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Abstract—Scripting languages such as Python and R have
received wide adoption as tools for highly productive development
of scientific software because of the power and expressiveness
of the languages and available libraries. However, deploying
scripting languages on large-scale production systems such as
the IBM Blue Gene/Q or Cray XE6 is a challenge due to
operating systems limitations, interoperability challenges, parallel
filesystem overheads due to the small file system accesses common
in scripted approaches, and other issues. In this work, we present
a new approach based on Swift to integrate high-level languages
such as Python, R, Tcl, and the shell with native code developed
in C, C++, and Fortran, through the use of the library interfaces
to the script systems. In this approach, Swift handles data
management, movement, and marshaling among distributed-
memory processes without direct user interaction with messaging
libraries (such as MPI).

I. INTRODUCTION

Many modern scientific applications and tools are built by
using a variety of languages and libraries. These complex
software products combine performance-critical libraries im-
plemented in native code with high-level functionality ex-
pressed in rapidly developed and modified scripting languages.
Additional specialized features may be used for concurrency,
I/O, the use of accelerators, and other features. A wide range of
application domains have used these development techniques,
including materials science, protein analysis, and power grid
simulation.

Each of these applications and tools follows a common
software development pattern. First, a native code library is
built or repurposed for the core processing. Then, a scripted
toolkit is built around the core library or program. Such
“wrapper scripts” could be developed in shell scripts, Python,
Tcl, or other tools. Then, when additional scalability is re-
quired, scripts are developed to deploy the application in some
distributed computing model such as MPI, Swift, or custom
wrapper scripts that submit jobs to a scheduler such as PBS.
Swift [1] is a programming language and runtime designed
to ease the software development pattern described above.
Swift has a well-defined concept of wrapper scripts, the ability
to coordinate calls to tools through its programming model,
and built-in support for many schedulers and data movement
protocols.

The latest implementation, Swift/T [2], generates an MPI
program from the Swift script and provides tools to run

that program on varying scheduled resources. The Swift/T
framework supports direct calls to native code through library
loading and access. However, as described above, modern
scientific applications are not built with native code alone,
but with scripts and scripting interfaces to core libraries.
Thus, to ease the coordination of calls to tools in the Swift
programming model, we wish to support direct calls to script
code without calling external programs or forcing the user to
master complex linking techniques.

In this work, we report on new features in Swift to support
direct calls to Python, R, and Tcl. These features could easily
be extended to other script languages in a similar pattern in
the future. These features allow Swift scripts to orchestrate
distributed execution of code written in a wide variety of
languages, currently including C, C++, Fortran, Python, R,
Tcl, and the shell. Any external programs may be called
through the shell-based technique.

The method presented here is a more approachable soft-
ware development technique for distributed-memory comput-
ing than are traditional techniques. Using MPI, the devel-
oper could write MPI code in C and call to an application
component script. In this technique, the user would have
to manage the call to the script, possibly using an internal
API specific to that language. Application data would have
to be marshaled to and from the component and among
processes in a tedious manner. The developer would have to
define a progress model and manage load balancing and other
distributed computing challenges. Alternatively, the developer
could try a scripting language-specific MPI implementation,
which might ease some but not all of the described challenges.
Additionally, this would limit the number of languages that
could be used; it is unlikely that communicating among MPI
processes in multiple languages would work as desired.

In our method, the developer starts with a Swift script that
describes the calls to application components in a convenient
syntax. Data is passed from Swift to language-specific com-
ponents over MPI without user marshaling. Multiple compo-
nents written in different languages may be brought together.
Progress and load balancing are managed by the Swift run-
time. Overall, the approach provides a coherent programming
model, allows for compatibility among multiple languages,
provides high scalability, and is compatible with advanced



architectures such as the Cray XE6 and Blue Gene/Q.
The remainder of this work is organized as follows. In

Section II, we describe relevant application models in detail.
In Section III, we describe the architecture of Swift/T and
in Section IV we describe the interlanguage features that are
the focus of this paper. In Section V, we present performance
results from Swift/T running on Blue Gene and Cray systems.
In Section VI we describe related work and in Section VII we
offer concluding remarks and a brief glimpse at future work.

