Optimization Strategies for MPI-Interoperable
Active Messages

Xin Zhao,* Pavan Balaji,” William Gropp,* and Rajeev Thakur'

*University of Illinois at Urbana-Champaign, {xinzhao3,wgropp } @illinois.edu
TArgonne National Laboratory, {balaji, thakur} @mcs.anl.gov

Abstract—Data-intensive applications, such as those in bioin-
formatics and social network analysis, differ from traditional
scientific applications in that they often involve data-driven and
irregular computation/communication patterns, making them ill-
suited for traditional data movement approaches. Active Messages
(AM) is an alternative programming model that allows dynami-
cally moving computation closer to data, rather than moving the
data to the local process. In our previous work, we proposed
an MPI-interoperable AM framework that allows existing MPI
applications to incrementally take advantage of AM capabilities.
While that work presented a baseline implementation of how AMs
semantically interact with the rest of the MPI infrastructure, it
had several performance shortcomings. In this paper, we analyze
these performance shortcomings and propose three optimization
strategies: one implicitly derived by the MPI implementation
and two explicitly hinted to by the application user. In addition
to the detailed description of these optimization strategies, the
paper presents a thorough performance evaluation on a 4096-core
cluster that demonstrates considerable performance advantages
from these strategies.

Keywords—Active messages; MPI; Data-intensive applications;
RMA; Multicore

I. INTRODUCTION

Data-intensive applications, such as graph algorithms in
social network analysis and genome assembly applications in
bioinformatics, differ from traditional scientific applications
in that they often involve data-driven and irregular computa-
tion/communication patterns. Traditional programming models
that are designed for regular and structured applications are
not well suited for such applications. Alternative programming
models are desirable. The Active Messages (AM) paradigm [1],
proposed by von Eicken in 1992, is an alternative parallel
programming paradigm that can be more natural for such
applications. With AMs, the sender of a message specifies a
message handler to be executed at the receiver upon arrival
of that message. When the message arrives, the corresponding
handler is triggered to process data in that message. Compared
with the traditional SEND/RECV and PUT/GET models that
move the data closer to the computation, the AM model moves
computation closer to the data.

The Message Passing Interface (MPI) [2] is the de facto
standard for parallel programming on large-scale systems and
is available on virtually every system in the world. Given the
popularity of MPI and the importance of the AM paradigm
for data-intensive applications, in our previous work [3], [4]
we proposed a generalized framework for MPI-interoperable
AMs by leveraging the MPI remote memory access (RMA)
framework. We presented a detailed set of functionality and
semantics that provides generally usable AMs that are compat-
ible with the MPI-3 standard.

This work was supported by the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research, under Contracts DE-AC02-
06CH11357, DE-FG02-08ER25835, and DE-SC0004131.

While our previous work presented a baseline implementa-
tion of how AMs semantically interact with the rest of the
MPI infrastructure, the implementation had several perfor-
mance shortcomings. For example, the semantics of the AM
framework allowed users to provide buffers for AM processing
that could be used by different processes initiating AMs on a
particular target process. Because of the shared nature of these
buffers, however, considerable performance was lost in syn-
chronization and coordination overheads, especially on large-
scale systems. Furthermore, for highly irregular applications
where the amount of data associated with the AMs is highly
variable, our baseline implementation resulted in a significant
amount of additional data being transferred, causing additional
performance loss.

In this paper, we examine these performance shortcomings
through a detailed analysis of the runtime behavior of the
MPI infrastructure. Our analysis demonstrates large stalls and
idleness during synchronization, which increase with system
size. The analysis also indicates that a significant amount of
unnecessary data is transferred for highly irregular applications.
To address these shortcomings, we propose three optimization
strategies. The first strategy is an implicit optimization that
takes advantage of application synchronization in order to avoid
additional internal synchronization and transparently improve
performance. The second and third strategies are more explicit.
The second strategy uses an application hint to learn additional
application semantic information in order to further reduce
synchronization overheads in some cases. The third strategy
uses a new ‘“‘vector-based” AM function that allows highly
irregular applications to better describe their data layout, thus
reducing the amount of data the implementation has to transfer.

In addition to the detailed description of these optimiza-
tions, this paper presents a reference implementation and a
thorough performance evaluation of the proposed strategies on
a 4096-core InfiniBand cluster. Our evaluation demonstrates a
considerable performance advantage from the proposed tech-
niques, thus verifying their validity and applicability in a
generalized and MPI-interoperable AM framework.

