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Stochastic Optimization of Sub-hourly Economic
Dispatch with Wind Energy

Harsha Gangammanavar, Suvrajeet Sen and Victor M. Zavala

Abstract— We present a stochastic programming framework
for a multiple timescale economic dispatch problem to address in-
tegration of renewable energy resources into power systems. This
framework allows certain slow-response energy resources to be
controlled at an hourly timescale, while fast-response resources,
including renewable resources, and related network decisions can
be controlled at a sub-hourly timescale. To this end, we study
two models motivated by actual scheduling practices of system
operators. Using an external simulator as driver for sub-hourly
wind generation, we optimize these economic dispatch models
using stochastic decomposition, a sample-based approach for
stochastic programming. Computational experiments, conducted
on the IEEE-RTS96 system and the Illinois system, reveal that
optimization with sub-hourly dispatch not only results in lower
expected operational costs, but also predicts these costs with
far greater accuracy than with models allowing only hourly
dispatch. Our results also demonstrate that when compared
with standard approaches using the extensive formulation of
stochastic programming, the sequential sampling approach of
stochastic decomposition provides better predictions with much
less computational time.

Index Terms—Economic dispatch, sub-hourly dispatch,
stochastic decomposition.

I. INTRODUCTION

THE integration of renewable resources into energy net-

works, especially in large scale power grids, poses several

technological and operational challenges. Among renewable

resources, wind and solar energy fall under the class of

variable/intermittent energy resources because of their inherent

stochasticity. Their variability is not only high in magnitude,

but they also exhibit sub-hourly fluctuations. In addition, these

resources are known to have a temporal mismatch with the

load. These characteristics have generated significant academic

interest as well as several new initiatives by power system

operators to harness the full benefits of renewable resources.

Renewable integration challenges also necessitate incorpo-

ration of faster reserves, storage devices and similar services

operating alongside the slow ramping conventional generators

in the energy network. To maintain robustness of such a

network, their operations should be planned by appropriately

modeling the decision processes and using solution approaches

that provide verifiable performance.

Currently, power systems planning is mostly based on a

two level hierarchy: day-ahead unit commitment (DAUC) and

economic dispatch (ED). A substantial number of studies
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([1, 2, 3]) have focused on DAUC in the presence of renewable

energy resources. By definition, the DAUC models use a 24

hour horizon with one hour resolution and set the initial

commitment status for all generation units. Operating reserves

and other regulation capacities are also procured in the day-

ahead market ([4, 5]). Some power system operators also use

short-term unit commitment and real-time unit commitment

to update the initial commitments based on new load and

renewable generation forecasts, and schedule additional oper-

ating reserves. Once the commitments are set and the reserves

requirements are established, dispatch schedules (generator set

points) are determined by solving the ED model which is the

focus of our work.

Due to grid characteristics, the operating practices vary

significantly across balancing authorities. For example, the

generation scheduling process in Bonneville Power Adminis-

tration (BPA), a U.S. government electric utility in the Pacific

Northwest, is based on hourly bulk energy schedules [6]. BPA

can control hydro-generation within an hour, but is unable to

access thermal generation within its balancing authority area

on a sub-hourly basis. The economic dispatch of conventional

generation is based on an hour-ahead forecast and is completed

20 minutes before the hour of delivery. BPA normally has

sufficient range of load-following, regulation, and ramping

capabilities to handle within-hour imbalances. Advanced ISOs,

CAISO for example, use an hour-ahead scheduling process

(HASP) and a real-time dispatch (RTD) optimization to handle

short term energy imbalances. The RTD process runs every

5 minutes with a horizon of 65 minutes to dispatch internal

resources [6]. The intertie resources however, are scheduled

non-dynamically for an hour by HASP. Similar operating

practices, where certain resources are scheduled at a coarse

timescale and others are scheduled at a fine timescale, are used

in European TSOs and other balancing authorities in North

America. Moreover, deterministic optimization models based

on a single scenario are used in this process.

Worldwide, electricity grids are in transition, and recently

there are proposals which suggest several reforms to current

practices to enable better integration of variable generation

(e.g., FERC Order-764 in the U.S. [7]). They require variable

generator owners to provide sub-hourly generation and outage

data, and power system operators to use sub-hourly scheduling

for all generation resources. Balancing authority area operators

and ISOs are at different stages to accommodate these changes.

For example, within-hour scheduling at 10-minute intervals is

being considered for implementation at BPA [6]. Moreover,

the need for advanced optimization tools and simulation soft-

wares has been identified as a major requirement for efficient
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implementation of sub-hourly dispatch [8].

In this regard, there have been simulation based inves-

tigations of sub-hourly dispatch. For example, the CAISO

2010 report ([9], Appendix C) reveals that sub-hourly analysis

tends to overcome relatively small operational issues identified

by hourly simulations. However, if the hourly simulations

indicate more significant issues, then the sub-hourly simulation

shows even larger impact. In another recent work [10], the

authors study a power system with renewable resources using

a simulation based framework, which integrates system oper-

ations at multiple timescales. The authors study the impact of

renewable generation variability at different sub-hourly time

resolutions and the impact of uncertainty by using different

forecasts. Their study shows higher energy imbalance and

greater transmission congestion with hourly time resolution,

compared to sub-hourly resolutions. Unfortunately, most opti-

mization studies which are based on average processes (e.g.,

hourly resolution models) tend to choose “optimal” settings

with little room for error [11]. Based on the operational

issues identified in [9, 10] one can draw similar conclusions

for hourly simulation based unit commitment and economic

dispatch models. In our study we incorporate optimization

as well as simulation at hourly and sub-hourly timescales

respectively.

