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Abstract 

 
Clouds establish a new division of responsibilities between platform operators and users than have traditionally ex-
isted in computing infrastructure. In private clouds, where all participants belong to the same organization, this cre-
ates new barriers to effective communication and resource usage. In this paper, we present poncho, a tool that im-
plements APIs that enable communication between cloud operators and their users, for the purposes of minimizing 
impact of administrative operations and load shedding on highly-utilized private clouds. 

 
1. Introduction 

With the rise of Amazon EC2 and other public Infra-
structure-as-a-Service (IaaS) clouds, organizations are 
starting to consider private clouds: using a self-service 
cloud model for managing their computing resources 
and exposing those resources to internal users.  
 
Open source projects such as OpenStack[19], Cloud-
Stack[20], Eucalyptus[21], Ganeti[22], and OpenNebu-
la[23] allow system administrators to build local cloud 
systems, offering capabilities similar to their public 
cloud counterparts: the ability to provision computa-
tional, storage and networking resources on demand via 
service APIs. The availability of these APIs provide 
many advantages over the previous manual approaches:  
applications can scale elastically as demand rises and 
falls, users can rapidly prototype on development re-
sources and seamlessly transition to production de-
ployments. On private cloud systems, these activities 
can occur within a more controlled environment than 
the public cloud: within the company’s private network 
and without paying a third party (and presumably a 
profit margin) for resource usage. These systems are 
quickly becoming a major force in computing infra-
structure.  
 
Private clouds face different operational difficulties 
compared to other large scale systems such as public 
clouds, traditional server farms, and HPC systems. Pri-
vate cloud resource management features lag those of 
public clouds, HPC systems and enterprise infrastruc-
ture. Most importantly, resource management capabili-
ties lag other systems, forcing resource underutilization 
in many cases, and lacking the ability to enforce re-
source allocation priorities. But the most difficult issue 

faced by private cloud operators is the user model. On 
clouds, users become responsible for some administra-
tive functions, while basic platform management is left 
to the cloud operators. There is no structured interface 
between cloud users and cloud operators, resulting in 
poor coordination between the two. These coordination 
problems become dire when systems are highly utilized, 
due to the absence of slack. This is primarily a technical 
issue, as similar systems are effectively used in large 
scale compute clusters at similar load. We propose the 
creation of such an interface, in order to improve effec-
tiveness of private cloud platforms, as well as to ease 
the operations of these platforms. This effort is the pri-
mary contribution of this work. 
 
At Argonne we operate the Magellan system [11], an 
OpenStack-based private cloud platform dedicated to 
computational science workloads. Magellan consists of 
approximately 800 compute nodes of heterogeneous 
configurations totaling around 7,800 cores, 30 TB of 
memory and 1.2PB of storage. Resource use is un-
metered, but basic system quotas, such as core count, 
memory, storage capacity, and numbers of VM instanc-
es, are enforced. Magellan has been in operation for 
nearly 30 months as an OpenStack system and for much 
of this time was the largest deployment of OpenStack in 
the world. The system supports a large variety of user 
groups with different workloads, requirements, and 
expectations.  
 
During this time, we have experienced a variety of is-
sues caused by this lack of communication. Many of 
these were caused by ill-informed user expectations and 
high coordination costs.  Initially, users drew from their 
experiences with single physical machines, resulting in 
lots of independent, unique instances. Even worse, there 



was a widespread lack of understand of the ephemeral 
storage concept that is widely used in systems. These 
factors conspired to result in issues where serious user 
data could be (and occasionally was) lost due to the 
failure of ephemeral resources. These factors resulted in 
substantial work in case of resource failures, and caused 
us to be concerned in cases where service operations 
required termination of ephemeral virtual machines. In 
turn, this greatly increased our communication burden 
when preparing for service operations. This kind of 
event is representative of a larger class of events where 
the user support service level should be carefully con-
sidered when deploying such a system. 
 
