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The democratized world of sequencing is leading to numerous data analysis 
challenges; MG-RAST solves them for amplicon data sets, shotgun metagenomes, 
and metatranscriptomes. The changes from version 2 to version 3 include the 
addition of a dedicated gene calling stage using FragGenescan, clustering of 
predicted proteins at 90% identity, and the use of BLAT for the computation of 
similarities. Together with changes in the underlying software infrastructure, 
this has enabled the dramatic scaling up of pipeline throughput while remaining 
on a limited hardware budget. The web based service allows upload, fully 
automated analysis and visualization of results. As a result of the plummeting 
cost of sequencing and the readily available analytical power of MG-RAST, over 
78,000 metagenomic datasets have been analyzed, with over 12,000 of them  
publicly available in MG-RAST. 	
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1. INTRODUCTION	
  
The growth in data enabled by next-generation sequencing platforms provides an 
exciting opportunity for studying microbial communities, ~99% of the microbes in 
which have not yet been cultured (Riesenfeld, Schloss, & Handelsman, 2004). To 
support user-driven analysis of metagenomic data, we have provided MG-RAST 
(Meyer, Paarmann, D'Souza, Olson, Glass, Kubal, et al., 2008). The MG-RAST portal 
offers automated quality control, annotation and comparative analysis services and 
archives over 78,000 datasets contributed by over 10,000 researchers. 	
  

While the previous version of MG-RAST (v2) was widely used, it was limited to 
datasets smaller than a few 100 Mbases and comparison of samples was limited to 
pairwise comparisons. In the new version, datasets of 10s of gigabases can be 
annotated and comparison of taxa or functions that differed between samples is now 
limited by the available screen real estate. Figure 1 shows a comparison of the 
analytical and computational approaches used in MG-RAST v2 and v3. The major 
changes are the inclusion of a dedicated gene calling stage using FragGenescan (Rho, 
Tang & Ye, 2010), clustering of predicted proteins at 90% identify using uclust 
(Edgar, 2010) and the use of BLAT (Kent, 2002) for the computation of similarities. 
Together with changes in the underlying infrastructure this has allowed dramatic 
scaling of the analysis with the limited hardware available.	
  

The new version of MG-RAST represents a rethinking of core processes and data 
products, as well as new user interface metaphors and a redesigned computational 
infrastructure. MG-RAST supports a variety of user-driven analyses, including 
comparisons of many samples, previously too computationally intensive to support 
for an open user community.	
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Figure 1: Overview of processing pipeline in (a) MG-RAST 2 and (b) MG-RAST 3. In the old pipeline, 
metadata was rudimentary, compute steps were performed on individual reads on a 40-node cluster that 
was tightly coupled to the system, and similarities were computed by BLAST to yield abundance 
profiles that could then be compared on a per-sample or per pair basis. In the new pipeline, rich 
metadata can be uploaded, normalization and feature prediction are performed, faster methods such as 
BLAT are used to compute similarities, and the resulting abundance profiles are fed into downstream 
pipelines on the cloud to perform community and metabolic reconstruction and to allow queries 
according to rich sample and functional metadata. 	
  

Scaling to the new workload required changes in two areas: the underlying 
infrastructure needed to be re-thought and the analysis pipeline needed to be adapted 
to address the properties of the newest sequencing technologies.	
  

2. Pipeline and technology platform 	
  
One key aspect of scaling MG-RAST to large numbers of modern NGS datasets is the 
use of cloud computing which decouples MG-RAST from its previous dedicated 
hardware resources. Using our task server AWE (Wilke, Wilkening, Glass, Desai, and 
Meyer, 2011) and the SHOCK data management tool developed alongside it we have 
updated our underlying computational platform using purpose built software platform 
optimized for large scale sequence analysis.	
  

The new analytical pipeline for MG-RAST version 3 (Figure 2) is encapsulated and 
separated from the data store, enabling far greater scalability.	
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Figure 2: Details of the analysis pipeline for MG-RAST version 3.x	
  

Details on the new MG-RAST pipeline	
  
Several key algorithmic improvements were needed to support the flood of user-
generated data. 	
  

PREPROCESSING:  First, we replaced the read-centric approach, no longer 
performing a search for each independent read. The new pipeline actually consists of 
two independent flows. After upload, data is pre-processed using SolexaQA (Cox, 
Peterson & Biggs, 2010) to trim low quality regions from FASTQ data.  Platform 
specific approaches are used for 454 data submitted in FASTA format: reads more 
than than two standard deviations away from the mean read length are discarded 
following (Huse, Huber, Morrison, Sogin & Welch, 2007).	
  

RNA DETECTION, CLUSTERING, and IDENTIFICATION:  rRNA reads are 
identified using a simple rRNA detection pipeline and are searched in a separate flow 
in the pipeline.   An initial BLAT (Kent, 2002) search against a reduced RNA 
database efficiently identifies RNA.  The RNA-similar reads are then clustered at 
97% identity and a BLAT similarity search is performed for the longest cluster 
representative. 	
  

DEREPLICATION: For the remaining data after quality filtering (which we assume 
to be protein coding) the processing starts with a de-replication step used to remove 
artificial duplicate reads (ADRs) (Gomez-Alvarez, Teal & Schmidt, 2009). Instead of 
discarding the ADRs we use these technical duplicates to estimate an error score for 
the entire data set based on the variations in the sets of nearly identical reads 
stemming from artificial duplication (Keegan, Trimble, Wilke, Harrison, D’Souza, & 
Meyer, 2012).	
  

QUALITY ASSESSMENT: The MG-RAST pipeline offers a variety of summaries of 
technical aspects of the sequence quality to enable sequence data triage.  These tools 
include DRISEE for estimating sequence error, summaries of the spectra of long 
kmers, and visualizations of the base caller output. 	
  

1. DRISEE, (Duplicate Read Inferred Sequencing Error Estimation)	
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DRISEE  (Keegan et al., 2010) is a method to provide a measure for sequencing error 
for whole genome shotgun metagenomic sequence data that is independent of 
sequencing technology, and accounts for many of the shortcomings of Phred. It 
utilizes ADR’s (artifactual/artificial duplicate reads) to generate internal sequence 
standards from which an overall assessment of sequencing error in a sample is derived. 
DRISEE values are normally reported as percent error.	
  
DRISEE values can be used to assess the overall quality of sequence samples.   
DRISEE data are presented on the Overview page for each MG-RAST sample for 
which a DRISEE profile can be determined.  Total DRISEE Error presents the overall 
DRISEE based assessment of the sample as a percent error:	
  
Total DRISEE Error = base_errors/total_bases * 100	
  
where “base_errors” refers to the sum of DRISEE detected errors and total_bases 
refers to the sum of all bases considered by DRISEE.	
  
The current implementation of DRISEE is not suitable for amplicon sequencing data, 
or other samples that may contain natural duplicated sequences (e.g. eukaryotic DNA 
where gene duplication and other forms of highly repetitive sequences are common) 
in high abundance.	
  

	
  
2. Kmer profiles	
  
k-mer digests are an annotation-independent method to describe sequence datasets 
that can support inferences about genome size and coverage.  Here the overview page 
presents several visualizations of the kmer spectrum of each dataset, evaluated at 
k=15.	
  
