation is that within this geometry there exist secondary flows (Fig. 8b) exist that contribute

to the bulk movement of slow speed of the fluid from the wall to the center of the subchannel. It is unclear

whether either of these effects is methodical or physical, since the resolution away from the wall is relatively

coarse. Further sampling does not affect the behavior.

In Fig. 10, the distribution of instantaneous measurements of (w′, v′) is plotted. The velocities have

been normalized by the local shear velocity uτ . We see that the near-wall turbulence is essentially two-
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dimensional, especially near the wide gap. There is also a dominance of production events in the wide gap

region compared with the narrow gap, for example at y+ ≈ 52 in the wide gap and y+ ≈ 49 in the narrow

gap. The distribution of (w′, v′) becomes isotropic at smaller y+ in the narrow gap.

Figure 11 shows the power spectra at the center of the narrow gap along with a line indicating the

Kolmgorov spectrum. The frequency has been dimensionalized while the energy is scaled relative to the

total. The spectrum indicates that the scales in the inertial range are properly resolved.

The components of the two-point correlation tensor in the narrow gap are shown in Fig. 12. The velocity

signal seems to decorrelate in a short time frame, unlike what is observed for tighter rod bundles [19].

Low-speed streaks can be seen in a plot of velocity contours on a cylindrical surface at y+ ≈ 2 shown in

Fig. 13. Streak spacing was found to be approximately 106y+. Approaching θ = 0, the size of the streaks

diminishes while the total number increases, indicating a significant increase in turbulence production.
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(d) Turbulent kinetic energy at θ = 0.

Figure 7: Comparison of mean flow quantities.
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(a) Streamwise velocity (b) Secondary flow

(c) Kinetic energy

Figure 8: Mean flow properties.
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Figure 9: Higher-order moments at θ = 0.
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Figure 11: Auto spectral power density in narrow gap.
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6 Conclusions

A series of simulations for channel flow and an infinite-array rod bundle have been conducted with the

spectral element code Nek5000. The effort was aimed at reproducing correctly the flow field while exploring

the resolution requirements to solve accurately the wall shear stress.

We have found that the recommendations usually provided for channel flow [10,23] were sufficient criteria

to produce the correct mean streamwise velocity, total shear stress, and mean wall shear stress. However,
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they were not sufficient to correctly reproduce the local wall shear stress in both rod bundles and channel

flow.

In particular we found that the resolution in the direction where it is desired to resolve the local wall

shear stress (e.g., spanwise in the present case) is crucial for producing accurate results. Such requirements

lead to potentially much finer grids, if applied uniformly in the spanwise direction.

The use of very high-order basis functions is found to be preferable to low order. For lower orders the

resolution requirements tend to be finer. The most accurate results in the case of the rod were produced for

23rd-order polynomials using nearly half as many points near the wall as a comparable 11th-order case.

A refinement strategy to maintain the resolution as coarse as possible in the bulk while meeting the

resolution requirements in the near-wall region was devised (Fig. 8a). The simulations performed for a single

pin calculation were in excellent agreement with available experimental results.

The present guidelines and refinement approach have been used to perform a 37 pin simulation. Such

simulation will be used to analyze in the detail the structure of turbulence in rod bundles.
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[21] S. Möller. Single-phase turbulent mixing in rod bundles. Experimental Thermal an Fluid Science,

5(1):26–33, 1992.

[22] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent channel flow up to

Reτ = 590. Physics of Fluids, 11(4):943–945, April 1999.

[23] U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulation. Annual Reviews of Fluid

Mechanics, 34:349–374, January 2002.

[24] S. B. Pope. Turbulent flows. Cambridge university press, 2000.

[25] K. Rehme. Convective Heat Transfer over Rod Bundles, chapter 7. John Wiley & Sons, 1987.

[26] K. Rehme. The structure of turbulent flow through rod bundles. Nuclear Engineering and Design,

99:141–154, 1987.

[27] W. J. Seale. Turbulent diffusion of heat between connected flow passages. Nuclear Engineering and

Design, 54:183–195, 1979.

[28] W. J. Seale. Turbulent diffusion of heat between connected flow passages. Nuclear Engineering and

Design, 54:197–209, 1979.

[29] W. J. Seale. Measurements and predicitions of fully developed turbulent flow in a simulated rod bundle.

Journal of Fluid Mechanics, 123:399–423, 1982.

28



[30] C. team. The Cesar Codesign Center: Early results. In DOE Exascale Conference, 2012.

https://cesar.mcs.anl.gov/sites/cesar.mcs.anl.gov/files/Technical

[31] A. C. Trupp and R. S. Azad. The structure of turbulent flow in triangular array rod bundles. Nuclear

Engineering and Design, 32(1):47–84, 1975.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National

Laboratory (“Argonne”) under Contract DE-AC02-06CH11357 with the U.S. Department of Energy. The

U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable

worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the Government.

29


	Introduction
	Methodology
	Wall Shear Stress
	Channel flow
	Numerical Model
	Results
	Effect of Filter
	Effect of Spanwise Resolution
	Streamwise Resolution
	SGS Models

	Discussion

	Rod Bundle Flow
	Computational Model
	Results
	Effect of Polynomial Order
	Refinement Strategy
	Additional Results


	Conclusions
	Acknowledgments