The cloud model for applications, that of horizontally 
scalable applications with robust fault tolerance, dy-
namic scalability, and extreme automation, is a poor 
match for legacy workloads, or some computational 
science workloads. The former architecture is ideal for 
cloud operators, as user services are tolerant to failures 
of underlying instances, while the latter is what many 
users need in order to achieve their goals. This mis-
match is one of the challenges facing private cloud op-
erators. Worse yet, this incongruity is hidden behind the 
abstractions provided by cloud APIs, limiting the ability 
of cloud operators and users to effectively collaborate. 
 
This issue can, and must, be alleviated by improving 
the communication between users and operators. In this 
paper, we will discuss concrete operational and usabil-
ity issues caused by this shortcoming, many of which 
are specific to private clouds. We will present poncho1, 
a lightweight conduit for API-driven communication 
via instance annotations, as well as comparing it with 
comparable facilities in public clouds. This system is 
currently in the early stages of deployment, with users 
beginning to incorporate annotations into their work-
loads. 
 

2.	
  Operational Challenges of Private 
Clouds	
  
 
Operationally, private clouds are distinct from public 
clouds and traditional computing infrastructure (HPC 
systems and server farms) in several ways. Private 
clouds are, by their nature, operated by an organization 
for internal users. While these are similar in many ways 
to public clouds, this model implies an alignment of 

                                                
1 Ponchos are useful in circumstances directly follow-
ing clouds filling. 

goals between system operators and users that does not 
exist in the market-based interactions of public clouds. 
This alignment means that operators and users are in-
vested in deriving the most institutional benefit from 
private cloud systems, and are expected to collaborate 
effectively. In many ways, this is analogous to server 
farms or HPC systems, where incentives are similarly 
aligned. The cloud user model becomes even more 
challenging on private clouds; responsibilities are di-
vided responsibilities in a far more complex ways than 
on traditional infrastructure, and both end users and 
system operators are expected to collaborate. These 
factors combine to cause operational challenges in a 
variety of dimensions. We will discuss these in turn. 
 
2.1 Private Clouds 
 
Private clouds are motivated by a desire to have the best 
of all possible worlds. Effectively, organizations want 
the benefits of public clouds in terms of flexibility, 
availability, and capacity planning, with the greater 
than 95% utilization rates of large scale HPC systems, 
and performance of traditional server farms. Also, 
many organizations want large multi-tenant systems, 
which enable economies of scale unavailable in uncon-
solidated infrastructure. Finally, organizations want a 
cloud where operators and users have aligned incen-
tives, and can collaborate on organizational goals. 
 
As always, the devil is in the details. When building 
private clouds, several challenges make it difficult to 
realize this ideal system goal. The state of private cloud 
software, while improving quickly, lags behind large 
scale public clouds like AWS. The flexibility of the 
cloud resource allocation model, where users have un-
fettered access to resources, requires that different 
groups perform specialized functions: operators build 
the cloud platform, while users build services and ap-
plications using these resources, and the APIs that en-
capsulate them. These APIs are insufficient to express 
the full range of user goals, rather, users specify re-
quests in resource-centric notation. The end results of 
this approach are a stream of requests that the cloud 
resource manager attempts to satisfy, with no 
knowledge of their relative importance, duration, or 
underlying use case. Because there is no conduit for 
user intent information, it is difficult for users and oper-
ators to coordinate effectively.  Moreover, this makes 
direct collaboration between users and operators, a key 
benefit of private clouds, considerably more difficult.  
 
 
 



2.2 The Private Cloud/Openstack Resource 
Management Model 
 
OpenStack provides APIs to access compute, storage, 
and networking resources. Resource allocations in 
OpenStack have no time component; that is, there is no 
duration. This shortcoming has several important ef-
fects, all of which center on resource reclamation. First, 
resources can’t be reclaimed by the system when need-
ed for other work. This limits the ability of the sched-
uler to implement priority scheduling, as resources are 
committed to a request once they are awarded, until the 
user releases them. Second, when the system fills, it 
becomes effectively useless until resources are released. 
This disrupts the appearance of elasticity in the system; 
if users can’t request resources and be confident in their 
requests being satisfied, it causes them to behave patho-
logically, hoarding resources and so forth. Finally, this 
model poses serious challenges to the effectiveness goal 
of private clouds, because the system can’t reclaim re-
sources that are being ineffectively used or left idle 
altogether. This is a distinct goal of private clouds, be-
cause resource provider and resource consumer incen-
tives are aligned. 
 