Three visualizations provided of the kmer spectrum are the kmer spectrum, kmer rank 
abundance, and ranked kmer consumed.   All three graphs represent the same 
spectrum, but in different ways.  The kmer spectrum plots the number of distinct 
kmers against kmer coverage.  The kmer coverage is equivalent to number of 
observations of each kmer.   The kmer rank abundance plots the relationship between 
kmer coverage and the kmer rank–answering the quesiton “what is the coverage of the 
nth most-abundant kmer.”   Ranked kmer consumed plots the largest fraction of the 
data explained by the nth most abundant kmers only.	
  

	
  
3. Nucleotide histograms	
  
These graphs show the fraction of base pairs of each type (A, C, G, T, or ambiguous 
base “N”) at each position starting from the beginning of each read. Amplicon 
datasets  (see Figure 3) should show biased distributions of bases at each position, 
reflecting both conservation and variability in the recovered sequences:	
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Figure 3. Nucleotide histogram with biased distributions.	
  
	
  

Shotgun datasets should have roughly equal proportions of A, T, G and C basecalls, 
independent of position in the read as shown in Figure 4. 	
  

	
  
Figure 4. Nucleotide histogram showing ideal distributions.	
  

	
  
Vertical bars at the beginning of the read indicate untrimmed (see Figure 5), 
contiguous barcodes. Gene calling via FragGeneScan (Rho, 2010) and RNA 
similarity searches are not impacted by the presence of barcodes. However if a 
significant fraction of the reads is consumed by barcodes it reduces the biological 
information contained in the reads.	
  

	
  

	
  
Figure 5. Nucleotide histogram with untrimmed barcodes.	
  
	
  

If a shotgun dataset has clear patterns in the data (see Figure 6), this indicates likely 
contamination with artificial sequences.  This dataset had a large fraction of adapter 
dimers:	
  

	
  



8	
  

	
  

	
  
Figure 6. Nucleotide histogram with contamination.	
  

	
  

SCREENING:  The pipeline provides the option to remove reads that are near-exact 
matches to the genomes of a handful of model organisms, including fly, mouse, cow, 
and human.   The screening stage uses bowtie (Langmead, Trapnell, Pop & Salzberg, 
2009) and only reads that do not match the model organisms pass into the next stage 
of the annotation pipeline. 	
  

GENE PREDICTION and AA Clustering: While the previous version of MG-RAST 
used similarity-based gene predictions, this approach is significantly more expensive 
computationally than de-novo gene prediction.  After an in depth investigation of tool 
performance (Trimble, Keegan, D’Souza, Wilke, Wilkening, Gilbert, et al., 2012), we 
have moved to a machine learning approach: FragGeneScan (Rho et al., 2010). Using 
this approach we can now predict coding regions in DNA sequences of 75 bp and 
longer. Our novel approach also enables the analysis of user provided assemblies. 
MG-RAST builds clusters of proteins at the 90% identity level using the uclust (Edgar 
2010) implementation in QIIME (Caporaso, Kuczynski, Stombaugh, Bittinger, 
Bushman, Costello, et al., 2010) preserving the relative abundances. These clusters 
greatly reduce the computational burden of comparing all pairs of short reads while 
clustering at 90% identity preserves sufficient biological signal. Once created, a 
representative (the longest sequence) for each cluster is subjected to similarity 
analysis, instead of BLAST we use sBLAT, an implementation of the BLAT 
algorithm (Kent, 2002), which we parallelized using OpenMPI (Gabriel, Fagg, 
Bosilca, Angskun, Dongarra, Squyres et al., 2004) for this work. 	
  

Once the similarities are computed we present reconstructions of the species content 
of the sample based on the similarity results. We reconstruct the putative species 
composition of the sample by looking at the phylogenetic origin of the database 
sequences hit by the similarity searches.	
  
PROTEIN IDENTIFICATION and ANNOTATION MAPPING: Sequence similarity 
searches are computed against a protein database derived from the M5NR (Wilke, 
Harrison Wilkening, Field, Glass, Kyrpides et al., 2011), which provides a non-
redundant integration of many databases (GenBank (Benson, Cavanaugh, Clark, 
Karsch-Mizrachi, Lipman, Ostell et al., 2012), SEED (Overbeek, Begley, Butler, 
Choudhuri, Chuang, Cohoon et al., 2005), IMG (Markowitz,	
  Chen,	
  Palaniappan,	
  
Chu,	
  Szeto,	
  Grechkin	
  et	
  al.,	
  2012), KEGG (Kanehisa, Goto, Sato, Furmichi & 
Tanabe, 2012), and eggNOGs). Unlike MG-RAST 2, which relied solely on SEED, 
MG-RAST now supports many complementary views into the data with one 
similarity search, including different functional hierarchies: SEED subsystems, IMG 
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terms, COG (Tatusov,	
  Fedorova,	
  Jackson,	
  Jacobs,	
  Kiryutin,	
  Koonin	
  	
  et	
  al.,	
  
2003)/eggNOGs (Jensen,	
  Julien,	
  Kuhn,	
  von	
  Mering,	
  Muller,	
  Doerks	
  et	
  al.,	
  2008) 
and ontologies such as GO (Gene	
  Ontology	
  Consortium, 2013). Users can easily 
change views without recomputation. For example  COG and KEGG views can be 
displayed, which both show the relative abundances of histidine biosynthesis in a 
dataset of four cow rumen metagenomes. 	
  

After similarity computation, a number of additional pipeline stages are executed, 
transforming the data into several representations that enable rapid query and or 
comparison.	
  

Additional improvements	
  
Adding the ability for users to encode rich information about each sample is another 
key improvement in MG-RAST 3. By using the standards developed by the Genomics 
Standards Consortium we have enabled users to contribute GSC (Field, Amaral-
Zettler, Cochrane, Cole, Dawyndt, Garrity et al., 2011) standard formatted metadata. 
Specifically we use MIxS (Minimum information about any (x) sequence (MIxS) and 
MIMARKS (Minimum Information about a MARKer gene Survey) specifications 
(Yilmaz,	
  Kottmann,	
  Field,	
  Knight,	
  Cole,	
  Amaral-­‐Zettler et al., 2011) to store 
metadata and to search for related data sets in terms of geographic location, 
biochemical environment, or other contextual data. 	
  

This enables data discovery by end-users using contextual metadata using searches 
like  “retrieve soil samples from the continental U.S.”. If the users have added 
additional metadata (domain specific extension) additional queries are enabled e.g. 
“restrict the results to soils with a specific pH”.	
  

We have also enabled users to extract abundance profile data via the use of the BIOM 
format (McDonald, Clemente, Kuczynski, Rideout, Stombaugh, Wendel et al., 2012). 
This enables downstream processing with BIOM compliant tools e.g. QIIME 
(Caporaso et al., 2010).	
  

	
  

3. WEB INTERFACE	
  
The MG-RAST system provides a rich web user interface that covers all aspects of 
the metagenome analysis from data upload to ordination analysis. The web interface 
can also be used for data discovery. Metagenomic datasets can be easily selected 
individually or on the basis of filters such as technology (including read length), 
quality, sample type, and keyword, with dynamic filtering of results based on 
similarity to known reference proteins or taxonomy. For example, a user might want 
to perform a search such as (phylum eq “actinobacteria” and function in “KEGG 
pathway Lysine Biosynthesis” and sample in “Ocean”) to extract sets of reads 
matching the appropriate functions and taxa across metagenomes. The results can be 
displayed in familiar formats, including bar charts, trees that incorporate abundance 
information, heatmaps, or principal components analyses, or exported in tabular form. 
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The raw or processed data can be recovered via download pages. Metabolic 
reconstructions based on mapping to KEGG pathways are also provided. 	
  