Sub-hourly dispatch has been used for ED in the short-

term unit commitment model of [12]. The authors consider 10

minute resolution for dispatch and compute the commitments

using only 10 scenarios. These studies ([1, 2, 3, 4, 5]) usually

employ approximations which reduce the original model for-

mulation (with a larger set of scenarios) to a much smaller, and

computationally manageable model [13]. While such a strategy

tends to achieve tractability in optimization, the quality of

predictions from such models can be suspect. In Sec. III

(discussions related to Tables I,II) we will highlight issues

resulting from both small sample approximations as well as

hourly wind aggregation in the context of large scale economic

dispatch.

To better harvest the benefits of renewable integration one

needs to address the following important questions:

• What is the impact of increased variability from re-

newable generation on economic dispatch? Many juris-

dictions in U.S. are mandating significant increases in

renewable generation. Such mandates have the potential

of introducing far more variability in the electricity gen-

eration than has ever been experienced.

• What optimization tools should be used to make choices

that will mitigate the impact of increased variability?

• How similar are the decisions obtained from models

which have different update intervals for variable genera-

tion? More frequent updates demand greater investments

in resources for computations and operations. Depending

on how similar these decisions are, a system operator has

the option to choose computational resources in a cost

effective manner.

With the above questions in mind, the main contributions of

this work are:

• A stochastic decomposition (2-SD, [14]) framework

which can accommodate system operations at multiple

timescales as well as exogenous information from state-

of-the-art forecast simulators. This framework allows us

to plan dispatch operations more effectively than deter-

ministic and/or coarse grained hourly models by making

decisions based on a large set of future possibilities.

Moreover, the 2-SD framework derives its scalability

from its decomposition-based sequential sampling frame-

work which identifies the sample size during the algo-

rithmic process. This is particularly relevant because of

sub-hourly wind variability. This algorithmic approach is

presented in Sec. II.

• Our computational results are the first of its kind, showing

that a) 2-SD provides a viable computational framework

for realistic economic dispatch models in the presence

of hourly and sub-hourly resource allocation, and b)

finer resolution models of wind lead to somewhat higher

generation from slow ramping generators to enhance the

reliability (i.e., reduce dependence on high cost reserves).

These results are presented in Sec. III.

II. ECONOMIC DISPATCH UNDER UNCERTAINTY

Stochastic programming (SP) has been widely used for

power systems applications such as stochastic unit commit-

ment, establishing reserve requirements, and others. Benders

decomposition is used in [1] and [12] with a master unit

commitment problem, and subproblems to check feasibility

of the master solution. In [15] a Lagrangian relaxation algo-

rithm is employed in which a first stage problem schedules

slow generators, and a second stage subproblem is used

for committing fast generators and dispatch all resources. In

[16] robust optimization, with the objective to minimize the

worst-case cost associated with commitment solutions, is used

in conjunction with stochastic optimization within a unified

Benders framework. In [17], the unit commitment horizon

is divided into two parts. While stochastic optimization is

used for the first part, the second part is solved using interval

unit commitment by considering only the central forecast, an

upper bound and a lower bound on uncertainty. In all these

studies a representative set (with size 10-100) of scenarios

is used for optimization. Increasing the number of scenarios

often result in very large models, and requires parallelization

over a large cluster of computers for optimization ([2]). To the

best of our knowledge, our work provides the first real scale

application of SP to the economic dispatch problem. In order

to relate the economic dispatch problem to SP, we first present

a general framework. Following this setup we will identify two

alternative operating practices, one motivated by the time lines

of BPA and the other by advanced ISOs like CAISO [6].

A. General Framework

We use a two-stage stochastic linear programming frame-

work in which we distinguish between decisions (x) which are

made prior to the observation of a random event, and decisions

(y) which respond adaptively to the initial choice (x) and the

observation (ω). In the SP literature these adaptive decisions

are referred to as recourse decisions. The representation of
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Fig. 1. Dispatch Scheduling Process with tf = 10 minutes

two-stage stochastic linear program with recourse (2SLP) is

given by:

min
x∈ℜn1

f(x) := c⊤x+ E{h(x, ω̃)} (1a)

s.t. Ax ≤ b

where,

h(x, ω) = min
y∈ℜn2

d⊤y (1b)

s.t. Wy = r(ω)− Tx

y ≥ 0.

Here, ω is a realization of the random variable ω̃. The SP

literature refers to (1a) as the first stage and (1b) as the second

stage.

Ordinarily, the number of possible future scenarios can be

so large that the expectation in (1) can only be approximated

by either (a) scenario sampling, or (b) selecting a small subset

of scenarios [18]. In either case we obtain a prediction of

the cost associated with decisions realized from a model. It

is customary to verify the quality of these predictions using

large sample Monte Carlo simulations.

When the probability space is limited to a finite number

(S) of scenarios the problem can be reformulated as one large

deterministic problem:

min c⊤x+

S
∑

s=1

ps(d⊤ys) (2)

s.t. Ax ≤ b

Wys = r(ωs)− Tx s = 1, . . . , S

ys ≥ 0 s = 1, . . . , S

Here ps denotes the probability of scenario s. For methods

using Monte Carlo simulation, the number of scenarios is

chosen based on computing resources (the platform and the

solver) available, and for such instances one uses ps = 1/S.

We will refer to this formulation (2) as the extensive scenario

formulation (ESF). A very special case of ESF, using a single

forecast scenario, is the deterministic dispatch model com-

monly employed by power system operators. In the following

we summarize the time lines and practices as they exist today.

B. Scheduling Time Lines and Practices

The scheduling process for hour H begins at H − tℓ (Fig.

1), where the leadtime tℓ varies from 7.5 minutes (at CAISO)

to 20 minutes (at BPA). We assume that the generators are

already committed by solving the unit commitment problem

(and started) so that sufficient resources are available to

supply the expected load. We also assume that the fast-

start generators and other load following reserves, as well as

regulating reserves have been procured to accommodate fine

grain fluctuations. These unit commitments and reserve levels,

along with current generation levels, are used as input to our

dispatch models. At time H − tℓ the renewable generation

and demand forecasts are locked down and are used to build

the model. The dispatch model uses a horizon tH of about

an hour which includes fine grain time intervals at which the

variable generation information is updated. This time interval

is denoted ti and typically ranges from 10 minutes to 60

minutes. This process is run every tf minutes throughout the

day, when the generation set points can be revised.

