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Abstract

The data-driven task parallelism execution model can support
parallel programming models that are well suited for large-scale
distributed-memory parallel computing, for example, simulations
and analysis pipelines running on clusters and clouds. We describe
a novel compiler intermediate representation and optimizations
for this execution model, including adaptions of standard tech-
niques alongside novel techniques. These techniques are applied
to Swift/T, a high-level declarative language for flexible data flow
composition of functions, which may be serial or use lower-level
parallel programming models such as MPI and OpenMP. We show
that our compiler optimizations reduce communication overhead
by 70 to 93% on distributed memory systems. This makes Swift/T
competitive in performance with lower-level message passing-
based coordination logic for many applications, while offering
developers a gentler learning curve and higher productivity.

1. Introduction

Recent years have seen large-scale computationally intensive appli-
cations become an increasingly indispensible tool in many fields,
including disciplines that have not traditionally used high perfor-
mance computing. These vary from commercial applications of
machine learning to scientific data crunching and high fidelity
simulations. They may harness a variety of distributed-memory
resources including clouds, grids, and supercomputers. The tra-
ditional development model for high-performance computing re-
quires close cooperation between domain experts and parallel
computing experts to build applications that make efficient use
of distributed-memory systems. In SPMD programming models,
for example, careful attention must be given to distribution of data,
load balancing, and correct synchronization.

Such parallel programming expertise is a major limiting factor
for potential adopters of large-scale computing. Both scarceness of
expertise and budget constraints often limit the development of par-
allel applications. Development is more rapid, agile and thus perva-
sive if domain experts have greater control over their applications.

We believe that many real-world applications are amenable to
generic approaches to data distribution, load balancing, and syn-
chronization. Given a high-level programming model in which
these concerns are automatically handled, domain experts could de-
velop large-scale parallel applications without significant parallel
programming expertise. Particularly, many applications are natu-
rally implemented with data-driven task parallelism, where large
numbers of tasks execute in parallel, and where synchronization is
based on implicit intertask data dependencies. Variants of this ex-
ecution model for distributed-memory and heterogeneous systems
have received significant attention, because of the attractive con-
fluence of high performance with ease of development for many
applications on otherwise difficult-to-program systems [3, 8, 9].
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One implementation of this concept is the Swift/T programming
system, which aims to make implicitly parallel scripting as easy and
intuitive as sequential scripting in, for example, Python, which has
been widely adopted in science. The Swift/T language is declara-
tive and provides determinism guarantees. It offers familiar control
flow statements, mathematical functions, and rich libraries for writ-
ing high-level “glue code” that composes library functions, includ-
ing parallel libraries, into application programs that can scale from
multi-core workstations to supercomputers [39].

The Swift/T compiler “STC” compiles a high-level script to
lower-level executable code that is executed in parallel by many
nodes, which coordinate through two distributed, scalable compo-
nents: a data store and a task queue. This paradigm is challenging
to implement efficiently for realistic applications because the pro-
grammer specifies little beyond data dependencies through function
composition or reads and writes to variables and data structures
such as associative arrays. Thus, inter-node data movement, par-
allel task management, and memory management are left entirely
to the implementation. Large-scale applications require execution
rates of hundreds of thousands of tasks per second on thousands of
cores, and naive compilation of Swift/T for distributed execution
imposes high coordination overhead, hindering scalability. Our ex-
perience with Swift/T applications has shown that novel compiler
optimizations are necessary in order to achieve efficiency and scal-
ability beyond what has been previously reported for implicitly par-
allel languages.

For this reason, we have developed, adapted, and implemented a
range of compiler techniques for data-driven task parallelism, pre-
sented herein. By optimizing use of the distributed runtime system,
communication and synchronization overhead has been reduced by
an order of magnitude. This makes the high-level Swift/T language
viable and performant for many important science, engineering and
analytics applications. The contributions of this paper are as fol-
lows.

e Description of a task-parallel execution model for large-scale
distributed memory systems, based on monotonic variables

e Characterization of the novel compiler optimization problems
that arise with distributed data-driven implicit task parallelism

¢ An intermediate code representation for this execution model

e Novel application of both standard and novel compiler opti-
mizations to reduce coordination cost by an order of magnitude

e Application of compiler techniques to achieve efficient auto-
matic memory management in a distributed language runtime.

2. Motivation and Background

We illustrate and motivate our work by showing how it applies to
a commonly occurring style of scientific application: the parameter



1 blob models[], res[]1[];

2 foreach m in [1:N_models] {

3 models[m] = load(sprintf("modeli.data", m));
4113

5

6 foreach i in [1:M] {

7 foreach j in [1:N] {

8 // initial quick evaluation of parameters

9 p, m = evaluate(i, j);

10 if (p>0) {

11 // run ensemble of simulations

12 blob res2[];

13 foreach k in [1:5] {

14 res2[k] = simulate(models[m], i, j);
15 }

16 res[i][j] = summarize(res2);

17 }

18 }

19|13

20

21 // Summarize results to file

22 | foreach i in [1:M] {

23 file out<sprintf("outputii.txt", i)>;
24 out = analyze(res[i]);

25 | ¥
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(b) Visualization of parallel execution for M =2 N =2 5 = 3.

Figure 1: An application — an amalgam of several real scientific applications — that runs an ensemble of simulations for many parameter
combinations. All statements in the code execute concurrently subject to data dependencies. This application cannot be directly expressed
with a static task graph because simulations are conditional on runtime values. The diagram shows an optimized translation to runtime tasks
and shared variables. Circles are tasks, squares are data and lines are dependencies.

sweep. A parameter sweep generally involves running a simulation
or evaluating a function for a large range of input parameters. The
simplest examples can be implemented with nested parallel loops,
for example:

foreach i in [1:N] {foreach j in [1:M] {f(i, j);}}
Here f can be a simple function call or an invocation of a com-
mand line application. Although the parameter sweep can be ex-
pressed simply and compactly, it nonetheless requires an efficient
and scalable implementation.