Sample selection is crucial for understanding large-scale patterns when multiple 
metagenomes are compared. Accordingly, MG-RAST supports MIxS and MIMARKS 

(Yilmaz, 2011) (as well as domain-specific plug-ins for specialized environments not 
extending the minimal GSC standards); several projects, including TerraGenome, 
HMP, TARA, and EMP, use these GSC standards, enabling standardized queries that 
integrate new samples into these massive datasets. An example query using the 
metadata browser, enabling the user to interrogate the existing pool of public data sets 
for a Biome of interest (e.g. Hot springs) and performing comparisons and a search 
for organisms encoding a specific gene function (e.g. Beta-lactamase or Aldo/keto 
reductase; see Figure 7).	
  

	
  
Figure  7: a) Using the web interface for a search of metagenomes for microbial mats in hotsprings 
(GSC-MIMS-Keywords Biome=”hotspring; microbial mat”) we find 6 metagenomes (refs: 4443745.3, 
4443746.3, 4443747.3, 4443749.3, 4443750.3, 4443762.3). b) Initial comparison reveals some 
differences in protein functional class abundance (using SEED subsystems level 1). c) From the PCoA 
plot using normalized counts of functional SEED subsystem based functional annotations (level 2) and 
Bray-Curtis as metric, we attempt to find differences between two similar datasets (MG-RAST-IDs: 
444749.3, 4443762.3). d) Using exported tables with functional annotations and taxonomic mapping 
we analyze the distribution of organisms observed to contain Beta-lactamase and plot the abundance 
per species from to distinct samples..	
  

	
  

	
  

The Upload and Metadata pages	
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Data and Metadata can be uploaded in the form of spreadsheets along with the 
sequence data using both the ftp and the http protocols. The web uploader will 
automatically split larger files and allow parallel uploads. 	
  

MG-RAST supports datasets that are augmented with rich metadata using the 
standards and technology developed by the GSC.  	
  

Each user has a temporary storage location inside the MG-RAST system. This “inbox” 
provides temporary storage for data and metadata to be submitted to the system. 
Using the inbox users can extract compressed files, convert a number of vendor 
specific formats to MG-RAST submission compliant formats and obtain an MD5 
checksum for verifying that transmission to MG-RAST has not altered the data.	
  

The web uploader has been optimized for large data sets of over 100GBp 
(gigabasepairs) often resulting in file sizes in excess of 150 GB. 	
  

Metadata enabled data discovery 	
  
The Metagenome Browse page list all data sets visible to the user.  Datasets in MG-
RAST are private by default, but the submitting user has the option to share datasets 
with specific users or to make datasets public. This page also provides an overview of 
the non-public data sets submitted by the user or shared with them. Figure 8 shows 
the metagenome browse table, which provides an interactive graphical means to 
discover data based on technical data (e.g. sequence type or data set size) or metadata 
(e.g. location or biome).	
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Figure 8. The Metagenome Browser page enables sorting and data search. Users can select the 
metadata they wish to view and search. Some of the metadata is hidden by default and can be viewed 
by clicking on the ‘…’ header on the right side of the table and selecting the desired columns, this can 
also be used to hide unwanted columns.	
  

	
  

The Overview Page	
  
MG-RAST automatically creates an individual summary page for each dataset. This 
“metagenome overview page” provides a summary of the annotations for a single data 
set.  The page is made available by the automated pipeline once the computation is 
finished.	
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The page is intended as a single point of reference for metadata, quality and data. It 
also provides an initial overview of the analysis results for individual data sets with 
default parameters. Further analysis are available on the Analysis page.	
  

	
  

Technical detail on the overview page	
  
The Overview page provides the MG-RAST ID for a data set, a unique identifier that 
is usable as accession number for publications. Additional information like the Name 
of the submitting PI and organization and a user provided metagenome name are 
displayed at the top of the page as well. A static URL for linking to the system that 
will be stable across changes to the MG-RAST web interface is provided as additional 
information (Figure 9).	
  

	
  
Figure 9: Top of the metagenome overview page.	
  

We provide an automatically generated paragraph of text describing the submitted 
data and the results computed by the pipeline. Via the project information we display 
additional information provided by the data submitters at the time of submission or 
later. 	
  

	
  
Figure 10: Sequences to the pipeline are classified into one of 5 categories.  grey = failed the QC, red 
= unknown sequences, yellow = unknown function but protein coding, green = protein coding with 
known function and blue = ribosomal RNA. For this example just under 20% of the sequences were 
either filtered by QC or failed to be recognized as either protein coding or ribosomal. 	
  

One of the key diagrams in MG-RAST is the sequence breakdown pie chart (Figure 
10) classifying the submitted sequences submitted into several categories according to 
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their annotation status. As detailed in the description of the MG-RAST v3 pipeline 
above, the features annotated in MG-RAST are protein coding genes and ribosomal 
proteins.	
  

It should be noted that for performance reasons no other sequence features are 
annotated by the default pipeline. Other feature types e.g. small RNAs or regulatory 
motifs (e.g. CRISPRS (Bolotin, Quinquis, Sorokin & Ehrlich, 2005)) will not only 
require significantly higher computational resources but also are frequently not 
supported by the unassembled short reads that comprise the vast majority of today’s 
metagenomic data in MG-RAST.	
  

The overview page also provides metadata (data describing data) for each data set to 
the extent that data has been made available.  Metadata enables other researchers to 
discover datasets and compare annotations.  MG-RAST requires standard metadata 
for data sharing and data publication. This is implemented using the standards 
developed by the Genomics Standards Consortium. Figure 11 shows the metadata 
summary for a data set.	
  

	
  
Figure 11: The information from the GSC MIxS checklist providing minimal metadata on the sample.	
  

All metadata stored for a specific dataset is available in MG-RAST, we merely 
display a standardized subset in this table. A link at the bottom of the table (“more 
metadata”) provides access to a table with the complete metadata. This enables users 
to provide extended metadata going beyond the GSC minimal standards. A 
mechanism to provide community consensus extensions to the minimal checklists are 
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the environmental packages are explicitly encouraged, but not required when using 
MG-RAST.	
  

Metagenome	
  QC	
  
The analysis flowchart and analysis statistics provide an overview of the number of 
sequences at each stage in the pipeline. (Figure 12).  The text block next to the 
analysis flowchart presents the numbers next to their definitions. 	
  

	
  
Figure 12. The analysis flowchart provides an overview of the fractions of sequences “surviving” the 
various steps of the automated analysis. In this case about 44% of sequences were filtered during 
quality control. From the remaining 66,764,893 sequences, 58.9% were predicted to be protein coding 
and 10.4% hit ribosomal RNA. From the predicted proteins, 79.8% could be annotated with a putative 
protein function. Out of 55,748,499 annotated proteins, 44,493,781 have been assigned to a functional 
classification (SEED, COG, eggNOG, KEGG).	
  

Technical	
  Data	
  
This part provides a quick links to a general statistical overview of the different 
analysis steps performed (see Analysis flowchart),  a comprehensive list of all 
metadata for the data set, sequence length and GC distributions and a breakdown of 
blat hits per data source (e.g. hits to RefSeq (Pruitt, Tatusova & Maglott, 2007) , 
UniProt (UniProt Consortium, 2013) or SEED (Overbeek et al., 2005)).	
  