OpenStack only has two methods for implementing 
resource management policies: request placement, and 
quotas. Both of these methods are inadequate for multi-
tenant systems, where users have competing goals. Re-
source placement includes methods for selection of 
resources when new requests arrive. These decisions 
are sticky, that is, they persist until the allocation is ter-
minated, so they aren’t useful for implementing policy 
in steady state operations. Quotas are a component of 
the solution, and are the only method to implement 
fairness by default. Because these quotas are static, and 
are hard quotas, they are a blunt instrument, and can’t 
be used to softly change user behavior.  
 
2.3 Private Cloud User Model and the Role 
of Platform Operators 
 
One of the major features of private clouds is a re-
formulation of responsibilities centering on the role of 
users and platform operators. In the private cloud mod-
el, platform operators are responsible for the health of 
the underlying cloud platform, including API endpoints, 
and hardware infrastructure, as well as aiming to meet 
the SLAs for allocated resources. Users are responsible 
for everything that happens inside of resources. Fur-
thermore, these resources are black boxes; platform 
operators don’t have any visibility into user allocations, 
or their states. This disconnect is problematic from a 
variety of perspectives. First, operators are unable to 

accurately assess the impact of failures, terminations, 
and service actions. Second, operators can’t determine 
which resources are in use for tasks important to users, 
versus lower priority tasks they may be running. Build-
ing a channel for communication between users and 
operators creates an opportunity for explicit collabora-
tion, where only ad-hoc methods previously existed. 
 
3. User/Operator Coordination on Private 
Clouds 
 
While private clouds are a quickly growing architecture 
for computing resources, the current state of the art 
leaves several operational gaps, as described above. In 
order to address these issues, we propose the addition of 
two methods for coordination between users and opera-
tors. The first of these is an annotation method, where-
by users can describe the properties of their VMs. This 
enables users to communicate requirements and expec-
tations to cloud operators unambiguously. Also, these 
annotations allow system operators to reclaim resources 
and take other actions while minimizing user impact. 
The second component is a notification scheme where-
by users are told when their resources are affected by 
failures, resource contention or administrative opera-
tions. Both of these mechanisms are used by the third 
component, which plans “safe” operations based on 
user annotations and notifies users as needed. In this 
section, we will discuss the explicit use cases this work 
addresses, as well as design and implementation of the-
se features. 
 
3.2 Use Cases 
 
Many private cloud operations are impacted by the lack 
of good information flows between users and operators, 
as well as the basic model offered for resource man-
agement. We find that users have particular use cases 
for each of their instances--information that should be 
communicated to the cloud operators. Operators need to 
perform a variety of service actions on the resources 
that comprise the cloud and lack the tools to plan ac-
tions while minimizing user impact. 
 
3.2.1 Instance Use Cases 
 
Most of the activity on our system is centered around 
the following broad use cases. Each of these is impact-
ed by the lack of good communication between opera-
tors and users.  
 
Service instances - Service instances implement net-
work accessible services. Often, these services must 
answer requests immediately, hence have availability 



requirements, and have provisioned resources in a high 
availability configuration. They are managed with the 
help of auto-scaling software such as AWS CloudFor-
mation or Openstack Heat. Fault tolerance is often im-
plemented at the application layer, which can provide 
additional flexibility for the platform.  
 
Compute-intensive instances - These instances perform 
batch-oriented computation or analysis workloads. 
They are throughput oriented workloads, where the 
results of computation are needed, but not immediately. 
Batch queues or task managers usually manage this 
workload internal to the allocation and can restart failed 
tasks.  
 
Development instances - These instances have the in-
teractive character of service instances, but none of the 
HA qualities; users access resources directly for devel-
opment reasons. These instances are not heavily uti-
lized, as with the previous two use cases, and are only 
used when the user is active. They may contain unique 
data in some cases. 
 