We will study two alternative practices depending on the in-

terval of time between updates of slow-response conventional

generation:

1) Hourly coupling models only allow hourly updates of slow-

response generators and reflect the scheduling practices at

some balancing authority areas, e.g., BPA [6]. In this model

the slow-response generators and intertie resource decisions

constitute the first stage decision variable x. Both these

decisions are updated every hour, that is tf = 60 minutes.

The fast-response reserves, intermittent resources, and network

decisions are controlled in an adaptive manner at fine timescale

every ti minutes. Note that fast-response reserves refer to those

generators and load following reserves which have response

times much lower than 10 minutes (the finest resolution con-

sidered) [19]. In addition, the second stage will accommodate

the revised slow-response conventional generation decisions

for the next hour. Since the slow-response generators are

fixed for the hour, intra-hour energy imbalance is completely

handled through fast-response reserves. All these fine grain

decisions are lumped together in our second stage variable y.

2) Sub-hourly coupling models, on the other hand, allow

slow-response generator decisions to be updated at sub-hourly

intervals. These models are motivated by system operations at

advanced ISOs like CAISO [6]. For dispatch beginning at the

hour (i.e., time H) one uses the slow-response generators and

intertie resource decisions as first stage decision variable x.

The generator decisions are fixed only for tf = 10 minutes,

at which point in time, these decisions can be revised. On

the other hand, the intertie decisions are fixed for the hour.
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For dispatch starting at intra-hour epochs (time H + ntf ,

n = 1, 2, . . .), only slow-response generator decisions con-

stitute the first stage variable x. Revisions at future sub-

hourly time periods and next hour intertie decisions, which

fall within the model horizon tH , are included as second stage

variables. These, along with fast-response reserves, intermit-

tent resources and network decisions constitute the variable

y. Since sub-hourly revisions are considered in this model,

hourly coupling decisions are excluded.

C. Alternative Aggregations in Dispatch Models

As mentioned earlier, studies based on pure hourly dispatch

models have the potential to hide the complications arising

from sub-hourly variability of intermittent resources. To in-

vestigate the impact of sub-hourly decisions in the presence

of other hourly decisions, we compare dispatch models at

different sub-hourly resolutions. The second stage in the 2-

SLP model (1a)-(1b) at the finest resolution (10 minutes)

includes linear constraints for each sub-hourly interval-n:

{F(x, yn, r(ωn)) = 0, yn ≥ 0} for n = 1, . . . , 6. This

considerably increases the size of the problem, but identifies

the value of fine grain information in deciding the slow-

response conventional generation and intertie levels.
The aggregated models at 20, 30 and 60 minute resolutions,

on the other hand, are created by aggregating the constraints

and variables of (1b) by an averaging process. For example, to

create the aggregated hourly model we define ȳ = 1
6

∑6̄
n=1 yn,

and the quantity r(ωn) is replaced by the observed average
1
6

∑6
n=1 r(ωn). In this case, we therefore rewrite the sub-

hourly constraints as F(x, ȳ, 16
∑6

n=1 r(ωn)) = 0. Clearly,

these models are aggregations of the 10-minute model. Never-

theless, these are different instantiations of two-stage stochas-

tic programming models. It is worthwhile to note that the 60-

minute aggregated model reflects current operations at BPA,

where conventional decisions are revised once every hour

based on hourly bulk variable generation information.

D. Algorithms for the Study

All dispatch models were formulated in the 2SLP and

ESF forms. As long as the scenarios can be enumerated

easily the ESF formulation (2) can be solved as one large

LP using state-of-the-art deterministic solvers like CPLEX.

Alternatively, one could use some deterministic decomposition

scheme for ESF such as Benders’ decomposition, Dantzig-

Wolfe decomposition or the progressive hedging algorithm [3].

In this paper, the 2SLP problem (1) is solved using two-stage

stochastic decomposition algorithm (2-SD) [14].

Conceptually, 2-SD is a stochastic version of deterministic

Benders’ decomposition [20] or L-shaped method [21]. Like

these decomposition methods, 2-SD constructs a piecewise

linear approximation to the recourse function and updates

the approximation during each iteration of the algorithm. But

unlike the deterministic methods, the recourse function is es-

timated for a small number of outcomes ω of random variable

ω̃. Moreover, because of its sampling based approximations,

it is not restricted to only those instances in which the random

variables are discrete. This allows 2-SD to be used with

external simulators. This is achieved by combining sampling

with sequential approximations in such a manner as to reduce

the computational effort in generating a new piecewise linear

approximation in each iteration.

In 2-SD, a newly sampled outcome vector ωk :=
(ωk

1 , . . . , ω
k
N ) is incorporated into a collection of existing

outcomes, {ω1, . . . , ωk−1}, at iteration k. The algorithm con-

structs a lower bounding linear approximation of the sample

mean function

Hk(x) =
1

k

k
∑

j=1

h(x, ωj). (3)

2-SD theory [14] suggests that asymptotic convergence can

be achieved by solving just one second-stage LP (1b) in

any iteration. Furthermore, previously obtained data (on the

optimal dual solutions for (1b)) can be used to define a lower

bounding approximation of h(x, ωj), for j < k.

