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Modern computational science and engineering is increasingly defined by multiphysics, multi-
scale simulation [5] while raising the level of abstraction to risk-aware design and decision problems.
This evolution unavoidably involves deeper software stacks and the cooperation of more distributed
teams from multiple disciplines. Meanwhile, each application area continues to innovate and can
often be characterized as much by the forms of required extensibility (e.g., boundary conditions,
geometry, subgrid closures, analysis techniques, data sources, and inherent uncertainty/bias) as
by the underlying equations. Sanitary workflow is paramount for smooth interaction in this en-
vironment, but it is too often compromised so long as the original author’s use case is deemed
acceptable. We argue that many common approaches to configuration and extensibility create
artificial bottlenecks that impede science goals, and that the only sustainable approach is to defer
these to run-time. We present recommendations for implementing such an approach.
Build system and compile-time configuration. The status quo for many applications, espe-
cially those written in legacy Fortran, is to perform configuration in the build system. From the
perspective of higher-level analysis, the build system must then be thought of as the public applica-
tion programming interface (API). In other applications, especially those written in C++ or with
heavy use of conditional compilation, the choices must be made at compile time. Compute nodes
often do not have access to compilers, making all build-system and compile-time decisions inacces-
sible to online analysis. It may be impossible for the same application to run in both configurations
on different nodes or on different MPI communicators.
Advanced analysis. Today’s physics models are increasingly used not just as forward models but
as the target of advanced analysis techniques such as stochastic optimization, risk-aware decisions,
and stability analysis. The forward model must then expose an interface for each form of modi-
fication that the analysis levels can explore. An interface requiring build-time modification shifts
an unacceptable level of complexity to the analysis software and is algorithmically constraining—
limiting parallelism, introducing artificial bottlenecks, and preventing some algorithms.
Provenance and usability. Reproducibility and provenance are perpetual challenges of compu-
tational science that become more acute as the software stack becomes deeper and more models of
greater complexity are coupled. How can we capture the state of all configuration knobs so that
a computational experiment can be reproduced? Compare the complexity of a single configura-
tion file to be read at run-time with that of a heterogeneous configuration consisting of multiple
build systems, files passed from earlier stages of computation, and run-time configuration. Prove-
nance is simplified by using each package without modification, compiled in a standard way, and
controlled entirely via run-time options. For both maintenance and provenance reasons, custom
components needed for a given computational experiment are better placed in version-controlled
plugins rather than by modifying upstream sources. If a coherent top-level specification is to be
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supported in a system with build-time or source-level choices, those configuration options must be
plumbed through all the intermediate levels, often resulting in another layer of “workflow” scripts
and bloated, brittle high-level interfaces.
“Big” data. Workflows that involve multiple executables usually pass information through the
file system. It takes about one hour to read or write the contents of volatile memory to global
storage on today’s top machines, assuming peak I/O bandwidth is reached. The largest allocations
for open science are on the order of tens of millions of core hours per year (e.g., INCITE), meaning
that the entire annual compute budget can be burned in a few reads and writes from memory.
Global storage as an algorithmic mechanism is dead: where out-of-core algorithms have been used
in the past, today’s scientists can simply run on more cores, up to the entire machine; but if the
entire machine does not have enough storage, the allocation simply does not have the budget to
run an out-of-core algorithm. So, while global storage is sometimes convenient for inspection, and
perhaps necessary if a human is in the loop (window selection in seismic tomography is currently
semi-manual; other applications have especially expensive “preprocessing” steps that are reused in
a sequence of simulations, where a human needs the results of the last simulation to decide what
to run next), its presence in a workflow is an artificial bottleneck that must be eradicated.
Upstreaming process. Fragmentation of software projects is notoriously expensive and should
be avoided when possible. Maintaining local modifications with no plan for upstreaming is a recipe
for divergent design, a form of technical debt that must be paid off to combine the features de-
veloped in each fork. Fragmentation is especially toxic for libraries that may be used by multiple
higher-level packages that are combined in the overall experiment. Meanwhile, creating a welcom-
ing environment for contributions requires diligence from maintainers, both social and technical.
The maintainers should nurture a community that can review contributions, advise about new de-
velopment approaches, and test new features, as well as a tangible way to recognize contributions.
Communities that become introverted in fear of “scooping” pay a heavy price in duplicate effort,
barriers to refactoring, limited advising, and poor distribution of maintenance, review, and testing.
In a transparent community, it is immediately clear to reviewers who did the work to implement
a new feature; thus any attempt to “scoop” a result based on new capability is easily spotted. In
addition to community building [6], which is a topic in its own right, developers should strive to
provide versatile extension points so that contributions can be made without compromising existing
functionality and without degrading package maintainability.

Implementation and recommendations

To manage the workflow challenges described above, application developers will need to think more
like library developers [4], controlling their namespaces, avoiding global state, relinquishing top-level
control, controlling the scope of parallelism, localizing memory allocation, localizing complexity so
that it does not “bubble up” to the top level, and paying attention to the completeness, generality,
and extensibility of all public interfaces. Our suggestions below are shaped by experience developing
the Portable Extensible Toolkit for Scientific computing (PETSc) [2, 1].
Resource allocation. In order to localize configuration, allocation of resources such as memory
should be done locally, with reference counting when appropriate. Contrary to urban legend, static
memory allocation offers no tangible performance advantage and unavoidably ties the workflow
into the build system, while committing the sin of needless global variables. Resource pools can be
used to amortize allocation cost without sacrificing modularity.

http://mcs.anl.gov/petsc


Plugins. Source-level dependencies on an implementation (e.g., direct instantiation of a derived
class or a template parameter) rather than a generic interface cause choices from deep in the stack to
“bubble up” to the top level, via typically brittle interfaces to plumb the user’s configuration to the
appropriate component. Plugins provide a strong way to identify interfaces that can be extended
by users without modification of client code. Since a plugin implementation can reside completely
outside the software package providing the interface, distribution is no longer coupled to upstream,
and the plugin can be submitted at any time. Every class in PETSc has a plugin architecture, from
base linear algebra components to preconditioners, nonlinear solvers, and adaptive controllers for
time integration; any of these components can be provided by a plugin and will be indistinguishable
from a native component of PETSc. Plugins consist of a registration function that is called explicitly
or via dlopen(), a creation function that is called when the plugin is activated, and any supporting
functions that will be exposed when the plugin is instantiated. PETSc uses a delegator pattern
and a dynamic per-object vtable, but other choices are also workable. Historically, Fortran’s type
system and inability to store function pointers have conspired against plugin implementations, but
the new standard provides the necessary tools.
Inversion of control, recursive configuration, and the options database. Effective use
of plugins requires that they be configurable after loading. Additionally, it should be possible to
instantiate the same plugin with different configurations at different locations in the object graph.
Since the client does not know how to configure the object, some inversion of control [3] is necessary
(the approach taken by PETSc is similar to the “service locator” described in [3], though others
also work). Multiple instances of objects are distinguished by a prefix in the options database,
allowing arbitrary run-time configuration.
Just-in-time compilation. Occasionally, a component would be beneficial as a plugin but must
be called in a context where the performance overhead of a dynamic solution is unacceptable.
When the interface granularity cannot be increased to amortize the overhead of dynamicism, just-
in-time (JIT) compilation is an attractive approach that can preserve strong encapsulation. We
hope that the ubiquity of technologies such as LLVM and OpenCL will allow judicious use of JIT
for dynamic kernel fusion and plugin-style packaging of fine-grained components without sacrificing
performance.
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