
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Performance modeling for exascale autotuning:
An integrated approach∗

Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland

Mathematics and Computer Science Division

Preprint ANL/MCS-P5000-0813

July 2013

∗Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357.

1



Performance modeling for exascale autotuning:
An integrated approach

Prasanna Balaprakash∗, Stefan M. Wild, and Paul D. Hovland
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

The usual suspects—shrinking integrated circuit feature sizes, heterogeneous nodes with many-
core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands,
and resiliency concerns—make exascale application and system co-design a daunting, complex task.
Providing effective model-driven prediction and optimization capabilities at runtime and a software
stack that includes model-informed autotuning are key to mitigating this complexity. We define
autotuning for application-system co-design as a systematic process of navigating the space defined
by both software and hardware parameters that affect the performance metrics of the application
and the system.

Autotuning should orchestrate hardware- and software-provided knobs to reduce execution time,
power draw, energy consumption, and other constituent features such as memory footprints. Cur-
rent autotuning approaches, however, are unlikely to be successful for application-system co-design
at exascale: the number of parameters exposed at the hardware and software levels will be large,
drastically increasing the decision space; rigorous approaches to optimizing multiple conflicting
objectives simultaneously are absent; and there is a lack of multiple-metric performance models.
Significant research is required to develop an integrated modeling, machine learning, and search
approach in order to provide model-driven prediction and optimization capabilities at runtime.

Automatic performance modeling
Given the challenges projected at the exascale, modeling only the execution time of the applica-

tion is insufficient. Execution time will be one among several, possibly conflicting, system-related
metrics (such as energy consumption and system resiliency) that need to be modeled. Therefore,
the co-design problem must be tackled as a multiobjective optimization problem, where a search
algorithm would optimize (and/or be constrained by) multiple metrics simultaneously. Ideally,
analytical performance models must be developed to quantify meaningful differences across the
decision space and provide error bounds/distributions associated with their predictions. Models
for a variety of metrics should offer a convenient mechanism for exposing sweet spots in the de-
cision space, adaptive pruning of the decision space in online and offline algorithms as empirical
information becomes available, and a variety of other search-related tasks.

Automating performance modeling is crucial for application-system co-design. Analytical mod-
eling should be supported by effective static analysis tools that can automatically extract the set of
all code-specific characteristics (for example, total instructions, arithmetic intensity, branching in-
structions, and memory requirements) with respect to the application configuring parameters. The
performance models should use algebraic expressions that take code-specific characteristics and the
system level parameter settings as input to predict the performance metric(s). We should develop a
rich mathematical modeling framework for flexible performance modeling because different metrics
might require different mathematical functions. For example, one might expect to encounter poly-
nomial models for memory requirements and execution time, but piecewise models for resilience
metrics due to varying demands across code regions. The framework should allow the modelers
to test various algebraic combinations such as generalized linear, nonlinear, piecewise, and spline
models. It should also allow systematic combination of two or more performance models to obtain
other metrics of interest that cannot be modeled directly, such as an energy model from runtime
and power models or a bandwidth model from a cache miss model. We should provide a seamless

∗Corresponding author, pbalapra@mcs.anl.gov

2

pbalapra@mcs.anl.gov


integration of the modeling framework with the simulator and/or system for model validation and
calibration during the application-system co-design phase.

Machine learning for dynamic and predictive empirical modeling
Given the complexity of exascale application-system co-design, analytical performance models

based on closed-form mathematical expressions may not be adequately informative for all metrics of
interest. When analytical performance models become too restrictive—in particular, when dynamic
changes must be taken into account—empirical performance modeling can bridge the gap. In this
approach, a small set of co-design configurations is evaluated to measure the required performance
metrics, and a predictive model is built by using statistical/machine learning approaches.

Machine learning typically addresses settings where one has a relatively large number of design
point evaluations and the goal is to obtain a best model. This approach is well suited to so-called big
data applications, where the goal is to extract high-quality information from an abundance of data.
However, it is a poor fit for empirical modeling at exascale because the high computational expense
of design point evaluations results in a relative paucity of data. In this setting, we should focus on
developing online learning algorithms for small data, which must be informed by available models.
A promising approach to tackle this problem is through a Bayesian statistical modeling framework.
A strength of this framework lies in the uncertainty quantification of the model predictions. We
can exploit this property to develop an effective design-of-experiments strategy to evaluate the
configurations that improve the model prediction accuracy in decision-space regions of interest.
Moreover, Bayesian learning allows one to develop models for multiple performance metrics with
a single methodology. We also emphasize the need for rigorous subsidiary procedures that infuse
application- and architecture-specific knowledge to the statistical models.

Modeling the autotuning search space
Developing search algorithms for multiobjective autotuning is a challenging task. Autotuning

can be formulated as a noisy, mixed-integer, nonlinear mathematical optimization problem over a
decision space comprising continuous, discrete, and categorical parameters. We must move beyond
“black-box” optimization in order to make these search problems tractable. Application- and
architecture-specific knowledge captured in the form of models should be exploited early, often,
and automatically (for example, parameters with powers of two or a multiple of cache line size).
In addition, by treating metrics, such as those based on power and energy, as objectives rather
than solely as constraints, one can obtain a hierarchy of solutions and quantify the sensitivities
associated with changing constraint bounds. Furthermore, optimal solution sets obtained offline
can significantly simplify (or even trivialize) online optimization at runtime, when quantities such
as the price of electricity, resource availability, and system state/health are known.

An integrated approach to autotuning
We believe that a systematic integration of analytical and statistical performance models with

search algorithms is key to automating application-system co-design. First, we have to develop
analytical models that capture the relationship among the design parameters, application inputs,
and performance metrics. These models should inform statistical performance models in cases
where analytical models fall short or are infeasible. At runtime, the performance models can be
further refined and updated to take into account dynamic changes in the system and errors in the
models. A search algorithm should use the models and the resulting reduced/transformed decision
space to find the best parameter setting for the running state of the system with significantly
reduced empirical expense. Analytical and statistical performance models can also be employed to
inform and capture the correlations among the state of the system, the best co-design parameters,
and the multiple metrics of interest to further improve multiobjective search tasks.

3



The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science lab-
oratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-
up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative
works, distribute copies to the public, and per-
form publicly and display publicly, by or on be-
half of the Government.

4