For readability, we prefix all functions that are defined in
the MPI-3 standard with MPI_, while new functions that are
proposed in this paper are prefixed with MPIX_. This paper
heavily relies on the semantics of the MPI-3 RMA model. Since
we cannot provide details of these semantics because of space
restrictions, we highly recommend that the reader of this paper
also read the following literature to gain a better understanding
of these semantics: [5], [6].

II. OVERVIEW OF MPI-INTEROPERABLE AMS

In [4], we proposed a generalized framework for MPI-
interoperable AMs that allows existing MPI applications to
incrementally benefit from AM functionality. We defined the
semantics and presented correctness definitions of such a

Fig. 1: Workflow in the generalized AM framework

framework, including memory consistency, atomicity, ordering,
and concurrency semantics. The workflow of this AM frame-
work is illustrated in Figure 1. We proposed a new routine,
MPIX_AM, for issuing AMs. Using this routine, application
programmers can manage data content and layout in five
associated buffers: origin input buffer, target input buffer, target
persistent buffer, target output buffer. and origin output buffer.
As shown in the workflow, the origin input data is sent to
the target and is staged in the temporary target input buffer.
This temporary staged data serves as the input to the AM
handler on the target, which in turn stores its generated output
into the temporary target output buffer. Once the AM handler
completes, the output data is returned to the origin output
buffer. The target persistent buffer represents data that already
exists at the target process’s public window and is accessed
within the AM handler. Unlike the target input and output
buffers, the target persistent buffer retains its content after
the AM handler completes. Thus, all updates on this buffer
can be seen by future MPI RMA and AM operations. We
also proposed a new prototype for the AM function handler,
MPIX_AM_USER_FUNCTION, that is invoked at the target
upon arrival of the corresponding AM.

Since the target input and output buffers are temporary
buffers that are private and valid only within the AM han-
dler, an important question is who is responsible for the
allocation and management of these temporary buffers. Most
AM frameworks assume that the runtime system will man-
age such buffers. However, since there is no upper bound
on the buffer space needed for an AM, such an assump-
tion is impractical. In our AM framework, we proposed
two new routines, MPIX_AM_WIN_BUFFER_ATTACH and
MPIX_AM_WIN_BUFFER_DETACH, to allow the user to pro-
vide appropriately large temporary buffers to the MPI runtime
that it can use to stage AMs. These user buffers are shared by
all origin processes, thus requiring each origin to synchronize
with the target in order to coordinate on the buffer usage.

One additional concept from our previous work that the
reader should be familiar with is that of “segments.” For a
large AM, the MPI runtime system may choose to split it into
smaller pipeline units. Without additional information from the
user, however, the MPI implementation cannot tell what an
appropriate granularity would be. For example, consider the

Kiki genome assembly application [7]. In this application, the
user has a bunch of query sequences that need to be searched
on a remote dataset. The user can create a single AM with
all query strings, thus giving the MPI implementation the
flexibility to split it into smaller pipeline units. However, the
MPI implementation must be careful to make sure that each
pipeline unit contains an integral number of strings, since the
application cannot search for a partial string in the dataset. To
allow for such capabilities, we use the concept of segments,
which represents the minimum granularity of splitting AMs.
In the case of Kiki, each string would form a segment, while
the AM could have several hundreds of segments. We note
that while a segment is a user-defined concept, the pipeline
unit used is internal to the MPI implementation and can be
system specific.

Segmentation of AMs is useful in many cases. For example,
the MPI implementation can use this information to pipeline an
AM so that the data movement and computation are overlapped
for better performance. Further, when there are not enough
buffers for the entire AM data to be staged at the target, the MPI
implementation can split the AM into smaller pipeline units that
fit into the available buffers. Note that in a correct application
the user must provide enough user buffers to accommodate at
least one input and output segment of the AM.

III. PERFORMANCE SHORTCOMINGS OF
MPI-INTEROPERABLE AMS

In this section, we analyze the performance shortcomings
in the existing base implementation of MPI-interoperable AM
framework. Based on this analysis, we propose several opti-
mization strategies in Section IV.

A. Synchronization Stalls in Data Buffering

As described in Section II, the semantics of our AM
framework require the user to ensure that enough temporary
buffers are attached to the window so that the input/output data
corresponding to the AM can be accommodated at the target.
The MPI implementation can, however, provide additional
system internal buffers to improve performance.

