
Poncho: Enabling Smart Administration of Full Private Clouds

Scott Devoid, Narayan Desai
Argonne National Lab

Lorin Hochstein
Nimbis Systems

Abstract

Clouds establish a new division of responsibilities between platform operators and users than have traditionally ex-
isted in computing infrastructure. In private clouds, where all participants belong to the same organization, this cre-
ates new barriers to effective communication and resource usage. In this paper, we present poncho, a tool that im-
plements APIs that enable communication between cloud operators and their users, for the purposes of minimizing
impact of administrative operations and load shedding on highly-utilized private clouds.

1. Introduction

With the rise of Amazon EC2 and other public Infra-
structure-as-a-Service (IaaS) clouds, organizations are
starting to consider private clouds: using a self-service
cloud model for managing their computing resources
and exposing those resources to internal users.

Open source projects such as OpenStack[19], Cloud-
Stack[20], Eucalyptus[21], Ganeti[22], and OpenNebu-
la[23] allow system administrators to build local cloud
systems, offering capabilities similar to their public
cloud counterparts: the ability to provision computa-
tional, storage and networking resources on demand via
service APIs. The availability of these APIs provide
many advantages over the previous manual approaches:
applications can scale elastically as demand rises and
falls, users can rapidly prototype on development re-
sources and seamlessly transition to production de-
ployments. On private cloud systems, these activities
can occur within a more controlled environment than
the public cloud: within the company’s private network
and without paying a third party (and presumably a
profit margin) for resource usage. These systems are
quickly becoming a major force in computing infra-
structure.

Private clouds face different operational difficulties
compared to other large scale systems such as public
clouds, traditional server farms, and HPC systems. Pri-
vate cloud resource management features lag those of
public clouds, HPC systems and enterprise infrastruc-
ture. Most importantly, resource management capabili-
ties lag other systems, forcing resource underutilization
in many cases, and lacking the ability to enforce re-
source allocation priorities. But the most difficult issue

faced by private cloud operators is the user model. On
clouds, users become responsible for some administra-
tive functions, while basic platform management is left
to the cloud operators. There is no structured interface
between cloud users and cloud operators, resulting in
poor coordination between the two. These coordination
problems become dire when systems are highly utilized,
due to the absence of slack. This is primarily a technical
issue, as similar systems are effectively used in large
scale compute clusters at similar load. We propose the
creation of such an interface, in order to improve effec-
tiveness of private cloud platforms, as well as to ease
the operations of these platforms. This effort is the pri-
mary contribution of this work.

At Argonne we operate the Magellan system [11], an
OpenStack-based private cloud platform dedicated to
computational science workloads. Magellan consists of
approximately 800 compute nodes of heterogeneous
configurations totaling around 7,800 cores, 30 TB of
memory and 1.2PB of storage. Resource use is un-
metered, but basic system quotas, such as core count,
memory, storage capacity, and numbers of VM instanc-
es, are enforced. Magellan has been in operation for
nearly 30 months as an OpenStack system and for much
of this time was the largest deployment of OpenStack in
the world. The system supports a large variety of user
groups with different workloads, requirements, and
expectations.

During this time, we have experienced a variety of is-
sues caused by this lack of communication. Many of
these were caused by ill-informed user expectations and
high coordination costs. Initially, users drew from their
experiences with single physical machines, resulting in
lots of independent, unique instances. Even worse, there

was a widespread lack of understand of the ephemeral
storage concept that is widely used in systems. These
factors conspired to result in issues where serious user
data could be (and occasionally was) lost due to the
failure of ephemeral resources. These factors resulted in
substantial work in case of resource failures, and caused
us to be concerned in cases where service operations
required termination of ephemeral virtual machines. In
turn, this greatly increased our communication burden
when preparing for service operations. This kind of
event is representative of a larger class of events where
the user support service level should be carefully con-
sidered when deploying such a system.

The cloud model for applications, that of horizontally
scalable applications with robust fault tolerance, dy-
namic scalability, and extreme automation, is a poor
match for legacy workloads, or some computational
science workloads. The former architecture is ideal for
cloud operators, as user services are tolerant to failures
of underlying instances, while the latter is what many
users need in order to achieve their goals. This mis-
match is one of the challenges facing private cloud op-
erators. Worse yet, this incongruity is hidden behind the
abstractions provided by cloud APIs, limiting the ability
of cloud operators and users to effectively collaborate.