The Analysis Statistics and Analysis Flowchart provide sequence statistics for the 
main steps in the pipeline from raw data to annotation, describing the transformation 
of the data between steps.	
  

Sequence length and GC histograms display the distribution before and after quality 
control steps.	
  

Metadata is presented in a searchable table which contains contextual metadata 
describing sample location, acquisition, library construction and sequencing using 
GSC compliant metadata. All metadata can be downloaded from the table.  	
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Taxonomic and functional information on the overview page	
  
	
  

Organism Breakdown	
  
The taxonomic hit distribution display breaks down taxonomic units into a series of 
pie charts of all the annotations grouped at various taxonomic ranks (Domain, Phylum, 
Class, Order, Family, Genus).  The subsets are selectable for downstream analysis, 
this also enables downloads of subsets of reads, e.g. those hitting a specific taxonomic 
unit.	
  

The	
  rank	
  abundance	
  plot	
  (Figure	
  13)	
  provides	
  a	
  rank-­‐ordered	
  list	
  of	
  taxonomic	
  
units	
  at	
  a	
  user-­‐defined	
  taxonomic	
  level,	
  ordered	
  by	
  their	
  abundance	
  in	
  the	
  
annotations.	
  	
  

	
  
 Figure 13: Rank abundance plot by phylum.	
  

The rarefaction curve of annotated species richness is a plot of the total number of 
distinct species annotations as a function of the number of sequences sampled. The 
slope of the right-hand part of the curve is related to the fraction of sampled species 
that are rare.  When the rarefaction curve is flat, more intensive sampling is likely to 
yield only few additional species. The rarefaction curve is derived from the protein 
taxonomic annotations and is subject to problems stemming from technical artifacts. 
These artifacts can be similar to the ones affecting amplicon sequencing (Reeder & 
Knight 2009) but the process of inferring species from protein similarities may 
introduce additional uncertainty.	
  

Finally in this section we display an estimate of the alpha diversity based on the 
taxonomic annotations for the predicted proteins. The alpha diversity is presented in 
context of other metagenomes in the same project.	
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Functional Breakdown	
  
This section contains four pie charts providing a breakdown of the functional 
categories for KEGG (Kanehisa et al., 2012), COG (Vasudevan  et al., 2003), SEED 
Subsystems (overbeek et al., 2005) and EggNOGs (Jensen et al., 2008). Clicking on 
the individual pie chart slices will save the respective sequences to the workbench.	
  

The relative abundance of sequences per functional category can be downloaded as a 
spreadsheet and users can browse the functional breakdowns via the Krona tool 
(Onodov, Bergman & Phillippy, 2011) integrated in the page.	
  

A more detailed functional analysis, allowing the user to manipulate parameters for 
sequence similarity matches is available via the analysis page.	
  

	
  

The	
  Analysis	
  Page	
  
The MG-RAST annotation pipeline produces a set of annotations for each sample; 
these annotations can be interpreted as functional or taxonomic abundance profiles. 
The analysis page can be used to view these profiles for a single metagenome, or 
compare profiles from multiple metagenomes using various visualizations (e.g. 
heatmap) and statistics (e.g. PCoA , normalization).  	
  

The page breaks down in three parts following a typical workflow (Figure 14): 	
  

1. Selection of an MG-RAST analysis scheme, that is selection of a particular 
taxonomic or functional abundance profile mapping. For taxonomic annotations, since 
there is not always a unique mapping from hit to annotation, we provide three 
interpretations: Best Hit, Representative Hit and Lowest Common Ancestor as 
explained below. Functional annotations can either be grouped into mappings to 
functional hierarchies or displayed without a hierarchy. In addition the recruitment 
plot displays the recruitment of protein sequences against a reference genome.	
  

2. Selection of sample and parameters. This dialog allows the selection of multiple 
metagenomes which can be compared undividually, or selected and compared as 
groups. Comparison is always relative to the annotation source, e-value and percent 
identity cutoffs selectable in this section. In addition to the metagenomes available in 
MG-RAST, sets of  sequences previously saved in the workbench can be selected for 
visualization.  	
  

3. Data Visualization and Comparison. Depending on the selected profile type, the 
profiles for the metagenomes can be visualized and compared using “barcharts”, 
“trees”, spreadsheet like “tables” , “heatmaps”, “PCoA”, “rarefaction plots”, “Circular 
recruitment plot”  and KEGG maps.	
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Figure 14: Using the analysis page is a three step process. First select a profile and hit (see below) type. 
Second select a list of metagenomes and set annotation source and similarity parameters. Third chose a 
comparison.  	
  

	
  

Representative hit, best hit, and Lowest Common Ancestor 
interpretation	
  
MG-RAST searches the non-redundant M5NR and M5RNA databases in which each 
sequence is unique. These two databases are built from multiple sequence database 
sources and the individual sequences may occur multiple times in different strains and 
species (and sometimes genera) with 100% identity. In these circumstances,  choosing 
the “right” taxonomic information is not a straightforward process. 	
  

To optimally serve a number of different use cases, we have implemented three 
different ways of finding the “right” function or taxon information. This impacts the 
end-user experience as they have three different methods to choose the number of hits 
reported for a given sequence in their data set. The details on the three different 
classification functions implemented are below:	
  

Best Hit	
  

The best hit classification reports the functional and taxonomic annotation of the best 
hit in the M5NR for each feature. In those cases where the similarity search yields 
multiple same-scoring hits for a feature, we do not choose any single  “correct” label. 
For this reason we have decided to “double count” all  annotations with identical 
match properties and leave determination of truth to our users. While this approach 
aims to inform about the functional and taxonomic potential of a microbial 
community by preserving all information, subsequent analysis can be biased because 
of a single feature having multiple annotations, leading to inflated hit counts. If you 
are looking for a specific species or function in your results, the “best hit” function is 
likely what you are looking for.	
  

Representative Hit	
  

The representative hit classification selects a single unambiguous annotation for each 
feature. The annotation is based on the first hit in the homology search and the first 
annotation for that hit in our database. This makes counts additive across functional 
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and taxonomic levels and thus allows for example to compare functional and 
taxonomic profiles of different metagenomes.	
  

Lowest Common Ancestor (LCA)	
  

To avoid the problem of multiple taxonomic annotations for a single feature we 
provide taxonomic annotations based on the widely used LCA-method (lowest 
common ancestor) introduced by MEGAN (Huson, Auch, Qi & Schuster, 2007). In 
this method all hits that have a bit score close to the bit score of the best hit are 
collected. The taxonomic annotation of the feature is then determined by computing 
the LCA of all species in this set.  This replaces all taxonomic annotations from 
ambiguous hits with a single higher level annotation in the NCBI taxonomy tree.	
  

The number of hits (“occurrences of the input sequence in the database”) may be 
inflated if the “best hit” filter is used, or your favorite species might be missing 
despite a very similar sequence similarity result if using the “representative hit” 
classifier function (in fact 100% identical match to your favorite species exists).	
  

One way to consider both “representative” and “best” hit is that they over-interpret 
the available evidence, with the LCA classifier function any input sequence is only 
classified down to a trustworthy taxonomic level. While naively this seems to be the 
best function to choose in all cases as it classifies sequences to varying depths, this 
causes problems for downstream analysis tools that might rely on everything being 
classified to the same level.	
  