Realistic examples involve further complications, such as condi-
tional execution or manipulation of input parameters, for example,
if (check(i, j)) { £(i**2, g(j)) }. A parameter sweep
may also simply be a prelude to further processing. For example,
a parameter sweep may perform a coarse grid search, followed by
further analysis only in regions of interest. Overlapping of phases
may also be necessary to improve utilization and reduce time to
solution. Figure 1 illustrates a number of these features.

Our experience indicates that even such seemingly trivial ap-
plications can require significant language expressiveness. A high-
level language is perhaps the most intuitive and powerful way to
express this kind of application logic. Ultimately, what many users
want is a scripting language that lets them quickly develop scripts
that compose high performance functions implemented in a com-
piled language such as C or Fortran. For sequential execution, dy-
namic languages such as shell scripts, Perl, or Python address this
need. However, this paradigm breaks down when parallel compu-
tation is desired. With current sequential scripting languages, the
logic must be rewritten and restructured to fit in a paradigm such
as message passing, threading, or MapReduce. In contrast, Swift/T
natively supports parallel and distributed execution while retaining
the intuitive nature of sequential scripting, in which program logic
is expressed directly with loops and conditionals.

This style of parallel applications maps naturally to a lower-
level execution model: data-driven task parallelism, a model of
parallelism where tasks are dynamically assigned to resources,
scheduled based on data availability. This model of task-parallel
computation can expose more parallelism for many applications
than less flexible models such as fork-join [33]. It is attractive

for orchestration of tasks on heterogenous and distributed-memory
systems, as transparent data movement between devices and data-
aware task scheduling fit naturally. Recent work has explored im-
plementing this execution model with libraries and conservative
language extensions to C for distributed-memory and heterogenous
systems [3, 8, 9, 32]. This work has shown that application per-
formance can match or exceed performance of applications coded
directly against the underlying interfaces (e.g. message passing or
threads). One reason is that sophisticated algorithms for schedul-
ing (e.g. work stealing) or data movement, usually impractical
to reimplement for each application, can be implemented in an
application-independent manner. Another reason is that the asyn-
chronous execution model is effective at hiding latency and exploit-
ing available resources in applications with irregular parallelism or
unpredictable task runtimes.

Swift/T provides an even higher-level programming model for
this execution model. It allows programmers to seamlessly and
safely mix application logic with asynchronous task parallelism,
using high-level data structures such as associative arrays and
avoiding low-level concerns such as memory management.

3. Overview of Swift/T Programming Language

The Swift/T language’s syntax and semantics are derived from
Swift [37].  Swift focuses on expressing workflows of command-
line applications producing and consuming file data. Swift/T ex-
tends this programming model by supporting direct calling of for-
eign functions (including C and Fortran) with in-memory data, suit-
able for high performance execution on distributed-memory clus-
ters.

These foreign functions or command-line applications are
treated as typed leaf functions. The programming model assumes
that fine-grained parallelism and computationally intensive code
are contained in leaf functions, leaving coarser-grained parallelism
for Swift/T. The Swift/T language is implicitly parallel. There is
no sequential dependency between consecutive statements, so the
order of execution of statements is constrained only by data flow
and, when necessary, by control structures including conditionals



and explicit wair statements that execute code only once input data
is ready. Two types of loop are available: foreach loops, for parallel
iteration over integral ranges or arrays; and for loops, where iter-
ations are ordered and each iteration can pass data to subsequent
iterations. Swift/T also supports unbounded recursion. The im-
plementation can execute language statements sequentially when
no speedup is likely to be gained from parallelism, for example
in the case of built-in arithmetic and string operations and sim-
ple data store operations. We avoid a semantic distinction between
sequential and implicitly parallel statements because this would
complicate the language, steepen the learning curve, and increase
cognitive load for developers.

3.1 Data Structures in Swift/T

Swift/T provides several primitive data types. Most standard data
types are monotonic; that is, they cannot be mutated in such a way
that values are overwritten. A monotonic variable starts off con-
taining no information, then incrementally accumulates informa-
tion until it is finalized, whereupon it cannot be further modified.
Once can construct a rich variety of monotonic data types [11, 17].
The simplest in Swift/T is a single-assignment I-var [21], which
starts off empty and is finalized upon the first assignment. All ba-
sic scalar primitives in Swift/T are semantically I-vars: ints, floats,
booleans, and strings. Files can also be treated as I-vars. More com-
plex monotonic data types can be incrementally assigned in parts
but can not be overwritten. Swift/T programs using monotonic vari-
ables are deterministic by construction, up to order of side-effects
such as I/O. Non-determinism is only introduced by non-Swift/T
code, library functions such as rand (), or by use of special non-
monotonic variables. This simplifies language semantics and lets
execution be reordered based on data availability.

The sparse array, a dynamically sized monotonic variable, is the
main composite data type in Swift/T. Integer indices are the default,
but other index types including strings are supported. The array
can be assigned all at once (e.g., int A[l = £();), or in imper-
ative style by assigning individual array elements (e.g., int A[];
A[i] = a; A[j] = b;). Maintaining determinism requires that
any operation based on the array’s state always return the same
value. The array lookup operation A[i] either returns the single
value inserted into the array A at index i or eventually fails if noth-
ing is ever inserted at A[i]. An unfinished array lookup does not
prevent progress; other statements can execute concurrently. Func-
tions of the whole array are based on the final value of the array.
E.g. size (A) is the final size of A once no more elements can be
added, so will stall until A is finalized.

Such semantics allow programmers to express intricate data de-
pendency patterns without any risk of nondeterminism or need to
manually implement synchronization logic. The implementation is
therefore responsible for correct synchronization. The implemen-
tation must automatically detect when an array is finalized, that is
when new data will no longer be inserted into it according to lan-
guage semantics. The implementation is also responsible for mem-
ory management.

4. Compiler Implementation

The rest of the paper describes the implementation of STC, an op-
timizing compiler for Swift/T. The compiler translates high-level
implicitly parallel Swift/T code into a lower-level execution model
(Section 4.1) implemented by Swift/T’s runtime (Section 4.2). An
intermediate stage of compilation performs optimizations that re-
duce communication and synchronization without loss of useful
parallelism (Section 4.3). An intermediate representation is used to
capture the execution model program (Section 4.4), to which opti-
mization techniques for synchronization, shared data, and reference
counting are applied (Sections 4.5, 4.6, 4.7).
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Figure 2: Task and data dependencies in data-driven task paral-
lelism. The tasks, together with spawn dependencies, form a spawn
tree rooted at task a. Data dependencies on shared variables defer
execution of tasks until shared data is finalized by other tasks.