This issue can, and must, be alleviated by improving
the communication between users and operators. In this
paper, we will discuss concrete operational and usabil-
ity issues caused by this shortcoming, many of which
are specific to private clouds. We will present poncho1,
a lightweight conduit for API-driven communication
via instance annotations, as well as comparing it with
comparable facilities in public clouds. This system is
currently in the early stages of deployment, with users
beginning to incorporate annotations into their work-
loads.

2.	
 Operational Challenges of Private
Clouds	

Operationally, private clouds are distinct from public
clouds and traditional computing infrastructure (HPC
systems and server farms) in several ways. Private
clouds are, by their nature, operated by an organization
for internal users. While these are similar in many ways
to public clouds, this model implies an alignment of

1 Ponchos are useful in circumstances directly follow-
ing clouds filling.

goals between system operators and users that does not
exist in the market-based interactions of public clouds.
This alignment means that operators and users are in-
vested in deriving the most institutional benefit from
private cloud systems, and are expected to collaborate
effectively. In many ways, this is analogous to server
farms or HPC systems, where incentives are similarly
aligned. The cloud user model becomes even more
challenging on private clouds; responsibilities are di-
vided responsibilities in a far more complex ways than
on traditional infrastructure, and both end users and
system operators are expected to collaborate. These
factors combine to cause operational challenges in a
variety of dimensions. We will discuss these in turn.

2.1 Private Clouds

Private clouds are motivated by a desire to have the best
of all possible worlds. Effectively, organizations want
the benefits of public clouds in terms of flexibility,
availability, and capacity planning, with the greater
than 95% utilization rates of large scale HPC systems,
and performance of traditional server farms. Also,
many organizations want large multi-tenant systems,
which enable economies of scale unavailable in uncon-
solidated infrastructure. Finally, organizations want a
cloud where operators and users have aligned incen-
tives, and can collaborate on organizational goals.

As always, the devil is in the details. When building
private clouds, several challenges make it difficult to
realize this ideal system goal. The state of private cloud
software, while improving quickly, lags behind large
scale public clouds like AWS. The flexibility of the
cloud resource allocation model, where users have un-
fettered access to resources, requires that different
groups perform specialized functions: operators build
the cloud platform, while users build services and ap-
plications using these resources, and the APIs that en-
capsulate them. These APIs are insufficient to express
the full range of user goals, rather, users specify re-
quests in resource-centric notation. The end results of
this approach are a stream of requests that the cloud
resource manager attempts to satisfy, with no
knowledge of their relative importance, duration, or
underlying use case. Because there is no conduit for
user intent information, it is difficult for users and oper-
ators to coordinate effectively. Moreover, this makes
direct collaboration between users and operators, a key
benefit of private clouds, considerably more difficult.

2.2 The Private Cloud/Openstack Resource
Management Model

OpenStack provides APIs to access compute, storage,
and networking resources. Resource allocations in
OpenStack have no time component; that is, there is no
duration. This shortcoming has several important ef-
fects, all of which center on resource reclamation. First,
resources can’t be reclaimed by the system when need-
ed for other work. This limits the ability of the sched-
uler to implement priority scheduling, as resources are
committed to a request once they are awarded, until the
user releases them. Second, when the system fills, it
becomes effectively useless until resources are released.
This disrupts the appearance of elasticity in the system;
if users can’t request resources and be confident in their
requests being satisfied, it causes them to behave patho-
logically, hoarding resources and so forth. Finally, this
model poses serious challenges to the effectiveness goal
of private clouds, because the system can’t reclaim re-
sources that are being ineffectively used or left idle
altogether. This is a distinct goal of private clouds, be-
cause resource provider and resource consumer incen-
tives are aligned.

OpenStack only has two methods for implementing
resource management policies: request placement, and
quotas. Both of these methods are inadequate for multi-
tenant systems, where users have competing goals. Re-
source placement includes methods for selection of
resources when new requests arrive. These decisions
are sticky, that is, they persist until the allocation is ter-
minated, so they aren’t useful for implementing policy
in steady state operations. Quotas are a component of
the solution, and are the only method to implement
fairness by default. Because these quotas are static, and
are hard quotas, they are a blunt instrument, and can’t
be used to softly change user behavior.

2.3 Private Cloud User Model and the Role
of Platform Operators

One of the major features of private clouds is a re-
formulation of responsibilities centering on the role of
users and platform operators. In the private cloud mod-
el, platform operators are responsible for the health of
the underlying cloud platform, including API endpoints,
and hardware infrastructure, as well as aiming to meet
the SLAs for allocated resources. Users are responsible
for everything that happens inside of resources. Fur-
thermore, these resources are black boxes; platform
operators don’t have any visibility into user allocations,
or their states. This disconnect is problematic from a
variety of perspectives. First, operators are unable to

accurately assess the impact of failures, terminations,
and service actions. Second, operators can’t determine
which resources are in use for tasks important to users,
versus lower priority tasks they may be running. Build-
ing a channel for communication between users and
operators creates an opportunity for explicit collabora-
tion, where only ad-hoc methods previously existed.