II. APPLICATIONS

In this section, we describe some interlanguage applications
that serve as motivating examples for our work.

A. NeXus: Storage and processing for materials science

NeXus [3] is a file format for X-ray, neutron, and muon
scattering data based on HDF [4]. By standardizing some
of the metadata used in the HDF file, the X-ray scattering
data is easier to distribute and analyze by different research
groups. NeXus data is typically reused heavily for coordinate
transformation, analysis, and visualization. The data is stored
in large (up to 30 GB) multidimensional (up to 4D) arrays.
Fragments of the underlying data variables may be processed
concurrently in a task-oriented model.

NeXpy [5] is a Python-based GUI and scripting suite to
operate on NeXus data. Many important data transforma-
tion, analysis routines, and visualization capabilities are made
available through its scripted Python API. NeXpy users can
easily rotate NeXus scattering data and perform common
visualization operations. Underlying numerical operations are
performed with NumPy [6], a numerical library for Python.

Swift analysis job
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Figure 1. Parallel data analysis via Swift/NumPy processing in cluster.

Recent work in scaling NeXpy processing to larger datasets
(30 GB) has motivated us to leave the bulk data on the
remote cluster for processing and to transfer only the resultant
plots back to the user workstation. This approach requires
that the array processing be broken into tasks for distributed
processing via Swift tasks. However, it is highly desirable to
reuse as much of the existing NeXpy codebase as possible, so
relevant functionality is called as Python tasks from Swift. To
accomplish this effectively, we need interlanguage support to
pass NeXus/NumPy data from Swift to Python and back.

B. OOPS: Protein simulation

The Open Protein Simulator (OOPS) is an interlanguage
implementation of a protein folding simulation code [7]. At
its core OOPS is built on the C Protein Folding Library,
also known as protlib, a minimal library of C functions and
data structures intended for generating folding simulations of
proteins. It is based on a modular architecture that allows the
use of different sampling algorithms and energy functions. In
addition, protlib provides a Python interface to use within
the Bio.PDB module of the Biopython library. OOPS reads
a collection of protein configuration files through Biopython
and makes core calls to protlib. OOPS leverages Swift to run
across many nodes for a large scale protein folding simulation
solution. The OOPS interlanguage software stack is shown in
Figure 2.

Recent work aims to enable OOPS to make use of hardware
accelerators including NVIDIA GPUs, and the Intel Xeon
Phi [8]. In this effort, the OOPS libraries will be refactored to
allow Swift to manage calls to the Python, C, and GPU-based
features. This arrangement will make use of the advanced
performance available on the GPU while also using higher
level features in the Python libraries.
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Figure 2. Component architecture of OOPS application.

C. Electrical power price analysis

The electrical power prices in a region are a result of
combination of many stochastic and temporal factors, includ-
ing variation in supply and demand due to market, social,
and environmental factors. Evaluating the feasibility of future
generation power grid networks and renewable energy sources
requires modeling and simulation of this complex system. In
particular, the power grid application described here is used to
statistically infer the changes in the unit commitment prices
with respect to small variations in random factors.

The application involves running a stochastic model for a
large number of elements generated via a three-level nested
foreach loop, as shown in the Swift code snippet below:
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1 int nS[] = [10, 100, 1000, 10000, 100000];
2 foreach S, idxs in nS {
3 sample0 = gensample(wind_data);
4 obj[idxs] = ampl(sample0);
5 foreach B, idxb in [10:40:10] {
6 foreach k in [0:B]{
7 sample1 = gensample(S, wind_data);
8 obj_l[idxs][idxb][k] = ampl_L(sample1);
9 sample2 = gensample(S, wind_data);

10 obj_u[idxs][idxb][k] = ampl_U(sample2,
11 obj[idxs]);
12 }}}

In this code, gensample() is not pure- it uses random
numbers produced by the underlying task, producing different
samples each time. Then, the numerical algorithm is run to
compute lower (L) and upper (U) bounds, which converge for
large enough S. (Only the upper bound computation consumes
the output of function ampl()).