4.1 Data-driven Task Parallelism for Distributed Memory

STC compiles the high-level Swift/T language into executable code
for the data-driven task-parallel execution model. STC emits an
SPMD program that can be executed on the Turbine runtime sys-
tem describe in the next section. Turbine implements an execu-
tion model based on data-driven task parallelism. The emitted
code is organized into fask definitions, which are procedures with
explicit inputs containing code that does arbitrary computation
and performs runtime operations such as spawning tasks, or read-
ing/writing global data. A fask is a runtime instantiation of a task
definition with inputs bound to specific data. Once executing, tasks
cannot be preempted by the runtime, and cannot suspend waiting
for long-running operations to complete (in contrast with many
thread-based models of parallelism). Thus, well-behaved tasks
should generally not run indefinitely.

Each task can spawn child tasks that execute asynchronously, so
a spawn tree of tasks is formed, as shown in Figure 2. Parent tasks
can pass data to their child tasks at spawn time. This includes scalar
values such as numbers or short strings, along with references to
global data store items containing arbitrary data.

The execution model also includes shared variables that exist
outside of the context of a single task, providing a means for
coordination between multiple tasks: for example, a task can spawn
two tasks, passing both a reference to a shared variable, which
one task reads and the other writes. Unlike a fork-join model
of task-parallel computation, parent tasks do not wait for child
tasks to finish. Data dependencies, which defer the execution of
tasks, are the primary synchronization mechanism provided by the
runtime. Once a task is spawned, it can execute only after all data
dependencies are finalized, which occurs when tasks finish writing
those variables. Tasks are free to write, or not write, any data
they hold a reference to, so the identity of the writer task may be
undetermined until runtime.

If we compare the semantics of the runtime execution model
with the semantics of the Swift/T language, they are lower-level
in multiple aspects. Aside from the lack of high-level syntax, there
are fewer semantic guarantees. For example, no absolute protection
against race conditions (e.g., accessing non-finalized state) are pro-
vided, so determinism is not guaranteed. Explicit bookkeeping is
also needed for both memory management and correct finalization
of variables. Bookkeeping errors could result in memory leaks, pre-
maturely freed data, or deadlocks. Thus, Swift/T can relieve a pro-
grammer of many burdens, and must correctly compile to a subset
of valid programs in this execution model.

4.2 Runtime System Architecture

Figure 3 illustrates a scalable, distributed implementation of the
execution model using the ADLB [18] and Turbine [38] runtime
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Figure 3: Runtime architecture, illustrating how tasks and data flow
across distributed processes. All communication is via message
passing. Scaling involves adding processes of each type in a ratio
appropriate for the demands of the application. Data is partitioned
using a hash function. For clarity, some possible actions are omit-
ted, e.g. a worker can create a task.

libraries for task scheduling, globally shared data storage, and
tracking of data dependencies. Turbine/ADLB programs can run on
any environment implementing the MPI-2 or MPI-3 standard [34].

Each process is single-threaded and is assigned a distinct role.
The system is designed to be scaled up arbitrarily by increasing the
number of processes of each type. All communication is through
the distributed data store and task queue services provided by
server processes. Requests to server processes are low-latency by
design, to minimize delays to other processes. Most requests take
microseconds to process. Control processes are responsible for
tracking data dependencies and releasing tasks for execution when
ready. Control processes also execute control tasks, which contain
arbitrary code emitted by the compiler. Control tasks must be of
short duration to avoid delays in releasing tasks and the overall
progress of the program. Worker processes execute arbitrary code,
and are intended for longer-running tasks, e.g. those that execute
computationally or I/O intensive leaf functions. Worker processes
can form dynamic “teams” with an MPI communicator to execute
parallel MPI leaf functions [40].

4.3 Optimization for Data-driven Task Parallelism

Compiling for this execution model presents distinct challenges for
an optimizing compiler. The goal is to compile highly parallel co-
ordination code so as to: /) preserve parallelism in the script where
task granularity is sufficient to allow parallel speedup; 2) optimize
for efficiency and minimize runtime overhead.

A naive compilation strategy would directly translate each pro-
gram variable to a runtime shared variable, and each function call
or operation to an asynchronous task, with runtime dependencies
on all data read by a task. This approach guarantees correctness,
but requires many runtime operations.

The primary source of inefficiency and overhead is from the
synchronization and interprocess communication required by run-
time task and shared data operations, which is much greater than
overhead from process-local operations. Total operation latency
comprises the latency of message passing across the network,
plus queuing delays when server processes are busy with other
work. Excessive communication and synchronization can also im-
pair scalability, by causing bottlenecks and queues to form around
frequently-accessed shared data or task queues.
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IR-1 IR-1 Distributed
Optimization Post-processing: Runtime
Ref. Counting & System

Value. Passing

IR-2 l

Code Generator H

Executable
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Swift/T
Script ——  Frontend

Figure 4: STC compiler architecture showing frontend, interme-
diate representations, and code generation. The frontend produces
IR-1, to which optimization passes are applied to produce succes-
sively more optimized IR-1 trees. Postprocessing adds intertask
data passing and read/write reference counting information to pro-
duce IR-2, which is directly used by the code generator.

(prim-type) = int | bool | float | string | blob | file
(I-var) | (prim-type) e.g. int, an I-var
(local-val) = $ (prim-type) e.g. $string, a task-local string
(refy | * (type) e.g. *int, an I-var referring to an int I-var
(amay) = {type)[] e.g.ilef], an array of fles
(type) = (I-var) | (local-val) | (ref) | (array)

Figure 5: BNF grammar for IR type system. Omitted are struct and
non-monotonic types.