For the most recent outcome ωk and first stage decision

xk, we evaluate the recourse function h(xk, ωk) by solving

(1b) and obtain the dual optimum solution πk
k . This dual

vector is added to a set Vk−1 of previously discovered op-

timal dual vectors. In other words, we recursively update

Vk = Vk−1 ∪ πk
k . Linear programming duality ensures that

for π ∈ Vk , π⊤[r(ωj)−Tx] ≤ h(x, ωj) ∀x. Thus, in iteration

k, we identify a dual vector in Vk that provides the best lower

bounding approximation at {h(xk, ωj)}, for j < k that is:

πk
j ∈ argmax{π⊤[r(ωj)− Txk] | π ∈ Vk}. (4)

Note that the calculations in (4) are carried out only for

previous observations as πk
k will provide the best lower bound

at h(xk, ωk). We use these dual vectors {πk
j }j≤k to generate

a lower bounding function for the kth sample mean function:

Hk(x) ≥
1

k

k
∑

j=1

(πk
j )

⊤[r(ωj)− Tx] (5)

Similar to Benders’ decomposition, the lower bound (right-

hand-side in (5)) is added as a new linear piece of the

piecewise linear approximation of E{h(x, ω̃)}.

One more distinction from deterministic decomposition is

the periodic re-adjustment of previous linear pieces in 2-SD

[14]. Note that in (5), with increasing iterations we use a larger

number of samples to generate the linear approximation. Also,

the linear piece at iteration j < k lower bounds the sample

mean Hj(x) and not Hk(x). As a result, the earlier linear

pieces need to be re-adjusted to ensure that they continue to

provide lower bounds on the current sample mean Hk(x). If

we assume, without loss of generality, that h(x, ω̃) ≥ 0 (almost

surely), then we have Hk(x) ≥ j

k
Hj(x) (j = 1, . . . , k − 1).

Hence, the previously updated subgradient of the function Hj

can be used as a lower bounding function of Hk by multiplying

it by a factor of (j/k). With this, the approximation for the

first-stage objective function at iteration k is given by

fk(x) := c⊤x+ max
j=1,...,k

{

j

k
×

1

j

j
∑

i=1

(πj
i )

⊤[r(ωi)− Tx]

}

(6)
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Fig. 2. Power Systems under Study

Note that these approximations are generated in a recursive

manner. The sequence {xk} is generated by 2-SD such that

xk+1 ∈ argmin{fk(x) +
1

2
‖x− x̄k‖2 | Ax ≤ b} (7)

where, x̄k denotes an incumbent solution (the best solution)

at iteration k [14]. This incumbent is updated with the current

solution (x̄k+1 = xk+1) if the (sample mean) point estimate

of the objective value at xk+1 is better than the estimate at

x̄k; else, x̄k+1 = x̄k .

Deterministic algorithms which solve convex programs by

constructing an outer linearization of the objective function

([20]) are terminated when the difference between the objec-

tive function value at a given iterate and a valid lower bound

on the objective function values is sufficiently small. The lower

bounds obtained by 2-SD are based on sampled information,

and hence are stochastic. Therefore, the deterministic termina-

tion criterion cannot directly be applied to a sampling based

algorithm. The 2-SD approach uses a bootstrapping method to

assess the primal-dual gap stability. The algorithm also gauges

the impact of new information (new outcome ωk, new first

stage candidate solution xk, and new dual solutions πk
k ) on

the approximation in (6). A measure of this impact and the

primal-dual gap stability are used in designing the stopping

rules for 2-SD. We refer the reader to [22] and [23] for details

about these stopping rules.

The 2-SD algorithm has previously been applied to op-

erations management [24], VLSI design optimization [25],

chemical plant expansion [26], water resource engineering

[27], among others. This work is the first application of 2-SD

algorithm to the stochastic economic dispatch problem. The 2-

SD algorithm offers several features which make it amenable

for power systems applications:

• Online sampling: The 2-SD algorithm does not rely on a-

priori selection of scenarios to be used for optimization.

Rather, a new sample ωk is introduced to the observa-

tion pool in every iteration, and the approximations are

updated based on information collected at (xk, ωk). This

allows updated forecast scenarios to be included without

having to restart the optimization. As a result simulators

are easily incorporated as a source of scenarios during

optimization. Such simulators are currently used by sys-

tem operators for diagnosis rather than optimization.

• Computational edge: Efficient implementation of (4) and

(6), and use of the appropriate data structures [28] allow

2-SD to be used for large scale stochastic optimization

problems, often encountered in power systems operations,

using minimal computational resources.

III. COMPUTATIONAL RESULTS

Our computational studies will address the main questions

raised in the introductory section.
Experiments: For our computational study we consider the

following experiments:

A. Comparison of solution methods. Here we will compare

the 2-SD and ESF solution methods.

B. Sensitivity to Dispatch Interval. To study the effect of

aggregation we solve both the systems with varying

dispatch resolution using 2-SD at 10% wind integration

level.

C. Wind Penetration Study: An increase in penetration level

results in greater variability in renewable generation.

We investigate the performance of 2-SD and the impact

of model choice (hourly v sub-hourly) in systems with

different renewable penetration levels.

Our experiments begin by first predicting an optimal or near

optimal first stage solution for all instances. In the posterior

analysis, the quality of these predicted first stage solutions is

verified by fixing them and simulating the dispatch problem

(1b) for different wind power realizations. This verification is

terminated when a (1 − α) × 100% confidence interval (CI)

of total cost is built. In presenting the verification results we

report the estimated mean and the 95% confidence interval of

total cost.
Experimental Setup: Test Systems. The study was conducted

on two energy networks, the IEEE-RTS96 1-Area system and

the Illinois system. The RTS96 system [29], shown in Fig. 2a,

is an enhanced test system which has been used in several

power system studies [5, 30]. This system is developed based

on the data presented in [5, 29, 30] and is modified to include

a renewable generator and additional reserves. The system

contains 32 thermal generators which produce electricity at

generation costs which are functions of the fuel costs and

average heat-rates. The load profile used is for a summer

weekday. The spatial distribution of demand across the RTS96

system is derived based on Table-2, [29].
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The second system (Fig. 2b) is based on realistic data

available for the state of Illinois and comprises of 1900

buses, 2538 transmission lines and 870 load nodes. The total

system demand for the study horizon is 98639.37 MWh. The

system comprises of 237 internal generators and 24 intertie

connections. The data consists of a detailed description of

network topology, fuel costs, generator ramping constraints

and capacities. Twelve wind farm locations at out-of-state

buses are included in the network. For both these systems

we assume that all the generators are committed over the

horizon considered, and are available for dispatch. The demand

is assumed to be constant over a one hour time period.