Ad-hoc/Bespoke instances - These instances are the 
wild west. Users treat some instances like physical ma-
chines, building custom configurations and running ad-
hoc tasks. These instances are the most difficult to sup-
port, as they likely contain some unique data, and may 
have long-running application state that could be lost in 
event of failures or instance reboots. 
 
3.2.2 Operator Use Cases 
 
Operators need to be able to perform a variety of ser-
vice actions on the cloud. In both of these cases, user-
visible impact must be minimized. This goal is made 
more difficult by the poor flow of information between 
users and operators.  
 
Resource Maintenance 
Components of the cloud need proactive maintenance, 
for reasons ranging from software updates and security 
patches to signs of impending failure. In these situa-
tions, operators need to effectively coordinate with us-
ers. These processed may be manually or automatically 
initiated, and depending on the circumstances may be 
synchronous (in the case of impending failures) or 
asynchronous (in the case of software updates that may 
be delayed for a limited time).  
 
Rolling updates fall into this category. These updates 
need to be performed, but do not necessarily have a 
short-term deadline. Updates could be performed op-
portunistically when a resource is free, however, oppor-

tunity decreases as utilization increases. While this ap-
proach can result in substantial progress with no user-
visible impact, long-running allocations prevent it from 
being a comprehensive solution; user-visible operations 
are usually required on system-wide updates.  
Load Shedding 
In some cases, the cloud needs available resources for 
new requests, requiring some resource allocations to be 
terminated. This can occur due to hardware failure, 
single tenant deadlines, or a lack of fairness in the 
schedule. Ideally, load shedding minimizes visible im-
pact to user-run services, as well as the loss of local 
application state. In short, when resource allocations 
must be terminated, choose wisely. Our initial load 
shedding goal is to support a basic, synchronous model. 
More complex policies will follow as future work. 
 
 
Notifications 
A cross-cutting issue with all operator workflows is 
providing the appropriate notifications to users when 
actions are taken against resources. Sending an email or 
opening a service ticket works if an operator manually 
makes a few service actions during the day. But as ser-
vice actions are automated, notifications must also be-
come automated. 
 
3.3 Design 
 
The design of poncho is centered around the basic no-
tion that users and operators can coordinate through a 
combination of resource annotations and system notifi-
cations. That is, users and operators agree to mutually 
beneficial coordination for operations which can poten-
tially cause user-visible outages. These are subtly dif-
ferent from traditional SLAs, where the system operator 
agrees to provide a particular service level. Rather, in 
this case, users specify their goals, and the operators 
provide a best-effort attempt to minimize high impact 
changes. These goals are approached individually on a 
tenant by tenant basis, so inter-tenant prioritization 
doesn’t need to be expressed here. 
 
These goals have a few major parts. The first compo-
nent encodes the impact of service actions on a given 
instance, and describe conditions where an action will 
have acceptable impact on the user workload. An ex-
ample of this is “instance X can be rebooted during the 
interval between 10PM and 2AM”, or “instance Y can 
be rebooted at any time”. The second, closely related 
part describes how resources should be deallocated, 
when the system does so. For example, some resources 
should be snapshotted prior to shutdown, while others 
can be terminated with no loss of data. A third class of 



annotations describe actions the system should take on 
the user’s behalf, such as killing instances after a speci-
fied runtime.  
 
The particular annotations we have chosen enable a key 
resource management capability: load shedding. With 
the addition of load shedding, more advanced resource 
management strategies can be implemented, where they 
were not previously possible. This outcome is a key 
deliverable of our design; its importance cannot be un-
derstated. 
 