3. User/Operator Coordination on Private
Clouds

While private clouds are a quickly growing architecture
for computing resources, the current state of the art
leaves several operational gaps, as described above. In
order to address these issues, we propose the addition of
two methods for coordination between users and opera-
tors. The first of these is an annotation method, where-
by users can describe the properties of their VMs. This
enables users to communicate requirements and expec-
tations to cloud operators unambiguously. Also, these
annotations allow system operators to reclaim resources
and take other actions while minimizing user impact.
The second component is a notification scheme where-
by users are told when their resources are affected by
failures, resource contention or administrative opera-
tions. Both of these mechanisms are used by the third
component, which plans “safe” operations based on
user annotations and notifies users as needed. In this
section, we will discuss the explicit use cases this work
addresses, as well as design and implementation of the-
se features.

3.2 Use Cases

Many private cloud operations are impacted by the lack
of good information flows between users and operators,
as well as the basic model offered for resource man-
agement. We find that users have particular use cases
for each of their instances--information that should be
communicated to the cloud operators. Operators need to
perform a variety of service actions on the resources
that comprise the cloud and lack the tools to plan ac-
tions while minimizing user impact.

3.2.1 Instance Use Cases

Most of the activity on our system is centered around
the following broad use cases. Each of these is impact-
ed by the lack of good communication between opera-
tors and users.

Service instances - Service instances implement net-
work accessible services. Often, these services must
answer requests immediately, hence have availability

requirements, and have provisioned resources in a high
availability configuration. They are managed with the
help of auto-scaling software such as AWS CloudFor-
mation or Openstack Heat. Fault tolerance is often im-
plemented at the application layer, which can provide
additional flexibility for the platform.

Compute-intensive instances - These instances perform
batch-oriented computation or analysis workloads.
They are throughput oriented workloads, where the
results of computation are needed, but not immediately.
Batch queues or task managers usually manage this
workload internal to the allocation and can restart failed
tasks.

Development instances - These instances have the in-
teractive character of service instances, but none of the
HA qualities; users access resources directly for devel-
opment reasons. These instances are not heavily uti-
lized, as with the previous two use cases, and are only
used when the user is active. They may contain unique
data in some cases.

Ad-hoc/Bespoke instances - These instances are the
wild west. Users treat some instances like physical ma-
chines, building custom configurations and running ad-
hoc tasks. These instances are the most difficult to sup-
port, as they likely contain some unique data, and may
have long-running application state that could be lost in
event of failures or instance reboots.

3.2.2 Operator Use Cases

Operators need to be able to perform a variety of ser-
vice actions on the cloud. In both of these cases, user-
visible impact must be minimized. This goal is made
more difficult by the poor flow of information between
users and operators.

Resource Maintenance
Components of the cloud need proactive maintenance,
for reasons ranging from software updates and security
patches to signs of impending failure. In these situa-
tions, operators need to effectively coordinate with us-
ers. These processed may be manually or automatically
initiated, and depending on the circumstances may be
synchronous (in the case of impending failures) or
asynchronous (in the case of software updates that may
be delayed for a limited time).

Rolling updates fall into this category. These updates
need to be performed, but do not necessarily have a
short-term deadline. Updates could be performed op-
portunistically when a resource is free, however, oppor-

tunity decreases as utilization increases. While this ap-
proach can result in substantial progress with no user-
visible impact, long-running allocations prevent it from
being a comprehensive solution; user-visible operations
are usually required on system-wide updates.
Load Shedding
In some cases, the cloud needs available resources for
new requests, requiring some resource allocations to be
terminated. This can occur due to hardware failure,
single tenant deadlines, or a lack of fairness in the
schedule. Ideally, load shedding minimizes visible im-
pact to user-run services, as well as the loss of local
application state. In short, when resource allocations
must be terminated, choose wisely. Our initial load
shedding goal is to support a basic, synchronous model.
More complex policies will follow as future work.

Notifications
A cross-cutting issue with all operator workflows is
providing the appropriate notifications to users when
actions are taken against resources. Sending an email or
opening a service ticket works if an operator manually
makes a few service actions during the day. But as ser-
vice actions are automated, notifications must also be-
come automated.