Therefore, our compiler optimizations are first and foremost
targeted at reducing runtime operations, such as task creation and
shared data reads, so as to reduce interprocess communication and
synchronization. For example, program variables often need not
be implemented as shared variables; subscription to variables can
often be safely elided; and task creation overhead avoided if data
dependencies serialize execution or task granularity is too small.

Swift/T avoids the worst of the task granularity problem inher-
ent to many high-level parallel languages, where a task size must
be selected that balances runtime overhead with parallelism [19].
Computationally intensive logic in Swift/T is encapsulated in leaf
functions implemented in other languages, which sets a minimum
granularity usually large enough to avoid excessive overhead.

4.4 Intermediate Representation

The STC compiler uses a medium-level intermediate representa-
tion (IR) that captures the execution model of data-driven task
parallelism. Each IR procedure is structured as a tree of blocks.
Each block is represented as a sequence of statements. Statements
are either composite conditional statements or single IR instruc-
tions operating on input/output variables, giving a flat represen-
tation that is simple to analyze. Control flow is represented with
high-level structures mirroring those of the Swift/T language: if
statements, foreach loops, do/while loops, etc. Each block executes
sequentially, but child blocks for some control-flow structures exe-
cute concurrently. Data-dependent execution can be implied by an
IR instruction, e.g. “async” operations, or made explicit with wait
statements that execute a block after data is finalized. The use of
high-level control flow instead of, e.g. a general control flow graph,
is often helpful: the tree structure simplifies some passes, and the
code generator can emit specialized code for, e.g. parallel loops.

Figure 4 shows how two variants are used at different compiler
stages: IR-1 and IR-2. IR-1 is generated by the compiler frontend
and used by the optimizer. IR-2 augments IR-1 with information
that is needed for code generation: explicit bookkeeping for refer-
ence count manipulation and for passing data to child tasks. This is
omitted from IR-1 because it would cause complications for other
optimization passes to maintain.

Variables are either single-assignment scalar values (similar to
SSA variables [20]), or handles for shared variables. These handles



1 () Omain ()#waiton[] {

2 vars: { int n, $int v_n, int £ } // declare block vars
3 CallExtLocal argv [ v.n 1 [ "n" 1 // getargument
4 StoreInt n v_n // store argument value into shared var

5 Call fib [ £ ] [ n ] closed=[true] // fibruns async.
6 wait (f) { // printresult once computed

7 vars: { $int v_f }

8 LoadInt v_f f // Load value of f (now finalized) to v_f
9 CallExtLocal printf [ 1 [ "fib(%i)=4i" v_n v_f ]
10 H

11 ¥

12

13 // Compute o := fibonacci(i)

14 (int o) @fib (int i)#waiton[il { // waituntili final

15 vars: { $int v_i, $boolean t0O }

16 LoadInt v_i i

17 LocalOp <eq_int> t0 v_i 0 // t0:=(v_i==0)

18 if (¢0) {

19 StoreInt o O // fibonacci(0) ==0

20 } else {

21 vars: { $boolean t2 }

22 LocalOp <eq_int> t2 v_i 1 // ©2:=v_i+1

23 if (£2) {

24 StoreInt o 1 // fibonacci(l) ==

25 } else {

26 vars: { $int v_il, $int v_i2, int i1, int i2,
27 int f1, int f2 }

28 // Compute fib(i-1) and fib(i-2) concurrently

29 LocalOp <minus_int> v_il v_i 1 // v_.il:=v_i+1
30 StoreInt il v_il

31 Call fib [ £1 1 [ i1l 1 closed=[truel

32 LocalOp <minus_int> v_i2 v_i 2 // v_i2:=v_i+2
33 StoreInt i2 v_i2

34 Call fib [ £2 ] [ i2 ] closed=[true]

35 // Compute sum once f1, f2 assigned

36 AsyncOp <plus_int> o f1 £2 // o=fl+1f2
37 }

38 ¥

39 | ¥

Figure 6: IR-1 for recursive Fibonacci calculation optimized at -O2.

are either the initial handle for a variable allocated in the block,
or an alias. Representing Swift/T monotonic variables directly like
this lets us exploit their high-level semantics. Figure 5 summarizes
the IR type system.

Figure 6 provides an example of IR-1 for a parallel, recursive
Fibonacci calculation. Figure 7 presents partial pseudocode for an
IR-1 interpreter, in order to illustrate IR structure and semantics,
particularly how block instructions are executed in sequence while
tasks are spawned off for asynchronous, data-driven execution.
Table 1 lists primitive IR operations.

4.5 Adaption of Traditional Optimizations

We first adapted standard optimization techniques [20] for our
intermediate representation.

Constant folding/propagation supports compile-time evaluation
of many built-in operations including arithmetic and string opera-
tions. STC also allows binding of key-value command-line argu-
ments to compile-time constants, allowing users to compile cus-
tomized versions of an application. The algorithm uses a preorder
walk over the IR tree with a scoped hash table. I-var semantics
allow reads (by asynchronous operations) to precede writes in pro-
gram order, so each block is iterated over until no more constants
are found,

A forward data flow analysis propagates values and information
about variable finalization down the IR tree in a preorder walk. Sev-
eral optimizations are done in this pass. A value numbering scheme
is used, similar to the hash-based approach described by Briggs
for extended basic blocks [6] with extensions to handle mono-
tonic variables, commutative operations, and limited analysis of
branches. This effectively reduces much redundancy. It is particu-
larly effective for eliminating redundant global data store reads and

INTERPRET(main_func, rank)

1 if rank == 0 / Rank 0 runs main function

2 SPAWNTASK(D, main_func. block, INITENV())
3 while (task = GETREADYTASK())

4 EXECBLOCK (task. env, task. block)

EXECBLOCK (env, block)

1 foreach var € block. vars

2 INITVAR(env, var) / Allocate all variables for block

3 foreach stmt € block. statements

4 EXECSTATEMENT(env, stmt) // Execute sequential statements

5 foreach cont € block. continuations

6 EXECCONTINUATION(env, cont) / Execute async. tasks

7 foreach clean € block. cleanups

8 EXECSTATEMENT(clean. env,clean. statement) // Free variables

INITVAR(env, var)

