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Abstract—We present a novel technique for determining the
solution of optimal power flow, including dynamic security
constraints, using forward sensitivities computed by using finite
differences. Finite differencing provides an easy way of comput-
ing the sensitivities of the dynamic security constraints in optimal
power flow. A dynamic security measure based on the frequency
excursion of the generators is presented. Our formulation also
yields the marginal cost associated with the generator’s frequency
excursion.

Index Terms—Optimal power flow, Dynamic security, Tran-
sient stability, Frequency deviation, Finite differencing, Marginal
cost of frequency deviation.

I. INTRODUCTION

Optimal power flow (OPF) is a widely used and important
tool in power system analysis. The solution of the optimal
power flow ensures an economic power system operation
while satisfying the operational security constraints. However,
such a solution is valid only for steady-state operation. An
optimal power flow solution does not guarantee that the power
system will be dynamically secure when subjected to credible
contingencies such as short-circuit faults or loss of generators,
transmission lines, or loads. Dynamic security is a concern for
system planning and operations experts because of significant
higher penetrations of renewable energy resources, most of
which are electronically coupled to the grid, are expected in
the future. This situation presents new technical challenges,
particularly in the reduction of system inertia through the
displacement of conventional generation resources during light
load periods [1]. Thus, ensuring dynamic security, along with
the optimal and secure steady-state operation is an important
emerging problem.

II. LITERATURE REVIEW

One of the first approaches for solving transient stability
constraints in an optimal power flow was proposed in [2];
a transient energy function was used to model the dynamic
constraints in an optimal power flow. Incorporation of dynamic
security constraints as equality constraints in the form of
discretized differential equations and inequality constraints for
bounds on the trajectory was introduced in [3]. The dynamic
security constraints were incorporated through a potential
energy boundary surface formulation with the transient stabil-
ity discretized differential-algebraic equations as the equality
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constraints. Gan et al. [4] used a similar discretize-then-
optimize approach and used the deviation of rotor angles as
the transient stability constraint. A dynamic security preventive
control also has been proposed using pattern recognition
techniques [5], [6] and artificial neural networks [7], [8].
An evaluation of the maximum allowable transfer enforcing
transient stability constraints was presented in [9]; specifically,
a single machine equivalent (SIME) approach was used to
identify the critical contingencies and shift the generation from
the critical machines to the non criticial ones.

Chen et al. [10] presented constraint transcription technique.
In their approach, a single inequality constraint for the dy-
namics is computed through an averaging of the inequality
constraint at each time step. Thus a significant reduction in
the dimensionality of the problem is achieved as compared
with the discretize-then-optimize approach. A solution of the
optimal power flow with multi-contingency transient stability
constraints was presented in [11]. A forward trajectory sensi-
tivity approach was also used in [12] to obtain a suboptimal
solution of the dynamic security-constrained OPF problem.
An adjoint method for computing the sensitivities for the
constraint transcription technique was used in [13]. Evolu-
tionary algorithms using particle swarm optimization, genetic
algorithms, and neural networks were presented in [14]-[21]

In this work, we present a finite difference computed
sensitivity-based approach to the dynamic security constrained
OPF problem. Sensitivity-based approaches have the advan-
tage of much smaller memory footprint which may be a
concern in real-time oriented architectures that are leading
target architectures for the deployment of such optimization
strategies. Here, the trajectory sensitivities are used for cal-
culating the generation that needs to be shifted from the
most advanced generators, in terms of the generator speed
deviation, to the least advanced. A particular challenge are
the path constraints on the system dynamics that need to
be expressed in parameter space (OPF state space) to take
full advantage of the benefits of sensitivity approaches. They
would typically result in nonsmooth approaches; we present
a penalty approach to allow for a smooth treatment that is
compatible with Newton-type methods.