3.3 Design

The design of poncho is centered around the basic no-
tion that users and operators can coordinate through a
combination of resource annotations and system notifi-
cations. That is, users and operators agree to mutually
beneficial coordination for operations which can poten-
tially cause user-visible outages. These are subtly dif-
ferent from traditional SLAs, where the system operator
agrees to provide a particular service level. Rather, in
this case, users specify their goals, and the operators
provide a best-effort attempt to minimize high impact
changes. These goals are approached individually on a
tenant by tenant basis, so inter-tenant prioritization
doesn’t need to be expressed here.

These goals have a few major parts. The first compo-
nent encodes the impact of service actions on a given
instance, and describe conditions where an action will
have acceptable impact on the user workload. An ex-
ample of this is “instance X can be rebooted during the
interval between 10PM and 2AM”, or “instance Y can
be rebooted at any time”. The second, closely related
part describes how resources should be deallocated,
when the system does so. For example, some resources
should be snapshotted prior to shutdown, while others
can be terminated with no loss of data. A third class of

annotations describe actions the system should take on
the user’s behalf, such as killing instances after a speci-
fied runtime.

The particular annotations we have chosen enable a key
resource management capability: load shedding. With
the addition of load shedding, more advanced resource
management strategies can be implemented, where they
were not previously possible. This outcome is a key
deliverable of our design; its importance cannot be un-
derstated.

The other major part of poncho’s architecture is a noti-
fication function. Users can register to be notified when
service actions are performed. These notifications de-
scribe the resources affected, the action taken, and a
basic reason for the action. For example, a notification
might tell a user that “instance Z was terminated be-
cause of a load shedding event”. This would signal that
requests to re-instantiate the instance would likely fail.
Alternatively, a notification like “instance Z was termi-
nated due to failure” would signal that capacity is likely
available for a replacement allocation request. Notifica-
tions are delivered on a best effort basis, with a limited
number of immediate retries, but no guarantee of relia-
ble delivery. As most of this information is available
through default APIs in an explicit way, applications
can poll as a fallback.

3.3.1 Annotation API

We have modeled instance annotations as a series of
key/value pairs, stored as instance metadata via the pre-
existing mechanism in OpenStack. [2] These values are
described in the table below. Examples of common use
cases are show in the following examples section.

Table 2 : Instance annotations, metadata

Table 3 : Conditional grammar

Condition example Description

“MinRuntime(durat
ion)”

True if the instance has been running
for the specified duration.

“Notified(interval)” True if the interval has elapsed since
a scheduled event notification was
sent.

“TimeOfDay(start,
stop, tz)”

True if the time of day is between
start and stop with the optional time
zone offset from UTC. Example:
“TimeOfDay(22:00, 02:00, -05:00)”.

These attributes specify user goals pertaining to in-
stance reboots and termination, as well as whether in-
stances should be snapshotted upon termination. Users
can specify a notification URL where events are sub-
mitted, and a tenant-specific high availability group ID.
The priority attribute is used to choose between in-
stances when load shedding occurs. If a tenant is chosen
for load shedding, and multiple instances are flagged a
terminatable, these instances are ordered in ascending
order by priority, and the first instance(s) in the list are
selected for termination. Priority settings of one tenant
do not affect which instances are shed in another tenant.

The high availability group annotations provide a lim-
ited set of features: they ensure that cloud operators do
not load shed instances that are part of that group and
leave it with less than the minimum number of instanc-
es allowed. In this implementation the user is still re-
sponsible for determining scale-up needs and identify-
ing an HA group failures that occur outside of planned
operations.

The conditional grammar terms shown
in Table 3 describe when terminate or
reboot actions have acceptable conse-
quences to the user. If multiple predi-
cates are specified, all must be satisfied
for the operation to be deemed safe.
Note that this condition is merely advi-
sory; failures or other events may result
in resource outages causing user impact-
ing service outages regardless of these
specifications. This difference is the
major distinction between these specifi-
cations and SLAs.

3.3.2 Notification API

Key Name Description

reboot_when Semicolon delimited list of conditions, see Table
3.

terminate_when Semicolon delimited list of conditions, see Table
3.

snap-
shot_on_terminate

Boolean; create a snapshot of the instance before
terminating.

notify_url URL of service receiving event notifications.

ha_group_id Tenant-unique ID of service HA group.

ha_group_min Minimum number of instances within the HA
group.

priority A non-negative integer.