The other major part of poncho’s architecture is a noti-
fication function. Users can register to be notified when 
service actions are performed. These notifications de-
scribe the resources affected, the action taken, and a 
basic reason for the action. For example, a notification 
might tell a user that “instance Z was terminated be-
cause of a load shedding event”. This would signal that 
requests to re-instantiate the instance would likely fail. 
Alternatively, a notification like “instance Z was termi-
nated due to failure” would signal that capacity is likely 
available for a replacement allocation request. Notifica-
tions are delivered on a best effort basis, with a limited 
number of immediate retries, but no guarantee of relia-
ble delivery. As most of this information is available 
through default APIs in an explicit way, applications 
can poll as a fallback. 
 
3.3.1 Annotation API 
 
We have modeled instance annotations as a series of 
key/value pairs, stored as instance metadata via the pre-
existing mechanism in OpenStack. [2] These values are 
described in the table below. Examples of common use 
cases are show in the following examples section.  
 
Table 2 : Instance annotations, metadata 

Table 3 : Conditional grammar 
 

Condition example Description 

“MinRuntime(durat
ion)” 

True if the instance has been running 
for the specified duration. 

“Notified(interval)” True if the interval has elapsed since 
a scheduled event notification was 
sent. 

“TimeOfDay(start, 
stop, tz)” 

True if the time of day is between 
start and stop with the optional time 
zone offset from UTC. Example: 
“TimeOfDay(22:00, 02:00, -05:00)”. 

 
These attributes specify user goals pertaining to in-
stance reboots and termination, as well as whether in-
stances should be snapshotted upon termination. Users 
can specify a notification URL where events are sub-
mitted, and a tenant-specific high availability group ID. 
The priority attribute is used to choose between in-
stances when load shedding occurs. If a tenant is chosen 
for load shedding, and multiple instances are flagged a 
terminatable, these instances are ordered in ascending 
order by priority, and the first instance(s) in the list are 
selected for termination. Priority settings of one tenant 
do not affect which instances are shed in another tenant. 
 
The high availability group annotations provide a lim-
ited set of features: they ensure that cloud operators do 
not load shed instances that are part of that group and 
leave it with less than the minimum number of instanc-
es allowed. In this implementation the user is still re-
sponsible for determining scale-up needs and identify-
ing an HA group failures that occur outside of planned 
operations. 

 
The conditional grammar terms shown 
in Table 3 describe when terminate or 
reboot actions have acceptable conse-
quences to the user. If multiple predi-
cates are specified, all must be satisfied 
for the operation to be deemed safe. 
Note that this condition is merely advi-
sory; failures or other events may result 
in resource outages causing user impact-
ing service outages regardless of these 
specifications. This difference is the 
major distinction between these specifi-
cations and SLAs. 
 
3.3.2 Notification API 

Key Name Description 

reboot_when Semicolon delimited list of conditions, see Table 
3. 

terminate_when Semicolon delimited list of conditions, see Table 
3. 

snap-
shot_on_terminate 

Boolean; create a snapshot of the instance before 
terminating. 

notify_url URL of service receiving event notifications. 

ha_group_id Tenant-unique ID of service HA group. 

ha_group_min Minimum number of instances within the HA 
group. 

priority A non-negative integer. 



 
The primary goal of the notification API is to inform 
user about system actions that impact their instances. 
By annotating the instance with a “notify_url” tag, the 
user can specify a URL that listens for events from 
poncho. Events are sent as JSON encoded HTTP POST 
requests to the “notify_url”. All events contain the fol-
lowing basic attributes: 
 

● “timestamp” : A timestamp for the event 
● “type” : An event type, from a fixed list. 
● “description” : A descriptive explanation of 

why this event is happening. 
 
Specific event types contain additional attributes, listed 
in Table 4. 
Table 4. Description of notification event types 

 
Currently instances default to no notification URL. We 
have implemented an optional configuration of Poncho 
that formats messages for these instances as an email to 
the instance owner. For the HA group and shed-load 
events, messages are sent as emails to the tenant admin-
isters. 
 

User-written notification agents are fairly simple. A 
server responds to the HTTP endpoint registered as a 
notification URL, and takes appropriate actions. While 
simple notification agents are fairly general, we have 
found that most tenants want custom policies depending 
on their needs. 
 