Normalization	
  
Normalization	
  refers	
  to	
  a	
  transformation	
  that	
  attempts	
  to	
  reshape	
  an	
  underlying	
  
distribution.	
  	
  	
  A	
  large	
  number	
  of	
  biological	
  variables	
  exhibit	
  a	
  log-­‐normal	
  
distribution,	
  meaning	
  that	
  when	
  you	
  transform	
  the	
  data	
  with	
  a	
  log	
  
transformation,	
  the	
  values	
  exhibit	
  a	
  normal	
  distribution.	
  	
  	
  Log-­‐transformation	
  of	
  
the	
  counts	
  data	
  makes	
  a	
  normalized	
  data	
  product	
  that	
  is	
  more	
  likely	
  to	
  satisfy	
  
the	
  assumptions	
  additional	
  downstream	
  tests	
  like	
  ANOVA	
  or	
  t-­‐tests.	
  	
  

Standardization	
  is	
  a	
  transformation	
  applied	
  to	
  each	
  distribution	
  in	
  a	
  group	
  of	
  
distributions	
  so	
  that	
  all	
  distributions	
  exhibit	
  the	
  same	
  mean	
  and	
  the	
  same	
  
standard	
  deviation.	
  This	
  removes	
  some	
  aspects	
  of	
  inter-­‐sample	
  variability	
  and	
  
can	
  make	
  data	
  more	
  comparable.	
  This	
  sort	
  of	
  procedure	
  is	
  analogous	
  to	
  
commonly	
  practiced	
  scaling	
  procedures,	
  but	
  is	
  more	
  robust	
  in	
  that	
  it	
  controls	
  for	
  
both	
  scale	
  and	
  location.	
  	
  

The	
  analysis	
  page	
  calculates	
  the	
  ordination	
  visualizations	
  with	
  either	
  raw	
  or	
  
normalized	
  counts,	
  at	
  the	
  user’s	
  option.	
  	
  The	
  normalization	
  procedure	
  is	
  to	
  take	
  	
  

normalized_value_i = log2(raw_counts_i + 1)	
  

And then the standardized values are calculated from the normalized values by subtracting the 
mean of each sample’s normalized values and dividing by the standard deviation of each 
sample’s normalized values.  	
  

standardized_i = (normalized_i - mean({normalized_i})) / stddev({normalized_i}) 	
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You can read more about these procedures in a number of texts - We recommend Terry 
Speed’s “Statistical Analysis of Gene Expression in Microarray Data” (ISBN1584883278).	
  

When data exhibit a non-normal, normal or unknown distribution, non-parametric tests (e.g. 
Man-Whitney or Kurskal-Wallis) should be used.   Boxplots are an easy way to check – and 
the MG-RAST analysis page provides boxplots of the standardized abundance values for 
checking the comparability of samples (Figure 15).	
  

	
  

Figure 15:  Boxplots of the abundance data for raw values (top) as well as values that have undergone 
the normalization and standardization procedure described above (bottom).  It is clear that after 
normalization and standardization, samples exhibit value distributions that are much more comparable, 
and that exhibit a normal distribution; the normalized and standardized data are suitable for analysis 
with parametric tests, the raw data are not. 	
  

	
  

Heatmap/Dendrogram	
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Figure 16: Heatmap/dendogram example in MG-RAST. The MG-RAST heatmap/dendrogram has two 
dendrograms, one indicating the similarity/dissimilarity among metagenomic samples (x axis 
dendrogram) and another to indicate the similarity/dissimilarity among annotation categories (e.g., 
functional roles; the y-axis dendrogram). 	
  
	
  
	
  
The heatmap/dendrogram (Figure 16) is a tool that allows an enormous amount of 
information to be presented in a visual form that is amenable to human interpretation.   
Dendrograms are trees that indicate similarities between annotation vectors.    The 
MG-RAST heatmap/dendrogram has two dendrograms, one indicating the 
similarity/dissimilarity among metagenomic samples (x axis dendrogram) and another 
to indicate the similarity/dissimilarity among annotation categories (e.g., functional 
roles; the y-axis dendrogram).  A distance metric is evaluated between every possible 
pair of sample abundance profiles.   A clustering algorithm (e.g ward-based 
clustering) then produces the dendrogram trees.  Each square in the heatmap 
dendrogram represents the abundance level of a single category in a single sample.  
The values used to generate the heatmap/dendrogram figure can be downloaded as a 
table by clicking on the “download” button.	
  

	
  

Barchart	
  and	
  tree	
  
The barchart and tree tools map raw or normalized abundances  onto functional or 
taxonomic hierarchies.  The barchart tool presents mapping onto the highest category 
of  a hierarchy (e.g. Domain)  and allows a drill down into the hierarchy.  In addition 
reads from a specific level can be added into the workbench.	
  

Ordination	
  
MG-RAST uses Principle Coordinate Analysis (PCoA) to reduce the dimensionality 
of comparisons of multiple samples that consider functional or taxonomic annotations. 	
  

PCoA is a well known method for dimensionality reduction of large data sets.  
Dimensionality reduction is a process that allows the complex variation found in a 
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large data sets (e.g. the abundance values of thousands of functional roles or 
annotated species across dozens of metagenomic samples) to be reduced to a much 
smaller number of variables that can be visualized as simple 2 or 3 dimensional 
scatter plots.  The plots enable interpretation of the multidimensional data in a human-
friendly presentation. Samples that exhibit similar abundance profiles (taxonomic or 
functional) group together, whereas those that differ are found further apart.  A key 
feature of PCoA based analyses is that users can compare components not just to each 
other, but to metadata recorded variables (e.g. sample pH, biome, DNA extraction 
protocol etc.) to reveal correlations between extracted variation and metadata-defined 
characteristics of the samples.  It is also possible to couple PCoA with higher 
resolution statistical methods to identify individual sample features (taxa or functions) 
that drive correlations observed in PCoA visualizations.  This can be accomplished 
with permutation based statistics applied directly to the data before calculation of 
distance measures used to produce PCoAs, or by applying conventional statistical 
approaches (e.g. ANOVA or Kruskal-Wallis test) to groups observed in PCoA based 
visualizations.	
  

Table	
  
The table tool creates a spreadsheet based abundance table that can be searched and 
restricted by the user. Tables can be generated at user-selected levels of phylogenetic 
or functional resolution.  Table data can be visualized using Krona (Ondov 2011), can 
be exported in BIOM format to be used in other tools, e.g. QIIME (Caporaso et al., 
2010), or the tables can be exported as tab-separated text.  Abundance tables serve as 
the basis for all comparative analysis tools in MG-RAST, from PCoA to heatmap-
dendrograms.	
  

KEGG maps	
  
The KEGG map tool allows the visual comparison of predicted metabolic pathways in 
metagenomic samples. It maps the abundance of identified enzymes onto a KEGG 
(Kanehisa et al., 2012) map of functional pathways. Metagenomes can be assigned 
into one of two groups and those groups can be visually compared.	
  

	
  

4. How to drill down using the 
workbench	
  
One of the new features of MGRAST v3 is the workbench. It is the main mechanism 
for exchanging subsets of data between analysis views. It also allows you to 
download the FASTA files of a selection of proteins.	
  