Wind Simulator. The two-stage formulation in (1b), and the

ESF formulation (2) allow for randomness in wind generation.

The ESF models are built using the Weather Research and

Forecasting (WRF) outputs from [31] for 12 wind farm

locations in Illinois. The WRF outputs are also used to

build a vector autoregression based model. This model uses

multiple WRF trial outputs to estimate its parameters, and

allows for fast and efficient simulation of wind scenarios for

use within stochastic programming algorithms. The model

captures the spatio-temporal correlations of wind generation

and uses a adaptive sliding window technique to overcome

non-stationarity of high resolution, sub-hourly wind. We refer

the reader to [32] for more details about the model. The 2-

SD optimization and all verification runs for posterior analysis

were carried out using scenarios simulated from this model.

For the number of scenarios listed in TABLE I the above

data results in ESF formulations with sizes given by ESF Rows

and ESF Columns in the table. Note that even for a small

network such as RTS96, the size of the linear program easily

grows to hundreds of thousands of rows and columns as the

number of scenarios increase.

Although our computational experiments restrict the ran-

domness (ω̃) to wind power generation, the methodology is

applicable to cases allowing randomness in demand, operating

costs and generator outages.

Platform. The 2-SD algorithm was implemented in C

programming language on a 64-bit Intel-core i7-2600 CPU

@ 3.4GHzx8 with 8 GB memory. All linear and quadratic

programs were solved using CPLEX callable subroutines.

A. Comparison of Solution Methods

For these experiments we use tH = 70 minutes and

tf = 60 minutes for hourly coupling model. For the sub-

hourly coupling instances tH is set to 60 minutes and tf is

10 minutes. Both the models allow variable generation data at

ti = 10 minute resolution.
The comparison results of 2-SD algorithm and limited sam-

ple ESF method are summarized in TABLE I. The predicted

values reported refer to the objective function estimate of each

optimization method (LP for ESF, and 2-SD). For 2-SD, one

can interpret these values as estimates of lower bounds on the

optimal value. The column labeled “Verification CI” (Con-

fidence Interval) refers to the confidence interval calculated

by simulating the consequences of first stage solution. These

values correspond to estimates of the objective function at the

first stage solution, and are therefore estimated upper bounds.
For sample-based stochastic programming models there is

no guarantee that the predicted values for any instance will

fall within the verification CI. This is observed in the case of

ESF in TABLE I where the predicted values are lower than

the verification CI for all sample sizes, indicating significant

bias in predicting costs. Such bias arises due to the small

sample sizes, and hence the quality of solutions from such

small sample SP models is hard to discern. On the contrary,

values predicted by the 2-SD algorithm use larger sample

sizes, and hence have lower bias. This is emphasized by the

fact that its prediction values fall within the verification CI

which allows us to conclude that the solutions obtained are

acceptable. Moreover, the verification column also shows that

the estimated mean for 2-SD solutions are uniformly lower

than the ones for ESF.
Fig. 3 shows the adjustments of slow-response conventional

generation in the sub-hourly coupling models. The recourse

computed using a large set of scenarios allows 2-SD to predict

solutions which require significantly lower adjustments at sub-

hourly intervals when compared to the deterministic ESF

approach, which is currently being used by operators. This

is indicated by the fact that the adjustment intervals for 2-SD

are completely enclosed within those for ESF (see Fig. 3).
Shifting our attention now to solution times for RTS96, note

that as the number of scenarios increase for ESF, it loses its

computational edge to 2-SD. This is, in fact, highlighted in the

System Method # scenarios ESF Rows ESF Columns Predicted Value Time (s) Verification CI

RTS96
Hourly coupling

ESF

10 11975 11552 40026.14 0.16 [60074.26, 61697.02]

20 23885 23072 40795.62 0.41 [41385.75, 41443.03]

30 35795 34592 40773.41 0.63 [41385.06, 41442.35]

100 119165 115232 40718.78 2.80 [41385.04, 41442.33]

2-SD 350 - - 40945.71 2.35 [40936.34, 40989.01]

Illinois
Hourly coupling

ESF
1(mean) 40784 46337 18137161 128.83 [22502915, 22620983]

5 205538 234351 21886579 2866.56 [22170843, 22272844]

2-SD 181 - - 22151783 768.67 [22124133, 22213367]

Illinois
Sub-hourly coupling

ESF
1(mean) 36415 40176 12878476 487.73 [13737964, 13830823]

5 179983 199836 12811076 4080.62 [13722876, 13797483]

2-SD 138 - - 13721268 1147.28 [13660228, 13742965]

TABLE I
SOLUTION METHOD COMPARISON (10-MINUTES RESOLUTION, 10% WIND PENETRATION)
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Fig. 3. Adjustments with sub-hourly coupling model in Illinois system

more realistic instance for the state of Illinois where ESF takes

almost 50 minutes to manage 5 scenarios. On the other hand,

2-SD offers significant improvements in solution quality and

computational times. This makes 2-SD an attractive method

for solving large scale stochastic economic dispatch problems.

Incidentally, the reader may find it interesting to note that

if one were to use an ESF formulation to solve the Illinois

instance using hourly coupling model reported in TABLE I,

that linear program would have 7.2 million rows and 8.3
million columns.