3.4 Implementation 
 
We implemented poncho in three parts. The first is a set 
of scripts that provide a user-centric command line in-
terface to annotate nodes. The second is a notification 
library that is used by administrative scripts to notify 
userspace agents upon administrative action. The third 
is a set of administrative scripts that can be run interac-
tively or periodically to shed load, service nodes, or kill 
time limited tasks. This final component is run periodi-

cally in our initial prototype. The primary goal of this 
prototype is to gain some experiences coordinating with 
users in a productive fashion, so the system itself is 
deliberately simplistic until we validate our basic mod-
el.   
 
Our initial implementation of poncho is intended to 
function as a force multiplier, whereby administrators 

Event Type Description and supplemental information 

reboot_scheduled A reboot has been scheduled. Includes the instance ID, name and reboot time. 

rebooting The instance is now rebooting. Includes the instance ID, name. 

terminate_scheduled The instance has been scheduled to be terminated. Includes the instance ID, name 
and a termination time. 

terminating The instance is now being terminated. Includes the instance ID and name. 

terminated The instance was terminated at some point in the past. This notification is used for 
service failures where the instance cannot be recovered. Includes the instance ID 
and name. 

snapshot_created A snapshot of the instance has been created. Includes the instance ID, instance 
name and the ID of the created snapshot. 

ha_group_degraded The HA group for this instance no longer has the minimum number of instances. 
Includes the HA group ID and a list of instance IDs for instances still active within 
that group. Sent once per HA group. 

ha_group_healthy The HA group for this instance has transition from degraded to healthy. Includes 
the HA group ID and the list of instances active within the group. Sent once per 
HA group. 

shed_load_request A request by the operators to the tenant to deallocate instances if possible. This is 
sent out once for every unique notification URL within the tenant. 



and users perform roughly similar sorts of tasks with 
the aid of scripts that streamline these processes. Opera-
tors gain the ability to perform some service actions in 
an automated fashion, and begin to understand the im-
pact of service options. Users gain the ability to submit 
allocation requests for fixed duration, with automatic 
termination, as well as the ability to communicate in-
formation about their workloads, like the impact of in-
stance outages. 
 
Poncho is an open-source Python application, leverag-
ing existing OpenStack Python APIs and is compatible 
with any Openstack deployment running Essex or new-
er releases. It is available on Github [12].  
 
While we hope to integrate similar functionality into 
Openstack, this version has been implemented in a min-
imally invasive fashion. Our goal in this effort is to gain 
sufficient experience to develop a comprehensive mod-
el for user/operator interactions. Once we have some 
confidence in our model, we plan to develop an Open-
stack blueprint and an implementation suitable for inte-
gration into Openstack itself.  
 
3.5 Example Use Cases 
 
For instances that have no annotations, a default anno-
tation is assumed which meets most users expectations 
for cloud instances: 
 
{ “terminate_when” : false, “reboot_when” : true } 
 
This annotation declares instance reboots to be safe at 
any time, but terminations to be deemed unsafe at any 
time.  
 
Running an instance for development work is a com-
mon use case on Magellan. For this case, we define a 
minimum runtime of twelve hours, a full day of work, 
before the instance can be terminated; we also enable 
automatic snapshotting since the user may have im-
portant work that needs to be saved. Our conservative 
policy is for tenants to delete unnecessary snapshots.  
 
{ “terminate_when” : “MinRuntime(12h)”, snap-
shot_on_terminate : true } 
 
For workloads that are throughput oriented, there are a 
number of annotation configurations that might work. 
The following annotation ensures that a minimum 
number of instances are working for the HA group, that 
the user is notified one hour before any scheduled 
events and that this instance is only considered after 
instances in the same tenant with a lower priority score: 

 
{ “terminate_when” : “Notified(1h)”, “ha_group_id” : 
12,  
  “ha_group_min” : 5, priority : 10,  
  “notify_url” : “http://example.com/notifications”  } 
 
4. Experiences and Discussion 
 
An initial version of poncho has been deployed to users 
on Magellan. Many of our tenants are invested in help-
ing us to develop the user model and resource manage-
ment capabilities, because they notice the lack of com-
munication, and feel they are using resources ineffi-
ciently. Initial user responses have been enthusiastic.  
 