When you initially go to the analysis page, your workbench will be empty. It is 
displayed as the leftmost tab in the data tabular view. So how do you get data into the 
workbench? There are two simple ways to select data subsets – from any generated 
table or from the drilldown of a barchart.	
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Try this example: Start by selecting the lean and obese mouse cecum samples  (MG-
RAST IDs 4440463.3 and 4440464.3) (Turnbaugh, Ley, Mahowald, Magrini, Mardis 
& Gordon, 2006) in the data selection and creating a table. To do this go to the 
analysis page and select the analysis view ‘Organism Classification’. Expand the 
metagenome selection by clicking the plus symbol next to metagenomes. Select 
public from the dropdown-box (to view only public data sets) and type ‘mouse‘ into 
the filter box. Select the two samples and click the button with the right arrow, then 
the ok button. The default data visualization is ‘table’, so you can click the ‘generate’ 
button (Figure 17).	
  

	
  
Figure 17:  Screenshot of the Analysis Page. Note that users can search and select metagenomes to 
analyze, select the annotation sources and parameters to set, along with the analysis and visualization 
they want to perform.	
  

After a short wait, a new tab will appear in the tabview below (see Figure 20), 
showing the data table with organism classifications for the two samples. The last 
column of this table will have a button labeled ‘to workbench‘ as the column header. 
Each cell in that column will have a checkbox. Checking a checkbox and clicking the 
‘to workbench‘-button will send the proteins identified by that row to the workbench 
(Figure 19). Note that you only have one workbench and putting a new set of proteins 
into it will replace the current content. So what if I want to select all Bacteria, do I 
really need to click through all those checkboxes? No – you can use the grouping 
feature of the table, so you only have to click one checkbox per metagenome.	
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Above the table you will find a dropdown-box labeled ‘group table by’ (Figure 18). 
Select ‘domain‘ and the table will be grouped, so there is only one row per 
metagenome and domain.	
  

	
  
Figure 18: Using the tables to group results.	
  

Now check the two boxes in the ‘Bacteria‘ rows and click the ‘to workbench‘ button.	
  

	
  
Figure 19: Use the table to select results you want to add to your workbench for further analyses.	
  

A pop-up message will appear, telling you how many proteins have been sent to the 
workbench. If you take a look at the tabular view now, you will notice that the 
workbench tab shows the number of proteins it currently contains. If you click on that 
tab, you will get information about what the workbench contains. On this tab you will 
also find a ‘download as FASTA‘ button,	
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Figure 20:  View of the workbench with the summary of the proteins that have been added.	
  

Aside from being able to download the sequences of your selected proteins, you can 
also use them to generate other visualizations. This includes switching from organism 
to functional classification. To to this, simply check the ‘use proteins from 
workbench‘ checkbox in the data selection when generating a new visualization, e.g. a 
circular tree  using the proteins we just buffered.	
  

The table is not the only visualization that allows to put a subselection into the 
workbench. You can also use the barchart to do this (Figure 21). Simply click on the 
‘to workbench’ button next to the headline of a drilldown. Note that you cannot put 
the topmost barchart into the workbench, as it is not yet a subselection of proteins.	
  

 	
  

	
  
Figure 21: In addition to the results table, users can download results or add to their workbench from 
barcharts.    	
  

	
  

2.6 Downloads	
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The workbench feature stores sub-selections of data and allows those to be used as 
input for further selection or displays, e.g. select all E. coli reads and then display the 
functional categories present just in E. coli reads across multiple data sets. In addition 
the workbench allows downloading the annotated reads for the sub-selection stored in 
the workbench as fasta (Figure 22).	
  

	
  
Figure 22: The workbench facilitates the download of selected reads using the name space of the 
selection.	
  

Once processing data sets in MG-RAST is finished a download page is created for the 
project. On this page all data products created during the computation are made 
available as files. In addition, datasets which have been published in MG-RAST have 
links to an ftp site at the top of this page where you can download additional 
information.	
  

	
  

Viewing Evidence	
  
For	
  individual	
  proteins,	
  the	
  MG-­‐RAST	
  page	
  allows	
  users	
  to	
  retrieve	
  the	
  sequence	
  
alignments	
  underlying	
  the	
  annotation	
  transfers	
  (see	
  Figure	
  23).	
  Using	
  the	
  M5NR	
  
(Wilke,	
  2011)	
  technology	
  users	
  can	
  retrieve	
  alignments	
  against	
  the	
  database	
  of	
  
interest	
  with	
  no	
  additional	
  overhead.	
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Figure 23: BLAT hit details with alignment.	
  

	
  

5.	
  MG-­‐RAST	
  DOWNLOADS	
  
One of the critical insights when developing MG-RAST version 3 was the need to 
make a maximum number of data products available for download for downstream 
analysis. For this purpose we have created the download page that contains all 
automatically created data products in a single location for each metagenome. In 
addition a global download page provides access to all public data sets grouped by 
projects.	
  

Below we list the data products available on the download page for each metagenome 
using a specific example (MG-RAST ID: 4465825.3).	
  

Uploaded File(s)	
  
DNA (4465825.3.25422.fna)	
  
Uploaded nucleotide sequence data in FASTA format.	
  

Preprocessing	
  
Depending on the options chosen, the preprocessing step filters sequences based on 
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length, number of ambiguous bases and quality values if available.	
  
passed, DNA (4465825.3.100.preprocess.passed.fna)	
  

A FASTA formatted file containing the sequences which were accepted and will be 
passed on to the next stage of the analysis pipeline.	
  

removed, DNA (4465825.3.100.preprocess.removed.fna)	
  

A FASTA formatted file containing the sequences which were rejected and will not 
be passed on to the next stage of the analysis pipeline.	
  

Dereplication	
  
The optional dereplication step removes redundant “technical replicate” sequences 
from the metagenomic sample. Technical replicates are identified by binning reads 
with identical first 50 base-pairs. One copy of each 50-base-pair identical bin is 
retained.	
  
passed, DNA (4465825.3.150.dereplication.passed.fna)	
  

A FASTA formatted file containing one sequence from each bin which will be 
passed on to the next stage of the analysis pipeline.	
  

removed, DNA (4465825.3.150.dereplication.removed.fna)	
  

A FASTA formatted file containing the sequences which were identified as 
technical replicates and will not be passed on to the next stage of the analysis 
pipeline.	
  

Screening	
  
The optional screening step screens reads against model organisms using bowtie to 
remove reads which are similar to the genome of the selected species.	
  
passed, DNA (4465825.3.299.screen.passed.fna)	
  

A FASTA formatted file containing the reads which which had no similarity to the 
selected genome and will be passed on to the next stage of the analysis pipeline.	
  

Prediction of protein coding sequences	
  
Coding regions within the sequences are predicted using FragGeneScan, an ab-
initio prokaryotic gene calling algorithm. Using a hidden Markov model for coding 
regions and non-coding regions, this step identifies the most likely reading frame 
and translates nucleotide sequences into amino acids sequences. The predicted 
coding regions, possibly more than one per fragment, are called features.	
  
coding, Protein (4465825.3.350.genecalling.coding.faa)	
  

A amino-acid sequence FASTA formatted file containing the translations of the 
predicted coding regions.	
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coding, DNA (4465825.3.350.genecalling.coding.fna)	
  

A nucleotide sequence FASTA formatted file containing the predicted coding 
regions.	
  