III. DYNAMIC SECURITY CONSTRAINED OPTIMAL POWER
FLOW

The dynamic security-constrained optimal power flow
(DSOPF) formulation combines the OPF equations with the
transient stability equations as given in (1)-(6). In addition, the
dynamics trajectory must satisfy security constraints at each



time step as given by (7).

min  C(p) ()
s.t. gs(p) =0 (2
hs(p) < hF 3)

p- <p<p’ (4)

&= f(x,y,p,\), (o) = Lwo(p) 5)

y(to) = y0 (p) (6)
V(1) (7

0= g(z,y,p, ),
h(z(t),y(t)) <0,

Here, p = [P,,Q4,0,V]T € R" are the OPF variables,
namely the real and reactive power generation and the bus
voltage magnitudes and angles. The steady-state security con-
straints are given by (2)-(4).

Equations (5) and (6) describe the differential-algebraic-
discrete (DAD) model of the power system [12]. I, and
I, are functions that describe the relation between the initial
conditions, (x(to),y(to)), for the DAD and the optimization
variables p. Here,x € R"® represents the dynamic states
for the machines and its associated controllers; y € R™
represents the algebraic states, namely, the network bus volt-
ages; and A denotes the action of discrete events such as
fault incidence/removal, transmission line switching, load loss,
or generation tripping. Equation (7) gives a measure of the
dynamic security of the system at each time step. An example
of (7) is the separation of generator rotor angles that has been
extensively as a dynamic security criterion in the literature [4],
[11], [22].

We note here that, seen in the full parameter-state space,
the DSOPF problem is an infinite-dimensional problem with
infinite dynamic constraints. However, given that x,y at any
given time ¢ can be computed from the initial conditions
x(to),y(to) and the initial conditions are functions of the
OPF variables, x,y are implicit functions of p. Thus, the
original DSOPF problem can be expressed only in terms of
the optimization variables as given in (8).
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Due to the infinite number of constraints and finite num-
ber of parameters, this is a semi-infinite optimization prob-
lem [23], and can in principle be solved as such if one
adopts a direct transcription approach [24]. To allow for
sensitivity approaches, we consider aggregating the path con-
straints, as can be achieved by using the minmax form
max:{0, h;(z(p,t),y(p,t))} = 0, where h; is a component of
h. This however, leads to nonsmooth optimization problems
that are considerably harder to solve practically than their
smooth counterparts [25].

To allow for smooth approaches, we use a constraint aggre-
gating procedure, based on smoothing the minmax constraint.

[26]. Instead of enforcing the constraints at each time step,
the evolution of the constraint surface at some final time can
be used as a constraint [10].

T
Hz(p.t),y(p.1) = 0 / [max (0, h(x(p. £), y(p, £))]" dt = 0
9)

Here, 1 is an exponent to ensure sufficient smoothness of (9),
and o is a multiplier, similar to penalty cost term, to ensure a
decent progress of the optimization. Its value should be large
enough to ensure smoothness, but not too large to promote
degeneracy; a value around n = 2 would be appropriate to
this end. Since the equality constraint in (9) cannot be easily
handled by optimization solvers [10], an inequality constraint
H(z,y) < p is used instead, where p is a positive small
number.

With this formulation, replacing the path constraints by
H(z,y) = H(p) with H defined by (9) in (8) completely
defines a smooth problem of p only that we can solve with
smooth optimization tools.

IV. MEASURE OF DYNAMIC SECURITY

We use frequency deviation of the generators as a measure
of dynamic security in our analysis. Frequency regulation is
an important issue in dynamic security and the synchronous
generators are operated within stringent regulations around
the nominal operating frequency [27]. Significant deviation
above nominal frequency can cause tripping of generating
units, while under frequency can cause shedding of loads or
operation of protective devices. Accordingly, we model the
dynamic security constraint as given by (10).

T
Hz(xay)za/ [maX (O,wi7w+7w77wi)]ndt
0

1=1
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Here w; is the synchronous speed of the generator ¢ that
governs its frequency, and m equals the number of generators.
Thus, our formulation uses H(z,y) € R™ dynamic constraints
appended to the OPF instead of a single inequality constraint
as used in [10]. Having separate constraints provides a finer
violation measure in terms of the frequency excursion for each
generator, and its Lagrange multiplier gives the associated
marginal cost.