A moderate sample size of five samples can generate
hundreds of thousands of Python calls. Each application
call makes call to the Python-implemented sample gener-
ation (gensample()) and AMPL models making it an
interlanguage implementation spanning Python and AMPL
interpreters, as depicted in Figure 3.

Python
(core + NumPy + SciPy)

Swift

Python
(core + NumPy + SciPy)

AMPL

Python
(core + NumPy + SciPy)

Power Grid Application

AMPLAMPL

Figure 3. Electrical power price analysis application components.

D. DISCUS: Crystal structure scattering simulation

DISCUS [9] is a Fortran-based program for computing dif-
fuse scattering of a simulated input crystal structure. DISCUS
allows a user to run artificial experiments on crystal structures
and produce outputs analogous to those of real experiments,
for example the images that would be produced from an X-ray
scattering experiment.

A recent effort involved using DISCUS to fit input param-
eters (crystal configurations) to experimental data. The output
of a simulated DISCUS experiment is compared for fit against
results of a real experiment, allowing the accuracy of the
input parameters to be gauged. An evolutionary algorithm is
used [10] to iteratively adjust the parameters to improve the
fit, as shown in Figure 4.

Two levels of parallelism have been identified in this
compute-intensive process. First, the DISCUS run itself can
be improved through the application of thread parallelism in
OpenMP. Second, the DISCUS runs can be called concur-
rently. Initial efforts by the DISCUS team ran into devel-
opment issues when attempting to fit complex DISCUS pa-
rameter data into an ad-hoc master-worker parameter passing
scheme. This is an ideal use case for the work presented
in this paper because Swift includes a load balancer in a
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Figure 4. Multi-level parallelism in DISCUS.

scalable master-worker scheme with multiple masters, along
with flexible interlanguage data handling.

E. Generic application models

With these real-world applications in mind, we have a
basis to describe a general model for interlanguage scientific
applications.
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Figure 5. Existing software model supported by Swift.

In the model shown in Figure 5, existing application com-
ponents of native code libraries wrapped in scripted tools are
then wrapped at a higher level by Swift. This approach allows
the reuse of application logic while providing concurrency at
the Swift level.

A subtle change is introduced in the model shown in
Figure 6. In this model, scripting language components are
brought close to the Swift level as a result of tight interlan-
guage support by Swift features and the performance boost
due to linking to the scripting language library (as opposed to
calling the script interpreter as an external program).

III. ARCHITECTURE

In this section, we provide background on the Swift lan-
guage, describe the Swift/T architecture for reference and
discuss how Swift/T calls scripted application components.

3



Native Code 
Library

C, C++, Fortran

Swift/T - Many Node Scripting + Toolkit Solution (Python, R, Tcl, etc.)

Native Code 
Library

C, C++, Fortran
Native Code 

Library
C, C++, Fortran

Native Code 
Library

C, C++, Fortran
Native Code 

Library
C, C++, Fortran

Native Code 
Library

C, C++, Fortran
Native Code 

Library
C, C++, Fortran

Native Code 
Library

C, C++, Fortran
Native Code 

Library
C, C++, Fortran

Native Code 
Library

C, C++, Fortran

Native Code 
Library

C, C++, Fortran
Native Code 

Library
C, C++, Fortran

Native Code 
Library

C, C++, Fortran
Native Code 

Library
C, C++, Fortran

Native Code 
Library

C, C++, Fortran

Proposed Development Pattern

Figure 6. New software model- scripting tools (Python, R, etc.) are integrated
closely with the Swift script.

A. Swift language

Swift is a scripting language with C-like syntax with per-
vasive, automatic concurrency built into the language. Con-
currency is achieved through dataflow processing, in which
progress depends on the availability of input data, not state-
ment ordering. For example, in the code fragment

1 int x;
2 x = f(3);
3 int y1 = g(x,1);
4 int y2 = g(x,2);

the declaration int x; creates a future x. Subsequent func-
tion calls to g() block until a value is stored in x. When f()
completes, both calls to g() are eligible to run concurrently
on different processors.