RNA Clustering	
  
Sequences from step 2 (before dereplication) are pre-screened for at least 60% 
identity to ribosomal sequences and then clustered at 97% identity using UCLUST. 
These clusters are checked for similarity against the ribosomal RNA databases 
(Greengenes, LSU, SSU, and RDP).	
  
rna97, DNA (4465825.3.440.cluster.rna97.fna)	
  

A FASTA formatted file containing sequences that have at least 60% identity to 
ribosomal sequences and are checked for RNA similarity.	
  

rna97, Cluster (4465825.3.440.cluster.rna97.mapping)	
  

A tab-delimited file that identifies the sequence clusters and the sequences that 
comprise them.	
  

The columns making up each line in this file are:	
  

1 Cluster ID, e.g. rna97_998	
  
2 Representative read ID, e.g. 11909294	
  
3 List of IDs for other reads in the cluster, e.g. 11898451,11944918	
  
4 List of percentage identities to the representative read sequence, e.g. 

97.5%,100.0%	
  

RNA similarities	
  
The two files labelled ‘expand’ are comma- and semicolon- delimited files that 
provide the mappings from md5s to function and md5s to taxonomy:	
  
annotated, Sims (4465825.3.450.rna.expand.lca)	
  

annotated, Sims (4465825.3.450.rna.expand.rna)	
  

Packaged results of the blat search against all the DNA databases with md5 value of 
the database sequence hit followed by sequence or cluster ID, similarity 
information, annotation, organism, database name.	
  

raw, Sims (4465825.3.450.rna.sims)	
  

This is the similarity output from BLAT. This includes the identifier for the query 
which is either the FASTA id or the cluster ID, and the internal identifier for the 
sequence that it hits.	
  

The fields are in BLAST m8 format:	
  

1 Query id (either fasta ID or cluster ID), e.g. 11847922	
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2 Hit id, e.g. lcl|501336051b4d5d412fb84afe8b7fdd87	
  
3 percentage identity, e.g. 100.00	
  
4 alignment length, e.g. 107	
  
5 number of mismatches, e.g. 0	
  
6 number of gap openings, e.g. 0	
  
7 q.start, e.g. 1	
  
8 q.end, e.g. 107	
  
9 s.start, e.g. 1262	
  
10 s.end, e.g. 1156	
  
11 e-value, e.g. 1.7e-54	
  
12 score in bits, e.g. 210.0	
  

	
  
filtered, Sims (15:04 4465825.3.450.rna.sims.filter)	
  
This is a filtered version of the raw Sims file above that removes all but the best hit 
for each data source.	
  

Gene Clustering	
  
Protein coding sequences are clustered at 80% identity with UCLUST. This process 
does not remove any sequences but instead makes the similarity search step easier. 
Following the search, the original reads are loaded into MG-RAST for retrieval on-
demand.	
  
	
  

aa90, Protein (4465825.3.550.cluster.aa90.faa)	
  

An amino acid sequence FASTA formatted file containing the translations of one 
sequence from each cluster (by cluster ids starting with aa90_) and all the 
unclustered (singleton) sequences with the original sequence ID.	
  

aa90, Cluster (4465825.3.550.cluster.aa90.mapping)	
  

A tab-separated file in which each line describes a single cluster.	
  

The fields are:	
  

1 Cluster ID, e.g. aa90_3270	
  
2 protein coding sequence ID including hit location and strand, e.g. 

11954908_1_121_+	
  
3 additional sequence ids including hit location and strand, e.g. 

11898451_1_119_+,11944918_19_121_+	
  
4 sequence % identities, e.g. 94.9%,97.0%	
  

Protein similarities	
  
annotated, Sims (4465825.3.650.superblat.expand.lca)	
  
The expand.lca file decodes the md5 to the taxonomic classification it is annotated 
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with.	
  

The format is:	
  

1 md5(s), e.g. 
cf036dfa9cdde3a8a4c09d7fabfd9ba5;1e538305b8319dab322b8f28da82e0a1	
  

2 feature id (for singletons) or cluster id of hit including hit location and 
strand, e.g. 11857921_1_101_-	
  

3 alignment %, e.g. 70.97;70.97	
  
4 alignment length, e.g. 31;31	
  
5 E-value, e.g. 7.5e-05;7.5e-05	
  
6 Taxonomic string, e.g. Bacteria;Actinobacteria;Actinobacteria 

(class);Coriobacteriales;Coriobacteriaceae;Slackia;Slackia exigua;-	
  
	
  
annotated, Sims (4465825.3.650.superblat.expand.protein)	
  
Packaged results of the blat search against all the protein databases with md5 value 
of the database sequence hit followed by sequence or cluster ID, similarity 
information, functional annotation, organism, database name.	
  

Format is:	
  

1 md5 (identifier for the database hit), e.g. 
88848aa7224ca2f3ac117e7953edd2d9	
  

2 feature id (for singletons) or cluster ID for the query, e.g. aa90_22837	
  
3 alignment % identity, e.g. 76.47	
  
4 alignment length, e.g. 34	
  
5 E-value, e.g. 1.3e-06	
  
6 protein functional label, e.g. SsrA-binding protein	
  
7 Species name associated with best protein hit, e.g. Prevotella bergensis 

DSM 17361 RefSeq 585502	
  
	
  
raw, Sims (4465825.3.650.superblat.sims)	
  
Blat output with sequence or cluster ID, md5 value for the sequence in the database 
and similarity information.	
  

filtered, Sims (4465825.3.650.superblat.sims.filter)	
  

Blat output filtered to take only the best hit from each data source.	
  

	
  

6. DISCUSSION	
  
We have described MG-RAST, a community resource for the analysis of 
metagenomic sequence data. We have developed a new pipeline and environment for 
automated analysis of shotgun metagenomic data, as well as a series of interactive 
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tools for comparative analysis. The pipeline is also being used for the analysis of 
metatranscriptome data as well as amplicon data of various kinds. This service is 
being used by thousands of users worldwide, many contributing their data and 
analysis results to the community. We believe that community resources, such as 
MG-RAST, will fill a vital role in the bioinformatics ecosystem in the years to come. 	
  

	
  

MG-RAST has become a community clearinghouse for metagenomic data and 
analysis, with over 12,000 public data sets that can be freely used. Because analysis 
was performed in a uniform way, these data sets can be used as building blocks for 
new comparative analysis; so long as new data sets are analyzed similarly, results are 
robustly comparable between new and old data set analysis. These data sets (and the 
resulting analysis data products) are made available for download and reuse as well. 	
  

Community resources like MG-RAST provide an interesting value proposition to the 
metagenomics community: First, it enables low-cost meta-analysis. Users utilize the 
data products in MG-RAST as a basis for comparison without the need to re-analyze 
every data set used in their studies. The high computational cost of analysis 
(Wilkening, Wilke, Desai & Meyer, 2009) cite Wilkening) makes pre-computation a 
prerequisite for large scale meta-analyses. In 2001, Angiuli et al., determined the real 
currency cost of re-analysis for the over 12,000 data sets openly available on MG-
RAST to be in excess of 30 million US-dollars if Amazon’s EC2 platform is used 
(Angiuoli, Matalka, Gussman, Galens, Vangala, Riley, et al. 2011). This figure 
doesn’t consider the 66,000 private data sets that have been analyzed with MG-RAST. 	
  