As one can surmise, the predicted values obtained by 2-SD

can also be significantly different from the verification CI. For

such cases, we would expect to run the 2-SD algorithm with

tighter stopping tolerance, so that the algorithm would use a

larger number of samples, leading to improved gap estimates.

However, this was not necessary for the instances encountered

in this study.

B. Sensitivity to Dispatch Interval

To account for hourly coupling constraints and varying

resolutions (ti = 10, 20, 30 and 60 minutes) in hourly coupling

model, a common tH = 120 minutes is chosen for comparison

in these experiments. In these instances slow-response gener-

ation and intertie decisions are held constant for a duration

of tf = 60 minutes. The sub-hourly coupling model uses tH
of 60 minutes, over which only intertie decisions are held

constant, while the slow-response generation decisions can be

updated at ti = 10, 20, 30 and 60 minutes.

The two-stage stochastic programming instances at varying

dispatch intervals are solved using 2-SD. The solutions ob-

tained from these instances are verified using the same set

of wind scenarios. The prediction and verification results for

all the instances are summarized in TABLE II. These results

indicate that finer resolution dispatch instances lead to lower

costs for both hourly and sub-hourly coupling models. The

coarser resolution models underestimate the realistic costs

as indicated by the predicted values in TABLE II. This is

because, optimization in these instances is carried out with

mean ensembles.

Recall that the slow-response conventional generation levels

are fixed for tf = 60 minutes in the hourly coupling model,

while the variable generation data is available at varying

intervals (ti = 10, . . . , 60 minutes). As the interval is de-

creased, the fine timescale fluctuations in variable generation

are clearly evident during optimization and hence, in this

model the first stage reacts cautiously by using more slow-

response conventional generation and intertie resources as

indicated in TABLE II. The need to avoid infeasibilities due to

lack of transmission capacity also contributes to this increase.

In the sub-hourly coupling model, although the slow-response

conventional generation decisions can be revised every ti in an

adaptive manner, they are limited by their ramping capability.

Hence, the first stage uses fine grain data and increases the

first stage resources.

TABLE II also lists the p-value, computed from the ver-

ification data, associated with the null hypothesis: there is

no difference between the 10-minute dispatch solution and

solution from lower resolution models. A p-value of less than

0.05, as seen for example in all 60-minute dispatch instances,

allows us to reject the null hypothesis at 95% significance

level, and we can conclude that their solutions result in

statistically different verification results. On the other hand,

System
Resolution First stage Predicted Verification

(min) resources (MWh) value Mean Std. Dev. Confidence Interval p-value

RTS
Hourly coupling

model

10 2076.52 41409.59 41418.99 14.61 [41390.35, 41447.64] 1

20 2076.96 41213.12 41423.42 14.61 [41394.78, 41452.07] 0.8303

30 2074.08 41703.08 41765.22 31.70 [41703.08, 41827.35] < 0.0001

60 2031.84 40449.79 55454.27 358.05 [54843.49, 56247.04] < 0.0001

Illinois
Hourly coupling

model

10 74258.8 29965989 29935161 30631 [29875123, 29995200] 1

20 74035.9 29839346 29943153 31635 [29881147, 30005160] 0.8559

30 73712.4 29741583 30027233 33473 [29961624, 30092841] 0.0425

60 73340.3 29688063 30189580 40474 [30110250, 30268909] < 0.0001

Illinois
Sub-hourly coupling

model

10 74371.2 13721268 13701596 21106 [13660228, 13742965] 1

20 74198.4 13596532 13726059 22744 [13681480, 13770639] 0.4302

30 74069.4 13543494 13745003 23557 [13702751, 13787255] 0.1501

60 74082.9 13522440 13907159 24177 [13859771, 13954547] < 0.0001

TABLE II
COMPARISON OF DISPATCH RESOLUTION (10% WIND PENETRATION)
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Fig. 4. Reserve utilization in Illinois System with Hourly Coupling Model

the null hypothesis cannot be rejected for 20-minute dispatch

instances, at 95% significance level.

Fig. 4 shows fast-response reserve utilization in Illinois

system when hourly and sub-hourly (10 minute interval)

resolution is used with hourly coupling model. The positive

and negative values indicate ramp up and down utilization

respectively. Recall that this model uses committed reserve

levels (rmin
ni , rmax

ni ) as input, this is indicated by the outermost

whiskers. The horizontal red lines with notches represent the

median. The figure indicates that the reserve requirements

increase with an increase in wind penetration levels. Further,

the sub-hourly resolution models reduce reserve utilization

for all penetration levels when compared to hourly resolution

models.

C. Wind Penetration Study

Thus far our computational experiments have demonstrated

that both sample studies and coarse grain optimization have

a potential to be misleading in their predictions (TABLE

I, TABLE II). Such observations have also been made in

simulations studies conducted by CAISO ([9], see I). Since 2-

SD is a simulation-based optimization algorithm, we suspect

that it should also be able to predict circumstances that cause

congestion even when the dispatch is optimized. In this section

we undertake a study to assess the performance of 2-SD at

different wind penetration levels on both RTS96 and Illinois

networks.

Energy penetration for this study is measured as the ratio of

the amount of energy produced from the wind generation to

Wind%
Original Modified

Mean Conv.gen.(MWh) Mean Conv.gen.(MWh)
10 22168750 74090 9198967 70901
20 38446352 70940 7254406 62973
30 59307934 67905 5285322 54970

TABLE IV
ILLINOIS SYSTEM RESULTS WITH ADDED TRANSMISSION CAPACITY

the total energy produced. The results for 10%, 20% and 30%

wind integration for both the test networks are provided in

TABLE III. These experiments were conducted on the hourly

coupling model with tH = 70 minutes, tf = 60 minutes and

ti = 10 minutes.