Massive concurrency can be achieved in Swift with rela-
tively little code. For example, in the code fragment

1 foreach i in [0:9] {
2 int t = f(i);
3 if (g(t) == 0) { printf("g(%i)==0", t); }
4 }

the foreach loop executes each loop body for a unique value
of i from 0...9 concurrently. Each execution of f() may be
run concurrently, but each g(t) is blocked on the correspond-
ing f(t). The code implies the dataflow dependencies shown
in Figure 7,

loop

i t g(t)

{}

0

1

.
.
.

9

f

f

f
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g
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Figure 7. Diagram of implicit dataflow of Swift loop.

where several parallel pipelines of tasks are present. Swift
will construct and execute these pipelines in parallel on any
available resources.

In the Swift model, bulk user computation is performed in
leaf tasks: user code outside of Swift, such as libraries or
external programs. These are load-balanced between available
processors by dispatching tasks on demand. If f() and g()
are compute-intensive functions with varying run times, the
asynchronous, load-balanced Swift model is an excellent fit.

B. Swift/T runtime

Swift/T [2] is a reimplementation of the Swift/K [1] lan-
guage.

Swift/K excels at distributed, grid, and cloud computing,
and offers wide-ranging support for schedulers (PBS, LSF,
SLURM, SGE, Condor, Cobalt, SSH) and data transfer, fault
tolerance, and other features useful for that environment.
K indicates that the language is implemented atop the Karajan
workflow engine.

Swift/T is designed for high-performance computing at the
largest scale, offering a runtime based on the Asynchronous
Dynamic Load Balancer (ADLB) [11]. T indicates that the key
language features are implemented by the Turbine dataflow
engine [12]. In this implementation of Swift, the Swift script
is translated into a runtime framework based on the C-based
ADLB and Turbine libraries, which evaluate Swift semantics
in a distributed manner (no bottleneck).

The Swift/T architecture is diagrammed in Figure 8. Each
process operates as an engine, ADLB server, or worker.
Engines carry out Swift logic, creating leaf tasks for execution.
ADLB servers, shown as an opaque subsystem, distribute
tasks to workers, which execute user work (such as f() and
g() in our example above). Typically the vast majority of
processes (99%+) are designated as workers. The engine and
server processes are called control processes and collectively
orchestrate script execution.

EngineEngine

ADLB scalable load balancer / Data storeADLB scalable load balancer / Data store

WorkerWorker

WorkerWorkerWorkerWorker

WorkerWorkerWorkerWorker

WorkerWorkerWorkerWorker

WorkerWorkerWorkerWorker

WorkerWorker

Leaf tasks Output data

EngineEngine EngineEngine EngineEngineEngineEngine

Turbine
code

Turbine
code

Control fragments

Figure 8. Swift/T runtime architecture.

IV. SWIFT INTERFACES TO VARIOUS LANGUAGES

Swift/T has multiple new methods for calling to user code
that have not been reported previously. In this section, we
consider these in detail.

A. Calling the shell

In Swift/K, leaf tasks were intended primarily to be de-
veloped as calls to qsub on remote systems. Following the
monolithic MPI model, however, Swift/T interacts with the
shell as a local library, because the Swift/T worker is just
another process in the MPI run. Interaction with the shell
is defined in Swift using function annotated with app for
“application”.

Consider the following Swift function definition and call:
1 app (file o) prog1 (string S[][], int i) {
2 "/bin/prog1" (S[0]) "--" (S[1]) i o;
3 }
4 ...
5 file f<"output.txt"> =
6 prog1([["-v"], ["foo","bar"]], 42);
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User program /bin/prog1 is made available to Swift as
function prog1(), with a type signature that indicates it
accepts a two-dimensional array of strings and an integer,
and produces one file as output. (In Swift, files may also
be used as part of the dataflow structure.) Elsewhere in the
Swift script, a file f is defined as the output of prog1 and
mapped to a location in the filesystem, output.txt. The
user passes prog1 a two-dimensional string array literal and
an integer literal. Following the app definition, Swift converts
these variables to shell command

1 /bin/prog1 -v -- foo bar 42 output.txt

Swift does not attempt to open output.txt itself; it as-
sumes that the user program will create that file.