The primary goal of the notification API is to inform
user about system actions that impact their instances.
By annotating the instance with a “notify_url” tag, the
user can specify a URL that listens for events from
poncho. Events are sent as JSON encoded HTTP POST
requests to the “notify_url”. All events contain the fol-
lowing basic attributes:

● “timestamp” : A timestamp for the event
● “type” : An event type, from a fixed list.
● “description” : A descriptive explanation of

why this event is happening.

Specific event types contain additional attributes, listed
in Table 4.
Table 4. Description of notification event types

Currently instances default to no notification URL. We
have implemented an optional configuration of Poncho
that formats messages for these instances as an email to
the instance owner. For the HA group and shed-load
events, messages are sent as emails to the tenant admin-
isters.

User-written notification agents are fairly simple. A
server responds to the HTTP endpoint registered as a
notification URL, and takes appropriate actions. While
simple notification agents are fairly general, we have
found that most tenants want custom policies depending
on their needs.

3.4 Implementation

We implemented poncho in three parts. The first is a set
of scripts that provide a user-centric command line in-
terface to annotate nodes. The second is a notification
library that is used by administrative scripts to notify
userspace agents upon administrative action. The third
is a set of administrative scripts that can be run interac-
tively or periodically to shed load, service nodes, or kill
time limited tasks. This final component is run periodi-

cally in our initial prototype. The primary goal of this
prototype is to gain some experiences coordinating with
users in a productive fashion, so the system itself is
deliberately simplistic until we validate our basic mod-
el.

Our initial implementation of poncho is intended to
function as a force multiplier, whereby administrators

Event Type Description and supplemental information

reboot_scheduled A reboot has been scheduled. Includes the instance ID, name and reboot time.

rebooting The instance is now rebooting. Includes the instance ID, name.

terminate_scheduled The instance has been scheduled to be terminated. Includes the instance ID, name
and a termination time.

terminating The instance is now being terminated. Includes the instance ID and name.

terminated The instance was terminated at some point in the past. This notification is used for
service failures where the instance cannot be recovered. Includes the instance ID
and name.

snapshot_created A snapshot of the instance has been created. Includes the instance ID, instance
name and the ID of the created snapshot.

ha_group_degraded The HA group for this instance no longer has the minimum number of instances.
Includes the HA group ID and a list of instance IDs for instances still active within
that group. Sent once per HA group.

ha_group_healthy The HA group for this instance has transition from degraded to healthy. Includes
the HA group ID and the list of instances active within the group. Sent once per
HA group.

shed_load_request A request by the operators to the tenant to deallocate instances if possible. This is
sent out once for every unique notification URL within the tenant.

and users perform roughly similar sorts of tasks with
the aid of scripts that streamline these processes. Opera-
tors gain the ability to perform some service actions in
an automated fashion, and begin to understand the im-
pact of service options. Users gain the ability to submit
allocation requests for fixed duration, with automatic
termination, as well as the ability to communicate in-
formation about their workloads, like the impact of in-
stance outages.

Poncho is an open-source Python application, leverag-
ing existing OpenStack Python APIs and is compatible
with any Openstack deployment running Essex or new-
er releases. It is available on Github [12].

While we hope to integrate similar functionality into
Openstack, this version has been implemented in a min-
imally invasive fashion. Our goal in this effort is to gain
sufficient experience to develop a comprehensive mod-
el for user/operator interactions. Once we have some
confidence in our model, we plan to develop an Open-
stack blueprint and an implementation suitable for inte-
gration into Openstack itself.

3.5 Example Use Cases

For instances that have no annotations, a default anno-
tation is assumed which meets most users expectations
for cloud instances:

{ “terminate_when” : false, “reboot_when” : true }

This annotation declares instance reboots to be safe at
any time, but terminations to be deemed unsafe at any
time.

Running an instance for development work is a com-
mon use case on Magellan. For this case, we define a
minimum runtime of twelve hours, a full day of work,
before the instance can be terminated; we also enable
automatic snapshotting since the user may have im-
portant work that needs to be saved. Our conservative
policy is for tenants to delete unnecessary snapshots.

{ “terminate_when” : “MinRuntime(12h)”, snap-
shot_on_terminate : true }

For workloads that are throughput oriented, there are a
number of annotation configurations that might work.
The following annotation ensures that a minimum
number of instances are working for the HA group, that
the user is notified one hour before any scheduled
events and that this instance is only considered after
instances in the same tenant with a lower priority score:

{ “terminate_when” : “Notified(1h)”, “ha_group_id” :
12,
 “ha_group_min” : 5, priority : 10,
 “notify_url” : “http://example.com/notifications” }

4. Experiences and Discussion

An initial version of poncho has been deployed to users
on Magellan. Many of our tenants are invested in help-
ing us to develop the user model and resource manage-
ment capabilities, because they notice the lack of com-
munication, and feel they are using resources ineffi-
ciently. Initial user responses have been enthusiastic.