V. COMPUTING DERIVATIVES VIA FINITE DIFFERENCING

Equation (8) can be solved by any standard nonlinear opti-
mization solver such as an interior point method or reduced-set
method. However, the optimization solver requires the deriva-
tive of H(z(p),y(p)) with respect to optimization variables p,
which is a non trivial computing task. For a rigorous derivation
of the gradient of H(x(p),y(p)), see [10], [28].

_ [T 9[max (0, h(x(t), y(1))]"
VoH(z,y) = 0/0 o

In this work, we tackle the calculation of (11) by using finite
differencing. Derivative calculation with finite differencing is
an easy, yet powerful, approach used in various fields where

dt  (11)



the derivative is unavailable or difficult to obtain. It is based
on Taylor series truncated at various orders of expansion.
A sequence of finite difference approximations gives the
gradient. Consider the cost function H; (z (p),y (p)), where
p € R, The cost function is defined from R"” — R. Now
the partial derivative with respect to the k™ component of p,
can be approximated as follows

gHi (p) ~ H; (z (ps +eex), (y (px +eer))) (12)
Pk €
_ Hi(z(p),y(p.))

Here e, is the k™ canonical basis vector and e is a small
perturbation. The gradient with respect to p performing the
computation is shown in Equation (12) for k = 1,2,--- ,np.
The gradient can be written as

Vi (z(p),y(p)) =
) St e S

p1 Op2
The approximation in Equation (12) is first-order accurate.
The accuracy can be improved by performing central finite
differencing. However, this requires an extra cost function
evaluation for each evaluation of the partial derivative. The
approximations by central finite differencing are second-order
accurate and can be written as

0H; (py) ~ H; (z (px +eer), (y (px +€ek)))

Opk Px) 2¢

H; (z (px — €ex), Y (px — €&r))

2¢ '

It is important to choose the right € to get good approxima-

tions. One of the factors to consider is the ratio of € and py.

A guideline for its selection is that it should be greater than

but close to the square root of the round-off error.

13)

(14)

VI. TEST CASE AND SIMULATION RESULTS

The test case, shown in Fig. 1, used in this work is the
3-generator, 9-bus system available in [29] Chapter 7. All
generators use a 4" order two-axis model with an IEEE Type-
1 exciter. The objective function (1) used in this work is the
minimization of the total generation cost where the cost for
each generator’s real power output is given by a second order
polynomial term C'(p) = >0, (ongi2 + BPy; + ). The cost
coefficients used are from the MATPOWER [30] package.

The proposed scheme is implemented in MATLAB by using
its nonlinear optimization solver fmincon available through
its optimization toolbox. An interior-point method, available
in fmincon, is used to solve the the TSOPF problem. To
avoid the complication of computing the Hessian analytically
or the additional eror that would stem from finite difference
approximations (which are less accurate for Hessian than they
are for gradients), we use a quasi-Newton BFGS scheme,
available with fmincon, to approximate the Hessian.

For the numerical discretization of the DAE equations, an
implicit-trapezoidal (Crank-Nicholson) scheme is employed

Fig. 1. 3-generator, 9-bus test case system

with a time-step of 0.01667 seconds. We used coefficients
o=5e3 and n=2 for computing the dynamics constraint func-
tion given by (10). We note that the choice of ¢ is heuristic and
dependent on the system conditions. A forward differencing
approach is used for computing V,H (z (p),y (p)) using a
perturbation of e=le-5. We note that the gradient calculation
using forward finite differencing entails np runs, one for
each component of p, of the DAE solver. While this may
be seem onerous, especially for large systems, it is perfectly
parallelizable since it is an embarrassingly parallel calculation.
We have not done this derivative calculation in parallel in our
current implementation, but it is a part of our future work.