This functionality packages multiple features that allow the
expression of complex interlanguage issues between Swift and
the shell.

First, note that the shell command line is unstruc-
tured compared with the ability of Swift to represent
structured data. All command lines must fit the C-based
main(int argc, char** argv) model. Thus, Swift
data structures are flattened into simple strings for the com-
mand line. Note, however, that the ability of Swift to evaluate
arbitrary code while constructing the command line (here,
indexing into the array S) allows clean separation of flags and
arguments, as is conventional, with the use of the -- symbol.

Second, note that the shell command line does not support
typed data. Thus, Swift converts various types to strings; in this
case, an integer and a file variable are placed on the command
line. Since Swift does support types, including subtyping on
file to create specific file types, many type errors common
in shell scripting are easily avoided.

B. Calling Tcl

The Swift/T compiler (STC) translates user Swift code to
a representation (Turbine code) that uses the Turbine, ADLB,
MPI, and user libraries, all of which are written in C. While
STC could generate C code, we desired a compiler target
with the following properties: 1) A straightforward way to
ship code fragments through ADLB for load balancing and
evaluation elsewhere, 2) A textual, easily readable format, and
3) A runtime that did not require the user to run the C compiler
to avoid complexities on advanced systems. Thus, we chose
Tcl to represent Turbine code, and made use of the ease of
calling C from Tcl to bind the system together.

Since Swift/T runs on Tcl, calling from Swift to Tcl is the
most advanced interlanguage feature in Swift/T. Consider the
Swift code fragment

1 (int o) f(int i, int j)
2 "my_package" "1.0"
3 [ "set <<o>> [ f <<i>> <<j>> ]" ];
4 ...
5 int x = f(2, 3);

In this code, Tcl procedure f is made available to Swift with
the given signature. When inputs i and j are available, the Tcl
code (line 3) is executed. Tcl package my_package 1.0 is
loaded on the assumption that f will be found in that package.

The Swift/T runtime supports user additions to TCLLIBPATH
so that arbitrary Tcl code may attached to a Swift/T run.

Interlanguage operation is supported by 1) inserting
dataflow semantics to the interface between Swift/T and Tcl
and 2) automatic type conversion. The Tcl code on line 3
cannot execute until inputs i and j are set and transmitted to
the worker on which the code will be executed, and storage
for output o has been allocated. This code is automatically
inserted into the compiler output by STC, and is hidden from
the user (by default). The programmer provides a template
for the Tcl code. Double angle brackets <<·>> indicate that a
variable should appear in that location. Swift/T variables are
automatically converted to the appropriate Tcl types, which
are oriented toward string representations.

The ease of interlanguage operation here offers multiple
beneficial features to Swift/T development and application
users. First, the ease of exposing simple Tcl snippets to Swift
allowed for the rapid development of Swift builtins such as
printf(), strcat(), etc. Many Tcl features can easily
be brought into Swift this way. Second, Swift users often
express a desire to mix dataflow programming with short
fragments of imperative code. This is easily done by extending
the Tcl fragment on line 3 to a multiline script snippet,
using the Swift multiline string syntax. Certain arithmetical
or string expressions may be easier to perform in Tcl than in
Swift, especially for experienced Tcl or shell programmers.
Third, existing components built in Tcl can easily be brought
into Swift using Swift support for Tcl packages. Fourth, the
strength of Tcl support for calling native code is easily brought
to Swift as well, as described in the following subsection.

C. Calling native code

A primary goal of Swift/T is to speed the development pro-
cess for scaling existing codes in compiled languages (C, C++,
Fortran) to high-performance systems. Thus, good support
for calling these languages is paramount. Tcl provides good
support for calling native code, and good tools such as SWIG
are available. This approach has demonstrated the ability to
successfully call native code in many applications, including
applications that may be expressed as MPI libraries [13].