At this point, our two largest tenants have begun to use 
these interfaces. One of these tenants has a throughput 
dominated workload, and had previously communicated 
this to us in an ad-hoc manner. In effect, the interfaces 
provided by this system formalize a manual arrange-
ment. Another of our major tenants has a development 
heavy workload, and had been looking for a system that 
reaped old instances after taking snapshots for several 
months. A third tenant, with a workload that consists of 
a combination of development and throughput-oriented 
instances has also agreed to begin using these interfaces 
as well. At this point, we have only tested poncho’s 
functionality in an artificial setting; we have not needed 
to shed load or service poncho-mediated resources yet; 
the system is fairly reliable, and all instances are not yet 
tagged. 
 
Our initial experiences with users have shown two basic 
models. Users with throughput oriented workloads are 
able to integrate these methods into their workflows 
relatively easily, as all of their resources are started up 
in a uniform way. Interactive users, largely instantiating 
development instances, start their instances in a variety 
of different ways, making uniform adoption considera-
bly more difficult. These latter kinds of instances con-
sume resources in a bursty fashion, while occupying 
resources consistently. In our experiences, tenants want 
to set custom policies for their development instances. 
This approach is similar in philosophy to the one taken 
by Netflix’s Janitor Monkey, and consolidates policy at 
the tenant level, not with either the system or individual 
users. 
 
It remains an open question how broad adoption of the-
se APIs will be across tenants on our system. For this 
reason, it was critical to set a reasonable default set of 
annotations for instances. Once clear conservative op-
tion is to define both instance reboots and terminations 
as invasive. Another more flexible option allows re-



boots with 24 hour calendar notice emailed to users 
while still deeming terminations as invasive. We have 
chosen this latter option, as it gives users some incen-
tive to learn these APIs and put them into use if they 
have a sensitive workload.  
 
With the addition of load-shedding capabilities, we 
enable Openstack to implement a range of scheduling 
algorithms familiar from public clouds and HPC sys-
tems. This core capability is the fundamental infrastruc-
ture for AWS spot instances, and HPC system scaven-
ger queues. We plan to explore these options for im-
proving system productivity.  
 
Clouds put operators/system administrators into the role 
of building API driven services for their organizations. 
These new services implicitly include a collaborative 
function with users, with a division of responsibilities 
(which is familiar to administrators) and an abstraction 
barrier, which is new. In our view, it is critical that 
cloud operators be proactive, and help to design effec-
tive coordination facilities to enable users to use re-
sources effectively, both in throughput-oriented compu-
tational workloads and availability-oriented service 
workloads. APIs, which provide services to users, can 
just as easily be used to provide services to operators. 
With this sort of approach, traditionally expensive prob-
lems can be simply solved. Solutions of this kind are 
critical if private clouds are to grow to their full poten-
tial. 
 
5. Background and Related Work 
 
The problems of effective communication with users to 
enable efficient resource management, including load-
shedding, are old ones in system management. In HPC 
systems, resource allocations are explicitly annotated 
with a maximum runtime. HPC schedulers, such as 
Maui[17], and Slurm[18] can use these annotations to 
implement scheduling algorithms such as conservative 
backfill[25]. The availability of maximum runtimes 
also enable deterministic draining of resources, a luxury 
unavailable on private clouds due to the private cloud 
resource allocation model. In [24], the authors explore 
instituting explicit resource leases on top of the cloud 
resource allocation model. 
 
Public clouds have some features that enable effective 
coordination between platform operators and cloud 
users. Amazon’s Spot Instances[15] are a prime exam-
ple of that, and is specifically built on top of load-
shedding techniques.  
 

AWS and Rackspace both have an API specifically for 
coordinating planned outages. Instance and hypervisor 
reboots are scheduled and that schedule is queryable by 
the user. In some cases users may elect to reboot in-
stances at a time of their choosing before the scheduled 
maintenance window.[1,3] This enables users to per-
form the required upgrades in a controlled fashion, e.g. 
when personnel are available to diagnose and fix unex-
pected issues with the upgrade.  
 