At this point, our two largest tenants have begun to use
these interfaces. One of these tenants has a throughput
dominated workload, and had previously communicated
this to us in an ad-hoc manner. In effect, the interfaces
provided by this system formalize a manual arrange-
ment. Another of our major tenants has a development
heavy workload, and had been looking for a system that
reaped old instances after taking snapshots for several
months. A third tenant, with a workload that consists of
a combination of development and throughput-oriented
instances has also agreed to begin using these interfaces
as well. At this point, we have only tested poncho’s
functionality in an artificial setting; we have not needed
to shed load or service poncho-mediated resources yet;
the system is fairly reliable, and all instances are not yet
tagged.

Our initial experiences with users have shown two basic
models. Users with throughput oriented workloads are
able to integrate these methods into their workflows
relatively easily, as all of their resources are started up
in a uniform way. Interactive users, largely instantiating
development instances, start their instances in a variety
of different ways, making uniform adoption considera-
bly more difficult. These latter kinds of instances con-
sume resources in a bursty fashion, while occupying
resources consistently. In our experiences, tenants want
to set custom policies for their development instances.
This approach is similar in philosophy to the one taken
by Netflix’s Janitor Monkey, and consolidates policy at
the tenant level, not with either the system or individual
users.

It remains an open question how broad adoption of the-
se APIs will be across tenants on our system. For this
reason, it was critical to set a reasonable default set of
annotations for instances. Once clear conservative op-
tion is to define both instance reboots and terminations
as invasive. Another more flexible option allows re-

boots with 24 hour calendar notice emailed to users
while still deeming terminations as invasive. We have
chosen this latter option, as it gives users some incen-
tive to learn these APIs and put them into use if they
have a sensitive workload.

With the addition of load-shedding capabilities, we
enable Openstack to implement a range of scheduling
algorithms familiar from public clouds and HPC sys-
tems. This core capability is the fundamental infrastruc-
ture for AWS spot instances, and HPC system scaven-
ger queues. We plan to explore these options for im-
proving system productivity.

Clouds put operators/system administrators into the role
of building API driven services for their organizations.
These new services implicitly include a collaborative
function with users, with a division of responsibilities
(which is familiar to administrators) and an abstraction
barrier, which is new. In our view, it is critical that
cloud operators be proactive, and help to design effec-
tive coordination facilities to enable users to use re-
sources effectively, both in throughput-oriented compu-
tational workloads and availability-oriented service
workloads. APIs, which provide services to users, can
just as easily be used to provide services to operators.
With this sort of approach, traditionally expensive prob-
lems can be simply solved. Solutions of this kind are
critical if private clouds are to grow to their full poten-
tial.

5. Background and Related Work

The problems of effective communication with users to
enable efficient resource management, including load-
shedding, are old ones in system management. In HPC
systems, resource allocations are explicitly annotated
with a maximum runtime. HPC schedulers, such as
Maui[17], and Slurm[18] can use these annotations to
implement scheduling algorithms such as conservative
backfill[25]. The availability of maximum runtimes
also enable deterministic draining of resources, a luxury
unavailable on private clouds due to the private cloud
resource allocation model. In [24], the authors explore
instituting explicit resource leases on top of the cloud
resource allocation model.

Public clouds have some features that enable effective
coordination between platform operators and cloud
users. Amazon’s Spot Instances[15] are a prime exam-
ple of that, and is specifically built on top of load-
shedding techniques.

AWS and Rackspace both have an API specifically for
coordinating planned outages. Instance and hypervisor
reboots are scheduled and that schedule is queryable by
the user. In some cases users may elect to reboot in-
stances at a time of their choosing before the scheduled
maintenance window.[1,3] This enables users to per-
form the required upgrades in a controlled fashion, e.g.
when personnel are available to diagnose and fix unex-
pected issues with the upgrade.

Support for high availability service groups are widely
supported; AWS and Microsoft Azure include mecha-
nisms to build such services. [1,7] In private cloud
software stacks, Openstack (via Heat[16]) and Eucalyp-
tus both support similar mechanisms.

Several systems provide auto-scaling functionality,
which could be configured to receive events from pon-
cho. AWS includes integrated auto-scaling services, as
does Azure. Heat provides related functionality for the
Openstack ecosystem. Some of these systems use VM
profiling tools to identify applications with high CPU or
memory load to be scaled.