In order to call into an existing native code program from
Swift, the following steps must be followed. First, the user
identifies the key functions to be called. Simple types (num-
bers, strings) must be used to ensure compatibility with Swift.
Second, the program is compiled as a loadable library - any use
of main() must be removed through conditional compilation.
Third, the library headers are processed by SWIG to generate
Tcl bindings for the C/C++ functions; in the case of Fortran,
a C++-formatted header is first created with FortWrap, then
processed by SWIG. Fourth, the user writes Swift bindings
for the generated Tcl bindings as described in the previous
subsection. Fifth, a Tcl package is constructed containing the
native code library and any additional Tcl scripts that the
user desires to include. Figure 9 illustrates the process of
binding a C code with Tcl using SWIG. The functions in object
afunc.o become callable from within Swift/T code.

5



Figure 9. SWIG providing Tcl bindings for C functions callable from Swift/T.

The interlanguage complications here are more challenging
than that in the Tcl case because more language considera-
tions must be taken into account. Our approach has been to
delegate complexities and conventions to SWIG, since that is
a general purpose tool (i.e., learning SWIG has broader utility
than learning a Swift-specific tool). Thus, type conversion
conventions are delegated to SWIG conventions.

In addition to simple types, scientific users of native code
languages often desire to operate on bulk data in arrays. The
Swift approach to these is to handle pointers to byte arrays
as a novel type: blob (binary large object). The Swift/T
runtime handles blobs in a similar manner to strings, but with
appropriate handling for binary data. This allows users to write
dataflow scripts that operate on C-formatted strings and arrays,
contiguous binary data structures, and even multidimensional
Fortran arrays.

SWIG supports operations functions that consume and pro-
duce pointers as represented by Tcl variables. Thus, Swift/T
provides a small library called blobutils to handle trans-
mission of the Swift/T blob type to raw pointers compat-
ible with SWIG. Type conversion routines are provided to
handle many common cases. For example, SWIG will not
automatically convert void∗ to double∗ - blobutils
provides tools to handle the simple but myriad interlanguage
complexities found when operating on binary data.

D. Calling Python or R

As described above, many modern scientific applications
have key components or interfaces built in Python, R, or other
dynamic script languages. Previous workflow programming
systems call external languages by executing the external inter-
preters. As described previously, this is undesirable for Swift/T
because at large scale, the filesystem overheads are unaccept-
able. Additionally, on specialized supercomputers such as the
Blue Gene/Q, launching external programs is not possible at
all.

Our approach, based in Swift/T, treats the external inter-
preters for Python and R as native code libraries. Thus, the
complexity of calling them is reduced to the complexity of
calling a C library from Swift/T, which was addressed in
the previous section. First, a Tcl extension for each language
was constructed. (These could conceivably be reused by non-
Swift developers who simply desire to call Python or R from
Tcl.) Then, a Swift/T leaf function was written that evaluates
fragments of code.

In the Swift model, each task is started without state- only
the well-defined Swift inputs are available. When calling into
an external interpreter, however, old state from the previous
task could be available and cause confusion or debugging
issues (this is not a security issue, since all of this state
is inside the Swift/T MPI run). One approach is to finalize
the interpreter at the end of each task and reinitialize when
the next task is started, thus clearing any state. We did not
take this approach because of to concerns about performance
and possible resource leaks. Thus, users must cleanly unset
or overwrite any reusable data in their use of the external
interpreters.

E. Calling Python and R

In addition to supporting rapid, concurrent calls to scripted
application components, Swift/T also supports the ability to
run tasks from multiple languages in a single script, and
pass data among them. This allows the unique opportunity
to combine these languages in large scale applications.

In the case study described here, we construct several matri-
ces and find the biggest parallelepiped volume via NumPy and
R. First, we use NumPy to create NumPy arrays and perform
simple matrix arithmetic. Then, we compute determinants
in parallel with NumPy. Next, we reduce to the maximal
determinant using R. This basic procedure is depicted in
Figure 10.

eye() + ones()…

Figure 10. Graphical depiction of algorithm combining NumPy and R.