Support for high availability service groups are widely 
supported; AWS and Microsoft Azure include mecha-
nisms to build such services. [1,7] In private cloud 
software stacks, Openstack (via Heat[16]) and Eucalyp-
tus both support similar mechanisms.  
 
Several systems provide auto-scaling functionality, 
which could be configured to receive events from pon-
cho. AWS includes integrated auto-scaling services, as 
does Azure. Heat provides related functionality for the 
Openstack ecosystem. Some of these systems use VM 
profiling tools to identify applications with high CPU or 
memory load to be scaled. 
 
Public cloud operators manage user expectations with 
SLAs. This approach is quite effective in conjunction 
with variable pricing across service classes. Our ap-
proach is slightly different, using annotations to signal 
user desires, as opposed to making guarantees to the 
users.  
 
Rightscale[26] and Cycle Computing[27] are third party 
resource management environments that implement 
advanced policies on top of public and private clouds 
for service and throughput-oriented workloads, respec-
tively. 
 
In [8], the authors propose a strategy of improving pri-
vate cloud utilization with high-throughput Condor 
tasks, which can implicitly be terminated at any time. 
This strategy, similar to Amazon’s spot instance strate-
gy, is less flexible than coordination solution presented 
in this paper, as it solely addresses the utilization prob-
lem, not the more general resource evacuation and load 
shedding problems. 
 
Netflix’s Simian Army[13] contains some resource 
management features that we intentionally designed 
into poncho. While most of the Simian Army applica-
tion is concerned with testing the fault tolerance of Net-
flix’s video streaming services, the Janitor Monkey 
application identifies idle development instances and 
terminates them after warning the owner. [14] 
 



6. Conclusions 
 
In this paper, we have presented the design and imple-
mentation of poncho, a tool that enables better commu-
nication between private cloud operators and their us-
ers, as well as early experiences with the tool. Our ini-
tial implementation of poncho is relatively simplistic, 
and primarily aims to validate our model for API-driven 
coordination between users and cloud operators. Pon-
cho has been deployed to users, and initial feedback has 
been positive, suggesting users are willing to make use 
of such interfaces if it makes their lives easier or ena-
bles more efficient use of computing resources. 
 
One goal in writing this paper was to begin a communi-
ty discussion of this communication breakdown. As 
adoption of private clouds grows, these issues will grow 
more serious, particularly as these systems become 
more saturated. As a largely non-technical issue, we 
believe that broad experimentation, on real users, is the 
best way to develop effective solutions. Moreover, it is 
critical that system administrators, as they become pri-
vate cloud operators, remain cognisant of these issues, 
and strive to minimize their impact. 
 
Finally, as service-oriented computing infrastructure, 
like private clouds, becomes widespread, operators (and 
system administrators) will increasingly find their users 
hidden away behind abstraction barriers, from virtual 
machines to PaaS software and the like. Both building 
effective collaborative models with users, and design-
ing APIs that are efficient and productive, are critical 
tasks that system administrators are uniquely equipped 
to address within their organizations.  
 
7. Future Work 
 
This work is a set of first steps toward improved com-
munication between users and operators on Openstack 
private clouds. The prototype described here is a simple 
implementation of such a conduit, no doubt it will be 
refined or even redesigned as users develop more so-
phisticated requirements, driven by their application 
workloads.  
 
One of the critical pieces of infrastructure provided by 
this system is a mechanism that can be used for load 
shedding, as well as a way to communicate with users 
when this action is required. As a building block, load 
shedding enables a whole host of more advanced re-
source management capabilities, like spot instances, 
advanced reservations, and fairshare scheduling. After 
our initial assessment of this coordination model is 

complete, we plan to build an active implementation, 
that can directly implement these features. 
 
Notifications, particularly the explicit load-shedding 
request, enable the creation of hierarchical cooperative 
resource managers, which is probably the best path 
forward for integration with traditional resource man-
agers.  
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