Public cloud operators manage user expectations with
SLAs. This approach is quite effective in conjunction
with variable pricing across service classes. Our ap-
proach is slightly different, using annotations to signal
user desires, as opposed to making guarantees to the
users.

Rightscale[26] and Cycle Computing[27] are third party
resource management environments that implement
advanced policies on top of public and private clouds
for service and throughput-oriented workloads, respec-
tively.

In [8], the authors propose a strategy of improving pri-
vate cloud utilization with high-throughput Condor
tasks, which can implicitly be terminated at any time.
This strategy, similar to Amazon’s spot instance strate-
gy, is less flexible than coordination solution presented
in this paper, as it solely addresses the utilization prob-
lem, not the more general resource evacuation and load
shedding problems.

Netflix’s Simian Army[13] contains some resource
management features that we intentionally designed
into poncho. While most of the Simian Army applica-
tion is concerned with testing the fault tolerance of Net-
flix’s video streaming services, the Janitor Monkey
application identifies idle development instances and
terminates them after warning the owner. [14]

6. Conclusions

In this paper, we have presented the design and imple-
mentation of poncho, a tool that enables better commu-
nication between private cloud operators and their us-
ers, as well as early experiences with the tool. Our ini-
tial implementation of poncho is relatively simplistic,
and primarily aims to validate our model for API-driven
coordination between users and cloud operators. Pon-
cho has been deployed to users, and initial feedback has
been positive, suggesting users are willing to make use
of such interfaces if it makes their lives easier or ena-
bles more efficient use of computing resources.

One goal in writing this paper was to begin a communi-
ty discussion of this communication breakdown. As
adoption of private clouds grows, these issues will grow
more serious, particularly as these systems become
more saturated. As a largely non-technical issue, we
believe that broad experimentation, on real users, is the
best way to develop effective solutions. Moreover, it is
critical that system administrators, as they become pri-
vate cloud operators, remain cognisant of these issues,
and strive to minimize their impact.

Finally, as service-oriented computing infrastructure,
like private clouds, becomes widespread, operators (and
system administrators) will increasingly find their users
hidden away behind abstraction barriers, from virtual
machines to PaaS software and the like. Both building
effective collaborative models with users, and design-
ing APIs that are efficient and productive, are critical
tasks that system administrators are uniquely equipped
to address within their organizations.

7. Future Work

This work is a set of first steps toward improved com-
munication between users and operators on Openstack
private clouds. The prototype described here is a simple
implementation of such a conduit, no doubt it will be
refined or even redesigned as users develop more so-
phisticated requirements, driven by their application
workloads.

One of the critical pieces of infrastructure provided by
this system is a mechanism that can be used for load
shedding, as well as a way to communicate with users
when this action is required. As a building block, load
shedding enables a whole host of more advanced re-
source management capabilities, like spot instances,
advanced reservations, and fairshare scheduling. After
our initial assessment of this coordination model is

complete, we plan to build an active implementation,
that can directly implement these features.

Notifications, particularly the explicit load-shedding
request, enable the creation of hierarchical cooperative
resource managers, which is probably the best path
forward for integration with traditional resource man-
agers.

Acknowledgment

This work was supported by the U. S. Department of
Energy, Office of Science, under Contract No. DE-
AC02-06CH11357.

The submitted manuscript has been created by UChica-
go Argonne, LLC, Operator of Argonne National La-
boratory ("Argonne"). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Gov-
ernment.

References

[1] Amazon EC2 Maintenance Help,
http://aws.amazon.com/maintenance-help/ on
4/30/2013.
[2] OpenStack API Documentation
http://api.openstack.org/api-ref.html
[3] Preparing for a Cloud Server Migration, retrived
from
http://www.rackspace.com/knowledge_center/article/pr
eparing-for-a-cloud-server-migration on 4/30/13.
[4] Provisioning Policies for Elastic Computing En-
vironments, Marshall, P., Tufo, H., Keahey, K. Pro-
ceedings of the 9th High-Performance Grid and Cloud
Computing Workshop and the 26th IEEE International
Parallel and Distributed Processing Symposium
(IPDPS). Shanghai, China. May 2012.
[5] A Comparison and Critique of Eucalyptus,
OpenNebula and Nimbus, Sempolinski, P.; Thain, D.
IEEE Second International Conference on Cloud Com-
puting Technology and Science (CloudCom), 2010,
pp.417-426, Nov. 30 2010-Dec. 3
2010http://www3.nd.edu/~ccl/research/papers/
psempoli-cloudcom.pdf
[6] Nova API Feature Comparison, retrieved from
https://wiki.openstack.org/wiki/Nova/APIFeatureComp
arison on 4/30/13.