1 if var. storage == LOCAL

2 x = ALLOCATELOCAL(var. type)

3 if var. storage € {SHARED, SHAREDALIAS }

4 z = ALLOCATELOCALREFTO(var. type)

5 if var. storage == SHARED // Allocated in this block

6 ALLOCATESHAREDDATA (z, var. type)

7 BIND(env,var.name, z) // Add variable to environment

EXECSTATEMENT (env, statement)

1 // Statements can lookup and modify variables in env,
2 // access and modify shared datastore, and spawn tasks
3 switch (statement)
4 case IF(condition, then_block, else_block)
5 if GETVAR(env, condition)
6 EXECBLOCK(CHILDENV (env), then_block)
7 else EXECBLOCK(CHILDENV (env), else_block)
8 case LOCALOP(busltin_opcode, out, in)
9 // execute local builtin op

10 case ASYNCOP(builtin_opcode, out, in)

11 // spawn task to execute async builtin op
12 case LOADINT(val, shared_var)

13 // Load value of shared_var

14 case STOREINT(shared_var, val)

15 // Store wval into shared_var

16 case AINSERT(busltin_opcode, arr, i, var)
17 / Immediately assign arr[i] = var

18 / etc...

EXECCONTINUATION (env, continuation)

// Create new tasks for concurrency or data dependent execution
switch (continuation)
case WAIT(GETVARS(env, wait_vars), target, block)
SPAWNTASK(wait_vars, block, CHILDENV (env))
case FOREACH(array, mem_var, block)
foreach x € GETVAR(env, array)
SPAWNTASK(D, block, CHILDENV(env, mem_var = x))
case RANGELOOP(start, end, iz_var, block)
for i = GETVAR(env, start) to GETVAR(env, end)
SPAWNTASK(D, block, CHILDENV(env, iz_var = 1))

[« IN=Re N He NV, RN NS I SR

—_

Figure 7: Pseudocode for parallel interpreter for STC IR-1 to il-
lustrate IR-1 semantics. SPAWNTASK (wv, b, env) spawns a task
dependent on the variable set wv. This to illustrate semantics only:
our implementation a) compiles the IR to executable code, and b)
has optimizations such as recursive splitting of loops.

writes where [-vars are replaceable with local temporary values. Fi-
nalized variable analysis detects I-vars, monotonic arrays, and so
forth that are finalized at each statement. A variable is finalized if
an instruction finalizes it directly (e.g. writing an I-var) or within a
wait statement for that variable. Variable dependencies allow final-
ization to be inferred in further situations. E.g. if I-var x contains
the value of a + b, we can infer that a and b are finalized inside



Table 1: Opcodes for IR instructions. Opcodes that support struct
and file data types, mutable variables, and memory management
within tasks are omitted.

Opcodes Description

LocalOp, Execute builtin operations, e.g. arithmetic. The local

AsyncOp variant operates on local values and executes imme-
diately in the current task context. The async. variant
operates on shared variables and spawns a task.

CallExt, Foreign function calls, with async. and local ver-

CallExtLocal sions analogous to above.

Call, CallSync Sync. and async. Swift function calls

Load(prim-type), Load/store values of shared vars

Store (prim-type)

LoadRef, StoreRef Load and store reference variables

CopyRef Copy shared var handle to create alias

Deref (prim-type) Spawn async. task to dereference e.g. *int to int

{Incr|Decr} Reference counting operations for shared vars

{ReadRef|WriteRef}

AGet, Array lookups. A and AR variants operate on ar-

AGetImm, rays/references to arrays respectively. Future vari-

AGetFuture, ants take I-var index arguments. AGetImm performs

ARGet, the lookup immediately, and fails if element is not

ARGetFuture present. All others execute asynchronously.

Alnsert, Array inserts, following same convention as before

AlnsertFuture,

ARlInsert,

ARlInsertFuture

ANestedImm, Create nested array at index if not present. Required

ANestedFuture, to support automatic creation of nested arrays

ARNested,

ARNestedFuture

wait(z) { }. The finalized variable analysis allows inlining

of wait continuations and strength reduction, whereby statements
using expensive runtime operations are replaced with ones that use
fewer or no runtime operations. E.g. for some operations, one in-
struction version wraps an operation in a data-dependent task to
wait for the value of an input variable, while another version exe-
cutes immediately without synchronization.

Dead code elimination uses a tree walk to build a variable de-
pendence graph for an entire function. Monotonic variables sim-
plify this process, since we need not consider the scope of overwrit-
ten values of a variable. Live variables are identified by finding the
transitive closure from variables that are either function outputs or
input/outputs of side-effecting instructions. The analysis accounts
for variables aliasing parts of data structures, with another graph
capturing the is a part of relationship. Untaken branches of condi-
tionals and any empty control flow structures are also eliminated.

Function inlining is an important optimization. STC’s default
function calling convention uses shared variables (e.g., I-vars) to
pass arguments for generality. This method is often expensive be-
cause it can require unnecessary data store loads and stores. Func-
tion call overhead can be an issue due to the use of many small func-
tions, either user-written, or compiler-generated to wrap foreign
function calls. Function inlining allows other optimization passes
to eliminate unnecessary loads and stores and more generally to
create optimization opportunities for later passes. Functions with
a single call site are always inlined. Otherwise, a simple heuristic
is used: function instruction count X # call sites < 500. Directly
or mutually recursive calls are identified to avoid infinite cycles
of inlining. Typical Swift/T programs can often be inlined entirely
into the main function, allowing aggressive interprocedural opti-
mization. Asynchronous op expansion, a variant of inlining where
an asynchronous instruction is expanded to a wait statement plus
non-asynchronous instruction, is also used.

Several loop optimizations are implemented. Loop invariant
hoisting is important for typical Swift/T scripts, in which large
parallel nested foreach loops often include redundant computations
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3 = £4(£5(d); = f6(e, £f);
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Figure 8: Traces of execution showing optimization of task and data
dependencies in a Swift/T code fragment.

such as nested array lookups in the innermost loop. Loop fusion
fuses foreach loops with identical bounds, reducing runtime loop
management overhead and allows optimization across loop bodies.
Loop unrolling is also performed. Loops with < 16 iterations are
completely expanded. Loops with high or unknown iteration counts
are unrolled by a factor of 8x at high optimization levels. A simple
heuristic caps the unroll factor to limit code size increase to at
most 256 instructions per unrolled loop, thereby avoiding excessive
code-size expansion. The main benefit of unrolling in STC is to
allow optimization across multiple iterations by other passes.