A. OPF without dynamic security constraints

The generation schedule obtained from OPF without dy-
namic security constraints is presented in Table I. The total
cost for this schedule is $5921.47/hr. We note here that Gen2
has the maximum power dispatch since it is the cheapest
generator.

TABLE I
GENERATION SCHEDULE WITHOUT DYNAMIC CONSTRAINTS
Generator | Bus Number MW
Genl 1 89.81
Gen2 2 134.33
Gen3 3 94.20

To assess the dynamic security of this OPF solution, we
considered two cases for a self-clearing 3-phase solid fault on
Bus 7 and Bus 9. The fault lasts for 12 cycles, initiating at
t=0.1 seconds and extinguishing at ¢t=0.3 seconds. The system
is considered to be dynamically secure if the frequency of
the generators does not exceed the upper and lower frequency
limits of 60.8 Hz and 59.2 Hz, respectively, that is, a deviation
of 0.8 Hz from the nominal frequency. The dynamic security
measure given by Equation 10 with these limits is shown in
Figure 2. As seen in Figure 3, for the fault at Bus 7, the system
is not dynamically secure, since the generator frequencies
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exceed the set limits. Generator 2 has the most frequency
excursion because of its close proximity to the fault location.
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Fig. 3. Generator frequencies from an OPF solution for a 12-cycle 3-phase

fault at Bus 7

A similar dynamically insecure behavior is observed for a
fault at Bus 9, as seen from Fig. 4. In this case, Gen3 has the
most frequency deviation as it is closest to the fault location.

B. Dynamic security constrained OPF for a fault at Bus 7

The generation schedule for the DSOPF for a fault at Bus
7 is given in Table II. With the frequency limits enforced, the
generation is rescheduled with Gen2 reducing its output, while
Genl1’s output is increased. The frequency of the three genera-
tors, as shown in Fig. 5, is constrained within the set frequency
limits due to the inclusion of the frequency limits in the OPF.
The total cost for this generation schedule, $6509.62/hr, is
higher since the cheapest generator’s output is reduced. The
Lagrange multipliers for the inequality constraints yields the
marginal cost associated for keeping the frequency within the
limits. As seen, generators 2 and 3 have a higher marginal
cost since they have the most frequency deviation.
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Fig. 4. Generator frequencies from an OPF solution for a 12-cycle 3-phase
fault at Bus 9

TABLE I
GENERATION SCHEDULE WITH DYNAMIC CONSTRAINTS FOR A 12-CYCLE
3-PHASE FAULT AT BUS 7

Generator | Bus Number MW Marginal Cost ($/Hz)
Genl 1 173.53 100.00
Gen2 2 87.48 773.23
Gen3 3 59.39 621.11
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Fig. 5. Generator frequencies from DSOPF solution for a 12-cycle 3-phase

fault at Bus 7

C. Dynamic security constrained OPF for a fault at Bus 9

The generation schedule obtained from DSOP for a fault
at Bus 9 is given in Table III. As seen, the generation gets
rescheduled such that Gen3’s output is reduced significantly
and it is provided by Genl and Gen2. The total cost for this
schedule is $6201.64/hr.

VII. SUMMARY

A novel approach for determining dynamic security con-
strained optimal power flow using finite-differencing sensitiv-
ities was discussed in this paper. Results for different fault
scenarios for a 9-bus system show the validity of the proposed



TABLE III

GENERATION SCHEDULE WITH DYNAMIC CONSTRAINTS FOR A 12-CYCLE

Frequency (Hz)

3-PHASE FAULT AT BUS 9

Generator | Bus Number MW Marginal Cost ($/Hz)
Genl 1 154.73 20.00
Gen?2 2 124.97 660.94
Gen3 3 39.59 445.38
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Fig. 6. Generator frequencies from DSOPF solution for a 12-cycle 3-phase
fault at Bus 9

formulation. The formulation also provides the marginal cost
of generator frequency deviation.
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