The Swift definition of NumPy features is packaged in a
Swift header file for reuse. This Swift code performs minor
transformations to convert the operation on Swift data to
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Python code that uses NumPy, then evaluates the string in
the Python interpreter and returns the result. A representative
function, eye(int N), is shown in Figure 11. This function
simply creates a code fragment to call the NumPy function
eye(), which returns IN , and returns the result. The matrix
is represented in Swift as a string.

1 global const string numpy = "from numpy import *\n\n";
2 typedef matrix string;
3 (matrix A) eye(int n) {
4 command = sprintf("repr(eye(%i))", n);
5 code = numpy+command;
6 A = python(code);
7 }

Figure 11. Fragment of Swift header to provide NumPy features.

The Swift code for the parallelepiped application is shown
in Figure 12. First, the NumPy library is imported (line 1).
Second, each matrix is constructed as A = IN ∗ i + 1, then
A[2,0] is set to a different number for each iteration (lines 5-
8). Third, the determinants are computed (concurrently), made
positive, and stored in a Swift array of float. Finally, the R
function max() is used to obtain the maximal value.

1 import numpy;
2 // Define our collection of determinants:
3 float dets[];
4 foreach i in [1:U-1] {
5 // For U, i, construct a matrix via Numpy:
6 A = matrix_add(matrix_scale(eye(N), itof(i)),
7 ones(N));
8 B = matrix_set(A, 2, 0, (U-i+1)**3);
9 // Obtain its determinant via Numpy:

10 v = determinant(B);
11 // Store the determinant in a Swift array:
12 dets[i] = abs_float(v);
13 printf("dets[%i]=%.2f", i, v);
14 }
15 // Build a fragment of R code with the determinants:
16 code = sprintf("max(%s)", string_from_floats(dets));
17 r = R(code);
18 printf("dets: max: %f", r);

Figure 12. Swift script for algorithm combining NumPy and R.

This method could be extended to call to C, C++, or Fortran
numerical libraries as well. The various Swift data may be
used, including raw binary data. Note that in practice, one
normally would call to application components, not numerical
libraries, but this example illustrates the generality of our
approach.

One current deficiency in this technique relative to the
direct use of NumPy or R is that Swift does not provide the
convenient mathematical syntax available in NumPy or R (for
example, in NumPy, one may multiply matrices A and B with
A*B using the provided overloaded operator). Future work will
address this deficiency.

V. PERFORMANCE

Swift/T performance has been reported elsewhere [2], [13].
In this work, we report on the capability of Swift/T to rapidly
launch many Python and R tasks.

This script simply performs a parallel Swift foreach loop
around a call into Python to render the result of 2+2 as a

1 main {
2 N = toint(argv("N"));
3 printf("N: %i\n", N);
4 foreach i in [0:N-1] {
5 python("’{0}’.format(2+2)");
6 }
7 }

Figure 13. Swift script used for Python task rate measurements.

Figure 14. Rates for Python tasks on Vesta - varying worker processes.

string. The string is returned to Swift/T (the call to Python is
not optimized out as an unused value because of the potential
for side effects). Each call to python() instantiates a fresh
Python instance to capture the full cost of using Python from
Swift.

The Python execution occurs only on Swift/T worker pro-
cesses. This means that each task is produced by foreach
evaluation on an engine, load balanced by an ADLB server,
and executed on a worker.

In our first tests, we used Vesta, a 2,048-node, 32,768-core
Blue Gene/Q at the Argonne Leadership Computing Facility
(ALCF). Each node contains 16 PowerPC A2 cores running at
1.6 GHz and 16 GB RAM connected to a low-latency 5D torus
interconnect. The Swift script used is shown in Figure 13.

In this test, we measure the ability of Swift/T to rapidly
launch Python interpreters for an increasing number of work-
ers up to 8,192 (on the x axis) and a varying number of control
processes: for C=1, there is one engine and one server, and
so on.

Results are shown in Figure 14. This shows that for each
number of control processes C, the performance is the same
for any number of workers. This indicates that performance is
limited by the control processes and not by launching Python.

In the next test, we fix the number of workers W and
increase C. For W = 4,096, performance scales linearly up
to 64 engines and servers, after which performance degrades.
For W = 8,192, up to 128 engines and servers may be used.