4.6 Optimization for Data-driven Task Parallelism

A number of further transformations are performed that are spe-
cific to data-driven task parallelism. These transformations aim to
restructure the task graph of the program to be more efficient, with-
out reducing worthwhile parallelism: namely, any parallelism of
sufficient granularity to justify incurring task creation overhead.

Two related concepts are used to determine whether transfor-
mations may reduce worthwhile parallelism. The first is whether
an intermediate code instruction is long running: whether the op-
eration will block execution of the current task for a long or un-
bounded time. Our optimization passes avoid serializing execution
of long-running instructions that could run in parallel. The sec-
ond is whether an instruction is progress enabling: for example,
a store to a shared variable that could enable dependent tasks to
execute. The optimizer avoids deferring execution of potentially
progress-enabling instructions by a significant amount. For exam-
ple, it avoids adding direct or indirect dependencies from a long-
running instruction to a progress-enabling instruction. To catego-
rize operations, whitelists of short-running instructions and black-
lists of progress-enabling instructions are used. Annotations on
library functions provide additional information: we assume that
tasks to be executed on control processes are short-running.

One optimization pass is called task coalescing, because it re-
locate tasks, coalesces task, and generally reconfigures the IR task
structure. One effective technique, which we call task pushdown, is
to resolve data dependencies between tasks by pushing statements
down in the IR tree to the block where an input variable is assigned.
Wait statements are prime candidates for relocation, as they cannot



execute until a variable is assigned. Instructions that wait for input
variables before executing are also relocated. This often enables
further optimization by later passes. One effect that can result is
conversion of data dependency edges to task spawn edges, as shown
in Figure 8c. Task coalescing also tries to merge tasks where pos-
sible without impeding progress. It merges nested wait statements
where no progress is made in the outer wait, and also merges to-
gether waits for overlapping sets of variables attached to the same
block, which reduces data dependencies that must be resolved at
runtime.

Another optimization is pipeline fusion, illustrated in Figure 8d.
A commonly occurring pattern is a sequentially dependent set of
function calls: a “pipeline.” We can avoid runtime task dispatch
overhead and data transfer without any reduction in parallelism by
fusing a pipeline into a single task. For short tasks or for tasks with
large amounts of input/output data, this method saves much over-
head. As a generalization, a fused task will spawn dependent tasks
if a pipeline “branches.” This was inspired by pipeline fusion in
streaming languages [13], which is similar in concept but essen-
tially a different optimization. Streaming languages have static task
graphs with dynamic flows of data, while data-driven task paral-
lelism has dynamically created task graphs operating on discrete
data. In streaming languages, pipeline fusion trades off pipeline
parallelism for lower overhead. In Swift/T, there is no pipeline par-
allelism to lose, but the more dynamic execution model means that
compiler analysis is required to identify valid opportunities.

4.7 Finalization and memory management

The Swift/T language implementation is responsible for both mem-
ory management (automatically reclaiming memory allocated to
variables) and variable finalization (detecting when a variable will
no longer be written). These two problems are related; and we ad-
dress them with automatic distributed reference counting. Read and
write reference counts are defined for each shared variable. When
the write reference count drops to zero, the variable is finalized and
cannot be written; when both reference counts drop to zero, the
variable can be deleted. This design is multipurpose: for example,
an [-var starts with one write reference, which is decremented upon
assignment to finalize the variable. In the case of arrays, the com-
piler must determine which statements may read or write each vari-
able, and write reference counts are incremented and decremented
depending on the number of active tasks that could modify the ar-
ray.

Two postoptimization passes over the IR add all necessary refer-
ence count operations. The first pass identifies where read and write
references are passed from parent to child tasks. For example, if the
array A is declared in a parent block and written within a wait state-
ment, a passed write reference is noted. The second pass performs
a post-order walk over the IR tree to add reference counting oper-
ations. A naive reference counting strategy would be to increment
or decrement the reference count of a shared variable every time a
reference is copied or lost. However, this strategy would impose an
unacceptable overhead: it could easily double the number of data
store operations and therefore messages.

Instead, STC uses a more sophisticated approach. For each
block, two integers, both initialized to zero, are maintained for
each shared variable in scope to track read and write incre-
ments/decrements. A pass over the block increments the appro-
priate counter for a copied reference to a variable (e.g. passed to an
instruction, or into an annotated child block), and decrements for
each reference that goes out of scope at the end of the block. Once
the counts are accumulated, reference count operations are added
to the block. The fallback strategy is to place increments at the start
of the block (or in the case of an alias, after it is initialized) and
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Figure 9: Impact of optimization levels on number of runtime
operations that involve message passing or synchronization.

decrements at the end, which ensures that reference counts do not
incorrectly drop to zero too early during execution.

This approach allows several optimizations. Cancelling and
merging reference count operations is enabled by the use of coun-
ters. E.g. an increment for a reference passed to a single child task
cancels out a decrement for the variable going out of scope in the
parent. Reference increments from child blocks can be pulled up
for merging/cancelling. Reference counts for parallel foreach loops
can be batched, exploiting chunked execution of loops. Reference
count increments or decrements can be piggybacked on other data
operations, such as variable creation or variable reads. With a dis-
tributed runtime, the piggy-backed reference count is almost free,
since no additional messages need to be sent.

In combination, these techniques allow reference counting over-
head to be reduced greatly. Separate reference count operations can
be eliminated entirely in cases where the number of readers can be
determined statically. In the case of large parallel loops, reference
counting costs can often be amortized over the entire loop.