Second, it provides incentives to the community to adopt standards, both in terms of 
metadata and analysis approaches. Without this standardization, data products aren’t 
readily reusable, and computational costs quickly become unsustainable. We are not 
arguing that a single analysis is necessarily suitable for all users, rather, we are 
pointing out that if one particular type of analysis is run for all data sets, the results 
can be efficiently reused, amortizing costs.  Open access to data and analyses foster 
community interactions that make it easier for researchers’ efforts to achieve 
consensus with respect to establishing best practises as well as identifying methods 
and analyses that could provide misleading results. 	
  

Third, community resources drive increased efficiency and computational 
performance. Community resources consolidate the demand for analysis resources 
sufficiently to drive innovation in algorithms and approaches. Due to this demand, the 
MG-RAST team has needed to scale the efficiency of their pipeline by a factor of 
nearly 1000 over the last four years. This drive has caused improvements in gene 
calling, clustering, sequence quality analysis, as well as many other areas. In less 
specialized groups with less extreme computational needs, this sort of efficiency gain 
would be difficult to achieve. Moreover, the large quantities of data sets that flow 
through the system have forced the hardening of the pipeline against a large variety of 
sequence pathology types that wouldn’t be readily observed in smaller systems. 	
  

We believe that our experiences in the design and operation of MG-RAST are 
representative of bioinformatics as a whole. The community resource model is critical 
if we are to benefit from the exponential growth in sequence data. This data has the 
potential to enable new insights into the world around us, but only if we can analyze it 
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effectively. It is only due to this approach that we have been able to scale to the 
demands of our users effectively, analyzing over 200 billion sequences thus far. 	
  

We note that scaling to the required throughput by adding hardware to the system or 
simply renting time using an unoptimized pipeline on e.g. Amazon’s EC2 machine 
would not be economically feasible. The real currency cost on EC2 for the data 
currently analyzed in MG-RAST (26 Terabasepairs) would be in excess of 100 
million US dollars using an unoptimized workflow like CLOVR (Angiuoli et al., 
2011).	
  

	
  

All of MG-RAST is open source and available on https://github.com/MG-RAST	
  

7. FUTURE WORK	
  
While MG-RAST v3 is a substantial improvement over prior systems, much work 
remains to be done. Data set sizes continue to increase at an exponential pace. 
Keeping up with this change remains a top priority, as metagenomics users continue 
to benefit from increased resolution of microbial communities. Upcoming versions of 
MG-RAST will include: (1) mechanisms for speeding pipeline up using data 
reduction strategies that are biologically motivated; (2) opening up the data ecosystem 
via an API that will enable third-party development and enhancements; (3) providing 
distributed compute capabilities using user-provided resources; as well as (4) 
providing virtual integration of local data sets to allow comparison between local data 
and shared  data without requiring full integration. 	
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11. Figure Legends	
  
Figure 1. Overview of processing pipeline in (a) MG-RAST 2 and (b) MG-RAST 3. 
In the old pipeline, metadata was rudimentary, compute steps were performed on 
individual reads on a 40-node cluster that was tightly coupled to the system, and 
similarities were computed by BLAST to yield abundance profiles that could then be 
compared on a per-sample or per pair basis. In the new pipeline, rich metadata can be 
uploaded, normalization and feature prediction are performed, faster methods such as 
BLAT are used to compute similarities, and the resulting abundance profiles are fed 
into downstream pipelines on the cloud to perform community and metabolic 
reconstruction and to allow queries according to rich sample and functional metadata.	
  

Figure 2. Details of the analysis pipeline for MG-RAST version 3.x.	
  

Figure 3. Nucleotide histogram with biased distributions.	
  

Figure 4. Nucleotide histogram showing ideal distributions.	
  

Figure 5. Nucleotide histogram with untrimmed barcodes.	
  

Figure 6. Nucleotide histogram with contamination.	
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Figure 7.  a) Using the web interface for a search of metagenomes for microbial mats 
in hotsprings (GSC-MIMS-Keywords Biome=”hotspring; microbial mat”) we find 6 
metagenomes (refs: 4443745.3, 4443746.3, 4443747.3, 4443749.3, 4443750.3, 
4443762.3). b) Initial comparison reveals some differences in protein functional class 
abundance (using SEED subsystens level 1). C) From the PCoA plot using 
normalized counts of functional SEED subsystem based functional annotations (level 
2) and Bray-Curtis as metric, we attempt to find differences between two similar 
datasets (MG-RAST-IDs: 444749.3, 4443762.3). d) Using exported tables with 
functional annotations and taxonomic mapping we analyze the distribution of 
organisms observed to contain Beta-lactamase and plot the abundance per species for 
two distinct samples.	
  

Figure 8. The Metagenome Browser page enables sorting and data search. Users can 
select the metadata they wish to view and search. Some of the metadata is hidden by 
default and can be viewed by clicking on the ‘…’ header on the right side of the table 
and selecting the desired columns, this can also be used to hide unwanted columns.	
  

Figure 9. Top of the metagenome overview page.	
  

Figure 10. Sequences to the pipeline are classified into one of 5 categories.  grey = 
failed the QC, red = unknown sequences, yellow = unknown function but protein 
coding, green = protein coding with known function and blue = ribosomal RNA. For 
this example over 50% of sequences were either filtered by QC or failed to be 
recognized as either protein coding or ribosomal.	
  

Figure 11. The information from the GSC MIxS checklist providing minimal 
metadata on the sample. 	
  

Figure 12. The analysis flowchart provides an overview of the fractions of sequences 
“surviving” the various steps of the automated analysis. In this case about 20% of 
sequences were filtered during quality control. From the remaining 37,122,128 
sequences, 53.5% were predicted to be protein coding, 5.5% hit ribosomal RNA. 
From the predicted proteins, 76.8% could be annotated with a putative protein 
function. Out of 32 million annotated proteins, 24 million have been assigned to a 
functional classification (SEED, COG, EggNOG, KEEG), representing 84% of the 
reads.	
  

Figure 13. Organism breakdown: Sample rank abundance plot by phylum.	
  

Figure 14. Using the analysis page is a three step process. First select a profile and hit 
(see below) type. Second select a list of metagenomes and set annotation source and 
similarity parameters. Third chose a comparison.  	
  

Figure 15.  Boxplots of the abundance data for raw values (top) as well as values that 
have undergone the normalization and standardization procedure described above 
(bottom).  It is clear that after normalization and standardization, samples exhibit 
value distributions that are much more comparable, and that exhibit a normal 
distribution; the normalized and standardized data are suitable for analysis with 
parametric tests, the raw data are not.	
  

Figure 16. Heatmap/dendogram example in MG-RAST. The MG-RAST 
heatmap/dendrogram has two dendrograms, one indicating the similarity/dissimilarity 
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among metagenomic samples (x axis dendrogram) and another to indicate the 
similarity/dissimilarity among annotation categories (e.g., functional roles; the y-axis 
dendrogram).	
  
	
  
Figure 17.  Screenshot of the Analysis Page and orkbench tab. Note that users can 
search and select metagenomes to analyze, the annotation cources and parameters to 
set, along with the analysis and visualization they want to perform.	
  
	
  
Figure 18. Using the tables to group results.	
  

Figure 19. Use the table to select results you want to add to your workbench for 
further analyses.	
  

Figure 20.  View of the workbench with the summary of the proteins that have been 
added.	
  

Figure 21. In addition to the results table, users can download results or add to their 
workbench from barcharts.	
  

Figure 22. The workbench facilitates the download of selected reads using the name 
space of the selection.	
  

Figure 23: BLAT hit details with alignment.	
  

	
  

	
  

	
  
	
  