In the final test, we measure the ability of Swift/T to
rapidly launch Python interpreters on many processors of
Blue Waters, a combination Cray XE6 and XK7 system.
In the XE component, each of the 22,640 nodes contains
16 AMD Interlagos cores running at 2.3 GHz and 64 GB

7



Figure 15. Rates for Python tasks on Vesta - varying control processes.

Figure 16. Rates for Python tasks on Blue Waters - varying total processes.

RAM connected by a low latency 3D torus interconnect. We
performed this loop for an increasing number of processors
up to 65,536 (on the x axis) and a varying number of control
processes: for each number of total processes P , the number
of control processes C is configured such that C = P/32.

The results in Figure 16 show that, using Swift/T, our
script was able to utilize 65,536 cores well, instantiating
approximately 14 million Python interpreters per second. Blue
Waters contains only 33,792 XK cores in nodes with GPUs,
so this demonstrates that the model proposed for the OOPS
application in § II-B is viable.

VI. RELATED WORK

In this section, we explore related work from two broad
areas: 1) Python implementations for scientific, parallel and
distributed computing, and 2) implementations addressing
language interoperability challenges.

With an ever growing popularity of Python and support of
an active developer community, the language has enjoyed a
significant following in the scientific computing community.
Packages such as NumPy, SciPy, and matplotlib offer useful
numeric, scientific, and visualization utilities. These packages
became a strong foundation for full-fledged Python-based plat-

forms for scientific computing such as IPython Parallel [14].
The IPython system is a Python package that evolved from
an alternative interactive Python terminal (from the SciPy
community) into a message-based parallel and distributed
computing platform. IPython provides many features suitable
for scientific computing such as interactive visualization and
the scientific library SciPy.

The Celery [15] project provides parallel programming
methods for multi- and many-core node architectures. Celery,
based in Python, offers an implementation of task-queue with
tools that provide mechanisms to define workflows, monitor-
ing, and cron-like task scheduling. Celery can use a third-party
messaging library such as RabbitMQ or MongoDB for inter-
task and task-client communications.

Language interoperability is an invaluable capability for
legacy codes because it allows existing code to be reused
for new, advanced systems without tedious and error-prone
code rewrites. Many tools for language interoperability exist.
SWIG [16] is a tool that offers the ability to interface code
written in low-level languages with high-level scripting lan-
guages. It allows language-level invocations such as function
calls to be exposed as external callable functions. Similarly,
the Java Native Interface (JNI) [17] offers a Java API to
interface with C/C++ code. Swift/T uses SWIG directly and
uses the same concepts to bring lower-level code into the
Swift/T framework.

Babel [18] is a high performance language interoperability
tool based on the Scientific Interface Description Language
(SIDL). This allows transmission of data types from one
language to another. Swift/T differs from Babel/SIDL in that
it started as a scalable dataflow framework that is now adding
interlanguage features. We will investigate the compatibility
of Babel/SIDL concepts with Swift/T in future work.

VII. CONCLUSION

One way to solve a problem is to make it bigger... [19]

Modern scientific application development is trending to-
ward greater software complexity and more demanding per-
formance requirements. These applications blend structured
and unstructured computing patterns, features for distributed
and parallel computing, and the use of specialized libraries
for everything from numerics to I/O. For continued progress
in scientific computing, tools must be developed and adopted
that enable rapid prototyping and development of complex,
large scale applications.

In this work, we provided a broad overview of relevant
scientific computing applications that combine computing pat-
terns and use multiple languages. We described the Swift/T
system for high-performance computing, highlighted its new
features to support scripting languages Python and R, and
showed how these can be combined to solve numerical prob-
lems. We then provided performance results from large-scale
synthetic runs using these technologies.

In future work, we intend to improve support for external
languages by improving support for more complex data types.
Additionally, we will investigate syntactic features in Swift/T
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to provide more appropriate syntax for numerical expressions
beyond our current functional syntax. Future applications are
sure to challenge the current performance envelope, and we
will improve and apply our techniques to solve bigger prob-
lems with more advanced tools on the largest scale machines.
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