5. Evaluation

To characterize the impact of different optimization levels, we
chose five benchmarks that capture commonly occurring patterns.
Sweep is a parameter sweep with two nested loops and completely
independent tasks. Fibonacci is a synthetic application with the
same task graph as a recursive Fibonacci calculation with a cus-
tom calculation at each node that represents a simple divide-and-
conquer application. Sudoku a divide-and-conquer Sudoku solver
that recursively prunes and divides the solution space and termi-
nates early when a solution is found. Sudoku is a non-trivial bench-
mark with ~50 lines of Swift/T and ~800 lines of C. Wavefront
is a synthetic application with more complex data dependencies,
where a two-dimensional array is filled in with each cell depen-
dent on three adjacent cells. Simulated Annealing is a production
science application comprising ~500 lines of Swift/T and ~2000



Table 2: Runtime operation counts, measured in thousands of operations, in simulated annealing run, showing impact of each optimization

pass. Each row includes prior optimizations.

Task | Create | Sub. | Load | Store | Lookup | Insert | Refcount | Total
00 221.3 41.3 | 740.5| 616.9 | 305.9 79.8| 14.8 3.5(2024.1
+Constant fold +DC elim. 165.3 154 658.2 | 575.8| 198.1 79.8| 14.8 3.8|1711.2
+Forward dataflow 157.8 13.8| 453.4 | 427.5| 129.5 79.7| 14.8 0.6 | 1277.3
O1: +Loop fusion 157.7 13.8| 453.3 | 427.4| 129.5 79.6| 14.8 0.6 | 1276.8
+Expand async. ops 157.9 13.8 | 453.4| 427.5] 129.5 79.71 14.8 0.6 | 1277.3
+Expand small loops 157.8 13.8 | 453.4| 427.5] 129.5 79.71 14.8 0.6 | 1277.2
+Hoisting 58.6 13.8| 354.5| 414.7| 67.2 182 14.8 0.6 9423
02: +Task coalesce 56.3 13.7| 96.2| 157.8| 39.6 18.1| 14.8 0.6 | 397.0
+Inline +Pipeline 28.8 13.3 54| 784 39.1 169 | 14.8 0.6| 1974
+Reorder +Algebra 28.5 13.3 53| 784 39.1 16.9| 14.8 0.6 | 196.9
03: +Full unroll 28.3 2.7 50| 783 39.1 16.6| 14.8 0.7 185.6
of C++ that implements an iterative optimization algorithm with a 20 3 ggg
parallelized objective function. 315 E 200
We ran benchmarks of these applications compiled at different 2 1.0 2 150
optimization levels. These levels each include the optimizations 2 05 I 2 100
from previous levels: . Q0: Only optimize write reference counts g 00 g %0
. R . . .. o ¥ (@)
O1: Basic optimizations: constant folding, dead code elimina- Off Unopt Opt Off Unopt Opt
tlonégor\ﬁ//?rd data ﬂOW-’ and lqop fus.10n . (a) Fibonacci (b) Simulated Annealing
: More aggressive optimizations: asynchronous op expan- _ R
sion, task coalescing, hoisting, and small loop expansion 3 200 3 400
03: All optimizations: function inlining, pipeline fusion, loop £ 150 £ 300
unrolling, intrablock instruction reordering, and simple algebra g 100 2 200
For the two simplest applications, we also implemented hand- T 50 l & 100
coded versions using the same runtime library, ADLB [18], as a § § . .
baseline. Off  Unopt  Opt Off  Unopt  Opt
(c) Sudoku (d) Wavefront

5.1 Impact of Individual Optimizations

We first measured how optimization affects communication by log-
ging synchronization/communication operations during a bench-
mark run. Communication operations are a reasonable proxy for
compiler effectiveness that is independent of runtime implementa-
tion. For most applications, reduced communication and synchro-
nization will directly improve scalability and performance.

Figure 9 shows the cumulative impact of each optimization level
on the number of runtime operations, while Table 2 shows a more
granular breakdown of the effect of individual optimization passes
on the simulated annealing application, the most complex bench-
mark. Garbage collection was disabled while running these bench-
marks so that we could examine its impact separately. Overall we
see that all applications benefit markedly from basic optimization,
while more complex applications benefit greatly from each addi-
tional optimization level. Compared with hand-coded ADLB, STC
at O3 uses only fractionally more runtime synchronization and
communication. More complex applications would present more
opportunities to implement optimizations in a hand-coded version,
so this gap may widen somewhat. However, more complex appli-
cations are also exactly when the higher-level programming model
is most valuable.

5.2 Reference Counting

We also examined the impact of reference counting for garbage col-
lection in isolation in order to understand the overhead imposed by
automatic memory management and the impact of optimizations
designed to reduce it. We ran the same benchmarks under three dif-
ferent configurations, based on the O3 configuration: Off, where
read reference counts are not tracked and memory is never freed;
Unopt, where all reference counting optimizations are disabled;
and Opt, with reference counting optimizations enabled. Figure 10
shows the results. The Sweep benchmark is omitted since at O3 no
shared variables were allocated. The results show that the reference
counting optimizations are effective, reducing the additional num-

Figure 10: Impact of unoptimized and optimized reference count-
ing for memory management on runtime operations

ber of operations required for memory management to 2.5%-25%
for three benchmarks. The optimizations were less effective for Su-
doku, which heavily uses struct data types that are not yet handled
well by reference counting optimizations.

5.3 Application Speedup

The second part of the optimization evaluation is to examine the
impact on runtime of different optimizations. We first ran the previ-
ously introduced benchmarks on a Cray XE6 supercomputer. Each
node has 24 cores. Except otherwise indicated, 10 nodes were used
for benchmarks. We measure throughput in tasks/sec dispatched to
worker processes; this metric captures how efficiently the Swift/T
system is able to distribute work and hand control to user code.

Different cluster configurations were chosen based on initial
tuning, with different splits between worker, which execute the
actual user code in the applications and control/server processes.
These are different for different applications because some appli-
cations have more synchronization compared to computation. We
performed a coarse seach in increments of 8 for the best ratio for
each application. The ratio for Sweep was 192 : 48, for Fibonacci
204 : 36, and for Wavefront 128 : 112. With Simulated Annealing,
we used n : 48, where n is a variable number of workers.