As expected, thermal generation is reduced as the availabil-

ity of wind is increased. For the RTS96 system congestion was

not encountered during 2-SD runs, and hence the net opera-

tional cost decreases when the penetration levels are increased

(TABLE III). On the other hand, the initial experiments with

the Illinois system identifies a small area of the network that

needs congestion relief. In this area, increased penetration led

to generation curtailment which in turn increased the overall

operating cost of the system (TABLE III). Such identification

of congestion is due to the combination of optimization and

simulation within 2-SD.

Prompted by the specific areas of congestion we introduce

additional capacity on a few links which alleviates such

congestion. TABLE IV compares the verification results of

the original Illinois system with the modified network. With

additional transmission capacity the results indicate that the

operational cost decreases with increased penetration. The

reserve requirements also increase with the penetration levels

due to increased volatility as shown in Fig. 4.

The 2-SD framework does not rely on a-priori sampling

or knowledge of explicitly provided probability distribution.

The algorithm learns the stochastic process in an online

manner, and as a result, the number of samples necessary

during the runs might vary (see II and TABLE III). TABLE

III also highlights the computational performance of 2-SD

in instances with higher variability resulting from increased

wind penetration. Moreover for congested networks, like the

Illinois system at 30% penetration, a deterministic approach

will choose a solution which can ensure feasibility only

with respect to the sample(s) used to build the model. As a

result, the system is much more prone to higher variability of

reserves. On the other hand, 2-SD chooses first-stage solution

System Wind Penetration
Prediction Verification

Samples First stage resources (MWh) Value Time (s) Mean Std. Dev. Confidence Interval

RTS96

10 % 350 2076 40945.71 2.35 40962.68 13.44 [40936.34,40989.01]

20 % 366 1970 40147.65 2.33 40168.25 24.61 [40120.02, 40216.47]

30 % 359 1901 39371.52 2.20 39513.22 117.76 [39282.40, 39744.03]

Illinois

10 % 181 74090.5 22151783 768.47 22168750 22763 [22124133, 22213367]

20 % 189 70940.0 38409069 746.21 38446352 50641 [38347094, 38545610]

30 % 171 67905.5 59381611 912.74 59307934 98733 [59114417,59501451]

TABLE III
WIND PENETRATION RESULTS WITH HOURLY COUPLING MODEL (10 MINUTE RESOLUTION, 70 MINUTE HORIZON)
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which ensures feasibility across all the samples encountered

during optimization. As before, the predicted value falls within

the verification confidence interval, and hence 2-SD provides

good quality solutions even in the presence of high variability.

IV. CONCLUSION

In this paper, we presented a stochastic economic dispatch

framework which allows control of slow-response energy

resources and intertie decisions at a coarse timescale, and

renewable generation along with other dispatch related deci-

sions at a fine timescale. To the best of our knowledge, this is

the first study to incorporate sub-hourly economic dispatch

within a stochastic optimization model. We presented two

dispatch models which represent alternate operating practices

used by power system operators. The results comparing these

models at different resolutions illustrated the improvements

that can be achieved by sub-hourly dispatch. The improvement

in terms of the overall operational cost was due to effective

utilization of sub-hourly information in deciding the first stage

slow-response generation and intertie levels. The results at

various wind integration levels showed reduction in operating

reserve usage under sub-hourly dispatch. We also presented

a stochastic programming approach, using 2-SD algorithm,

to solve these large problems. The results demonstrated the

scalability of 2-SD and showed that, when compared with

extensive scenario formulation, 2-SD provided verifiably better

solutions in far less time. Finally, the 2-SD algorithm was

hooked with an external simulator which provided outputs for

wind generation. Application of 2-SD algorithm over a rolling

horizon, capturing economic dispatch over multiple hours, is

currently being studied, and will be reported in the future. We

will also investigate the role of storage devices in mitigating

the challenges of renewable integration as part of our future

research.
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APPENDIX A

ECONOMIC DISPATCH FORMULATION

A. Notation

We will use n = 0 to denote the first stage decision epoch.

With tH denoting the model horizon and ti the sub-hourly

interval, N = tH/ti is the number of sub-hourly decision

epochs. N = (1, . . . , N) will denote these fine timescale

decision epochs. The set of buses, links, demand and intertie

nodes are denoted as B, L, D and T respectively. The set G
constitutes the slow-response conventional generators, while

the set of wind generators and fast-response reserves are

denoted as W and R respectively. The subscript i represents

a subset of the respective set at bus-i.
The first stage variable x consists of intertie decisions

Ti ∀i ∈ T and slow response conventional generation levels

G0i ∀i ∈ G. The corresponding production costs are denoted

as ctiei and cgeni respectively.

Second stage variable y includes (∀n ∈ N ) the line-(i, j)
utilization pnij and bus-i angle θni. Additional resources are

available through committed fast-response reserves which are

used to match energy imbalance resulting from stochastic

realizations. These resources are limited by their availability,

which is proportional to wind penetration, and is assumed to be

known from prior unit/reserve commitment. These resources

can provide both ramp-up and ramp-down capabilities and we

will use rni to denote utilization of these resources. Beyond

this limit the load can be curtailed by rlsni and the value of lost

load is set at dlsi ∀i ∈ L (set to $2000 in the computational

study). Due to network constraints it is possible for generation

at any particular node to be left unused. This generation can

be ramped down only by a certain amount dictated by the

physical ramping constraints. Generation beyond this limit is

curtailed, which is denoted as rgsni , and penalized by including

a shedding penalty dgsi at generation side (∀G). Finally, we

treat wind generation as a must-take resource (Section-3, [33]),

provided there are sufficient reserves and no transmission

issues in the system. To ensure this we impose a penalty dws
i

on wind curtailment rws
ni . These are also included as second

stage decisions. For our computational study we have set these

generation shedding penalty to $500 (a value greater than the

highest production cost). Alternately, market based settlement

costs/opportunity costs can be used for these curtailment

penalties.