[7] Windows Azure Execution Models, retrived from
http://www.windowsazure.com/en-
us/develop/net/fundamentals/compute/ on 4/30/13.
[8] Improving Utilization of Infrastructure Clouds,
Marshall, P., Keahey K., Freeman, T. Proceedings of
the IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2011), Newport
Beach, CA. May 2011.
[9] Manage the Availability of Virtual Machines,
http://www.windowsazure.com/en-
us/manage/linux/common-tasks/manage-vm-
availability/ retrived on 30 April 2013.
[10] Troubleshooting in Windows Azure,
http://www.windowsazure.com/en-
us/manage/linux/best-practices/troubleshooting/
retrived on 30 April 2013.
[11] Magellan: Experiences from a Science Cloud,
Lavanya Ramakrishnan, Piotr T. Zbiegel, Scott Camp-
bell, Rick Bradshaw, Richard Shane Canon, Susan
Coghlan, Iwona Sakrejda, Narayan Desai, Tina De-
clerck, Anping Liu, Proceedings of the 2nd Interna-
tional Workshop on Scientific Cloud Computing, ACM
ScienceCloud '11, 2011
[12] Poncho Github Repository, retrieved from
https://github.com/magellancloud/poncho on 4/30/13
[13] The Netflix Simian Army, Y. Izrailevsky, A.
Tseitlin, The Netflix Tech Blog, 19 July 2011,
http://techblog.netflix.com/2011/07/netflix-simian-
army.html, retrived on 30 April 2013
[14] Janitor Monkey: Keeping the Cloud Tidy and
Clean, M. Fu, C. Bennett, The Netflix Tech Blog,
http://techblog.netflix.com/2013/01/janitor-monkey-
keeping-cloud-tidy-and.html, retrived on 30 April 2013.
[15] Amazon EC2 Spot Instances,
http://aws.amazon.com/ec2/spot-instances/, 30 April
2013.
[16] Heat: A Template based orchestration engine
for OpenStack, S. Dake, OpenStack Summit, San Die-
go, San Diego CA, October 2012,
http://www.openstack.org/summit/san-diego-
2012/openstack-summit-sessions/presentation/heat-a-
template-based-orchestration-engine-for-openstack,
retrived on 30 April 2013.
[17] Core Algorithms of the Maui Scheduler, David
Jackson, Quinn Snell, and Mark Clement, Proceedings
of Job Scheduling Strategies for Parallel Processors
(JSSPP01), 2001.
[18] SLURM: Simple Linux Utility for Resource
Management, A. Yoo, M. Jette, and M. Grondona, Job
Scheduling Strategies for Parallel Processing, volume
2862 of Lecture Notes in Computer Science, pages 44-
60, Springer-Verlag, 2003.

[19] OpenStack: Open source software for building
public and private clouds, http://www.openstack.org/
retrived on 30 April 2013.
[20] Apache CloudStack: Open source cloud compu-
ting, http://cloudstack.apache.org/ retrived on 30 April
2013.
[21] The Eucalyptus Open-source Cloud-computing
System. D. Nurmi, R. Wolski, C. Grzegorczyk, G.
Obertelli, S. Soman, L. Youseff, and D.i Zagorodnov.
In Cluster Computing and the Grid, 2009. CCGRID'09.
9th IEEE/ACM International Symposium on, pp. 124-
131. IEEE, 2009.
[22] Ganeti: Cluster-based virtualization manage-
ment software, https://code.google.com/p/ganeti/ re-
treived on 30 April 2013.
[23] OpenNebula: The open source virtual machine
manager for cluster computing, J. Fontán, T.
Vázquez, L. Gonzalez, R. S. Montero, and I. M.
Llorente, Open Source Grid and Cluster Software Con-
ference. 2008.
[24] Capacity leasing in cloud systems using the
opennebula engine. B. Sotomayor, R.S. Montero, I.M.
Llorente, and I. Foster. "In Workshop on Cloud Compu-
ting and its Applications, 2008.
[25] The ANL/IBM SP Scheduling System. D. Lifka.
In Job Scheduling Strategies for Parallel Processing,
pp. 295-303. Springer Berlin Heidelberg, 1995.
[26] Rightscale Cloud Management,
http://www.rightscale.com, retrieved 20 August, 2013.
[27] Cycle Computing,
http://www.cyclecomputing.com, retrieved 20 August,
2013.