Figure 11 shows the results of these experiments. For the O0
and ADLB Sweep experiment runs and the O1 Wavefront run,
the 30-minute cluster allocation expired before completion. Since
these were the baseline runs, we report figures based on a runtime
of 30 minutes, to be conservative. We omitted Sudoku because
the runtime was too short to obtain accurate timings: the most
challenging Sudoku problem was solved at all optimization levels
in 1.25-1.9 seconds, a 40-65x speedup.

With each benchmark, we can see that reduction in operation
count in Figure 9 gave a roughly proportional increase in through-
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Figure 11: Throughput at different optimization levels measured in application terms: tasks/sec, or annealing iterations/sec.

put. In some cases, for example in Wavefront, speedup was more
than proportional to the reduction in runtime operations: the unopti-
mized code excessively taxed the data-dependency tracking at run-
time, causing bottlenecks to form around some data. This supports
our claim in Section 4.6 that runtime operations are the primary
bottleneck for Swift/T. The wide variance between tasks dispatched
per second in different benchmarks is due primarily to the differ-
ence in runtime operation intensity. Performance of hand-coded
ADLB on Sweep was bottlenecked by a single process generat-
ing work tasks, while the Swift/T version automatically parallelized
work generation. With some effort, the ADLB issue could be fixed.
In contrast, the hand-coded Fib program performed substantially,
better mainly because in the hand-coded version we avoided hav-
ing two separate classes of worker and control processes and thus
achieved better utilization. Figure 11e shows strong scaling for the
simulated annealing benchmark. At lower optimization levels, task
dispatch limits scaling, whereas code compiled at higher optimiza-
tion levels scales better.

6. Related Work

Many authors have addressed the problem of improving perfor-
mance of distributed workflows created through data flow compo-
sition, often with explicit task graphs. None have treated the prob-
lem as a compiler optimization problem. Rather, the problems ad-
dressed have been scheduling problems where resource availability
and movement of large data are the major limitations. Thus, that
work focused on computing efficient schedules for task execution
and data movement [24, 30, 31, 41], generally assuming that a static
task graph is available. We focus on applications with finer-grained
parallelism in conjunction with a high-level programming model,
in which runtime overhead is, in contrast, a dominant concern. Pre-
vious authors have made a case for the importance of such appli-
cations [27] and the value of combining a low-level computation
language and a high-level scripting language [23].

Hardware data-flow-based languages and execution models re-
ceived significant attention in the past [2]. There has been a resur-
gence of interest in hardware-based [16, 22] and software-based [5,
7, 10, 26, 33] data flow models because of their ability to ex-
pose parallelism, mask latency, and assist with fault tolerance. Pre-
vious work has sought to optimize data flow languages with ar-
rays: SISAL [29] and Id [35]. Both languages have similarities to
Swift/T, but both emphasize generating efficient machine code and
lower-level parallelism. Id targets data flow hardware rather than a
distributed software runtime. The SISAL runtime used fork-join
parallelism, but its compilation process eliminated much poten-
tial parallelism. In STC, task-graph-based transformations and the
more involved reference counting required for fully dynamic task
graphs also necessitated new techniques.

Other authors have described intermediate representations for
parallel programs, typically extending sequential imperative repre-
sentations with parallel constructs [42]. Our work differs by focus-
ing on a restricted data flow programming model that is suitable for
parallel composition of lower-level codes. Our restricted model al-

lows aggressive optimization because of monotonic data structures
and loose rules on statement reordering.

Related compiler techniques have been proposed in other con-
texts. Task creation and management overhead is a known source
of performance issues in task-parallel programs. Zhao et al. re-
duce task parallelism overhead through safely eliminating or reduc-
ing strength of synchronization operations [43]. Arandi et al. show
benefits from compiler-assisted resolution of intertask data depen-
dencies with a shared-memory runtime [1]. The communication-
passing transformation described by Jagannathan [14] is related to
the STC task coalescing optimization technique that relocates code
to the point in the IR tree where required data is produced. Opti-
mizations have been proposed to reduce reference counting over-
head [15, 25], similar in spirit to STC’s reference counting op-
timization. Such techniques, designed for sequential or explicitly
parallel functional/imperative languages are, however, substantially
different.

Other authors have reduced the cost of data parallelism and
fork-join task parallelism through runtime techniques that defer
task creation overhead [12, 19, 28]. However, these techniques do
not easily apply to data-driven task parallelism.

7. Future Work

The STC optimizer comprises a flexible intermediate representa-
tion and a subtantial suite of optimizations but opportunities for
improvement naturally remain.

We had success from adapting optimizations from the impera-
tive language optimization literature. We expect that adoption of
proven techniques, including representations like SSA and more
sophisticated control/data flow analyses would result in further im-
provement. Additionally, certain more specialized techniques could
bring substantial benefits. Techniques for affine nested loops (e.g
[4]) could be applied to applications with patterns such as the wave-
front example. Data structure representation could be optimized:
there are unexploited opportunities, for example, to use lighter-
weight representations for small arrays.

Further evolution of the language runtime also present opportu-
nities. Past work [36] has identified opportunities for runtime sys-
tems to optimize data placement and movement for data-intensive
applications given hints about future workload. Our compiler in-
frastructure could be used to perform analysis and pass hints to the
runtime about patterns of data movement. The current system also
uses only synchronous operations for the data and task store. Com-
munication latency could be better masked through use of overlap-
ping asynchronous operations. The compiler infrastructure could
support analysis of which operations can be safely overlapped.

8. Conclusion

We have described a set of optimization techniques that can be ap-
plied to improving efficiency of distributed-memory task-parallel
programs expressed in a high-level programming language. Our
performance results support two major claims: that a high-level



scripting language is a viable model programming model for scal-
able applications with demanding performance needs and that ap-
plying a wide spectrum of compiler optimization techniques in con-
junction with runtime techniques greatly helps towards this aim.

The system described in this paper is in production use for sci-
ence applications running on up to 8,000 cores in production and
over 100,000 cores in testing. Application of compiler techniques
to communication reduction was essential to reaching this scale.
The programming model offers a combination of ease of develop-
ment and scalability that has proven valuable for developers who
need to rapidly develop and scale up applications.
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