The hourly coupling model also includes the intertie deci-

sions and slow-response generation levels for next hour which

are denoted as T+
i ∀i ∈ T and G+

0i ∀i ∈ G respectively. The

inelastic load is denoted by Di for the current hour and D+
i

for the next hour. The sub-hourly coupling model, on the other

hand, has conventional generation revisions Gni ∀i ∈ G and

∀n ∈ N .

B. Objective

For the hourly coupling model the total cost comprises of

the current intertie and conventional generation cost, and the

expected value of recourse function. This recourse function

includes the cost of generation for next hour and the penalty

cost associated with wind, thermal and load curtailment.

∑

i∈T

ctiei Ti +
∑

i∈G

cgeni G0i + E

{

∑

i∈T

ctiei T+
i +

∑

i∈G

cgeni G+
0i+

∑

n∈N

(

∑

i∈G

dgsi rgsni +
∑

i∈D

dlsi r
ls
ni +

∑

i∈W

dws
i rws

ni

)}

. (8)

For sub-hourly coupling model the intertie and generation for

next hour are not considered in the above function. However,

the conventional generation revisions Gni are included at sub-

hourly time intervals. For n > 1 the function is given by:

∑

i∈T

ctiei Ti +
1

N

∑

i∈G

cgeni G0i + E

{

1

N

∑

i∈G

cgeni Gni+

∑

n∈N

(

∑

i∈G

dgsi rgsni +
∑

i∈D

dlsi r
ls
ni +

∑

i∈W

dws
i rws

ni

)}

. (9)
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When n = 1 there are no sub-hourly revisions, and hence the

term Gni is not included in (9). The objective is to minimize

this cost subject to the constraints presented below.

C. Hourly Constraints

These constraints are associated with slow-response gener-

ators.

a. Generation capacity:

Gmin
i ≤ G0i ≤ Gmax

i , (10)

Gmin
i ≤ G+

0i ≤ Gmax
i ∀i ∈ G. (11)

Gmin
i and Gmax

i are the minimum and maximum gen-

eration capacity of generator units indexed by i.
b. Ramping constraints:

∆Gmin
i ≤ G0i −Ginit

i ≤ ∆Gmax
i , (12)

∆Gmin
i ≤ G+

i −G0i ≤ ∆Gmax
i ∀i ∈ G. (13)

∆Gmin
i and ∆Gmax

i represent the down and up-ramping

limits of generator units. Recall that the initial dispatch

levels {Ginit
i } are known inputs to our models.

Constraints (10) and (12) appear as first stage constraints in

(1a) for both the hourly and sub-hourly coupling models,

while constraints (11) and (13) are bundled into second stage

constraints (1b) only for the hourly coupling model. Note that

these hourly constraints are not considered for aggregation.

D. Sub-hourly Constraints

The sub-hourly constraints are functions of both first and

second stage variables. There will be one set of constraints,

{F(x, yn, ωn)}n∈N , associated with each realization ω of the

random variable ω̃.

a. Power flow equation: If n belongs to current hour,
∑

j:(j,i)∈L

pnji −
∑

j:(i,j)∈L

pnij −
∑

j∈Gi

rgsnj+

∑

j∈Ri

rnj +
∑

j∈Wi

(ωnj − rws
nj ) +

∑

j∈Gi

G0j =

∑

j∈Di

(Dj − rlsnj) ∀i ∈ B (14)

The power flow equations ensure that the supply meets

the demand at every bus in the network. The next hour

power flow equations for the hourly coupling model are

obtained by replacing G0j with G+
0j and Dj with D+

j .

Since sub-hourly coupling model allows for revision of

conventional generation decisions at sub-hourly inter-

vals, we will use Gnj in the place of the static G0j

in the above power flow equation.

b. Line flow equation:

pnij =
ViVj

Xij

(θni − θnj) ∀(i, j) ∈ L, n ∈ N . (15)

Here Vi’s are the bus voltages and Xij is line reactance.

The real power transmitted on any line and power loss on

it are non-linear functions of the difference between the

angles at the buses connected by the line. Second-order

approximations are used to linearize these functions

which make it suitable to be used with standard linear

optimization methods. The power flow losses in the

network are ignored in this formulation and only the line

power flows are considered. [34] provides the details on

this linearization of network constraints.

c. Reserve limits: Sub-hourly energy imbalance can be

addressed using fast-response reserves which are limited

by their availability:

rmin
ni ≤ rni ≤ rmax

ni ∀i ∈ R, n ∈ N . (16)

The limits rmin
ni and rmax

ni are available through reserve

commitments, and are inputs to our models.

d. Sub-hourly revisions: The sub-hourly coupling model al-

lows for sub-hourly revision of conventional generation

which are limited by ramp rates of these generators. For

n = 0, . . . , N − 1:

∆Gmin
i (N) ≤ Gn+1i −Gni ≤ ∆Gmax

i (N), ∀i ∈ G
(17)

The ramping limits are dependent on ti, and hence we

denote them as functions of N .

e. Bounds: The bounds on the second stage variables are

enforced due to the physical constraints on the network.

(pmin
ij , pmax

ij ) set the limits on the line capacities and

(θmin
i , θmax

i ) are the limits on the bus angles. The

curtailment variables are limited by the amount of gen-

eration and load. For all n ∈ N :

pmin
ij ≤ pnij ≤ pmax

ij (i, j) ∈ L, (18a)

θmin
i ≤ θni ≤ θmax

i i ∈ B, (18b)

0 ≤ rgsni ≤ Gni i ∈ G, (18c)

0 ≤ rlsni ≤ Di i ∈ D, (18d)

0 ≤ rws
ni ≤ ωni i ∈ W . (18e)

For the hourly coupling model, the upper bound in (18c)

is replaced by G0i for all n ∈ N .
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