Such internal buffers can be managed in multiple ways.
For instance, a large chunk of memory can be shared among
all origin processes. In such a design, each origin process needs
to coordinate with the target to “reserve” a part of the buffer
before it can initiate an AM. Another possible design is to
statically partition the buffer between the origin processes, so
every origin process gets exclusive access to a part of the
system buffer. The advantage of this approach is that since
the buffer associated with each origin process is exclusive, no
additional handshake is required between the origin process
and target process in order to use the buffer. The disadvantage,
however, is that such static partitioning reduces the amount
of buffer space available to each origin process. Several other
design possibilities exist where one could dynamically manage
and adjust the amount of exclusive buffer space available to
each origin process at runtime. In our implementation, we have
not investigated all possible design options. Instead, we chose
the second option; that is, we statically partition the system
buffer to give each origin process exclusive access to a part of
the buffer.

Irrespective of which design is chosen for internal system
buffer management, we emphasize that these system buffers are
limited. For large AMs or when a large number of outstanding

Fig. 2: Handshake operation for reserving user buffers

AMs are issued, the system buffer will eventually run out,
and the MPI implementation will need to start using the user-
allocated buffer. Given the shared nature of these user buffers,
however, each origin process must perform a “handshake” with
the target process in order to reserve some space in the user
buffer before it can send its AM.

The overall handshake protocol is illustrated in Figure 2.
In this example, consider an AM that has a large number
of segments. The first few segments that can fit into the
system internal exclusive buffers are sent immediately. Once
these system internal buffers are exhausted, however, the origin
process needs to send a handshake message in order to reserve
space in the shared user buffer before it can send the next
segment, thus idly waiting for buffer space at the target to
become available. Depending on what fraction of time the
origin process spends waiting, the performance of the AM
framework can be substantially impacted. Issuing multiple
nonblocking operations does not alleviate this issue, since the
origin process can send only as much data as it knows the
target can accommodate.

B. Inefficiency in Data Transmission

A common characteristic of several irregular data-intensive
applications is that the amount of data returned by an AM is
data-dependent. In bioinformatics genome assembly applica-
tions such as Kiki, where an input query string is searched on
remote datasets, the amount of data returned depends on how
many matches the AM handler can find in the remote dataset.
Such information, unfortunately, cannot be predetermined eas-
ily. Thus, the usage model of MPI-interoperable AMs in such
applications involves the application allocating a large local
output buffer and issuing AMs that return data into this buffer.

Such a model has two obvious deficiencies. First, the
amount of buffer allocated for output can potentially be large.
Second, with the current MPIX_AM semantics, the AM handler
cannot specify a different amount of output data size for each
segment; thus, the amount of data returned to the origin process
is equal to the total amount of buffer space allocated (i.e., the
maximum AM output size). Obviously, this situation can be

highly wasteful for irregular applications where the amount of
data returned can vary significantly between AM segments.

IV. OPTIMIZATION STRATEGIES FOR
MPI-INTEROPERABLE AMS

Based on the performance shortcomings described in Sec-
tion III, we present here three optimization techniques for the
MPI-interoperable AM framework.

A. Autodetected Exclusive User Buffers

The first optimization we propose takes advantage of appli-
cation synchronization to reduce the internal synchronization
required for user buffer management. As defined in MPI-3,
RMA (or AM) operations can be issued only inside an epoch,
either passive or active. For passive target epochs, an appli-
cation first issues an MPI_WIN_LOCK to the corresponding
target, followed by a bunch of AMs, and then closes the epoch
with an MPI_WIN_UNLOCK. Such an epoch can be initiated
in “exclusive” or “shared” mode. If an origin process acquires
an exclusive lock at a target window, no other origin process
can get either an exclusive or shared lock at the same target
window. If an origin process acquires a shared lock at a target
window, other origin processes can get a shared lock on the
same target window, but not an exclusive lock.

Our proposed optimization strategy takes advantage of this
model by internally keeping track of the lock acquisition status
of each window. Thus, if an origin process has acquired an
exclusive lock at a target window, by definition it is the only
process that can access the target window and consequently the
attached user buffers. In this scenario, we need to send only
one synchronization message right after MPI_WIN_LOCK to
fetch information on the target user buffers. For all subsequent
AM operations, no more synchronization messages are needed.
Note that this optimization is transparent to the user.

A corner case that we need to handle is detachment of
user buffers. Applications are allowed to attach and detach an
arbitrary number of buffers to a window dynamically. Before
they can detach a user buffer, however, they need to ensure
that no AMs are currently executing. Thus, an example such
as the one illustrated in Figure 3 is a valid program. Notice
that in the program the amount of user buffer space attached
to the target window has changed while inside the exclusive
lock epoch. That is, the AMs issued from lines 9-11 have
access to both user_buf_1 and user_buf_2 that are attached to the
target. With appropriate synchronization, however, the target
can detach user_buf 1, leaving the later AMs on lines 20-21
with access only to user_buf 2. In such cases, our optimization
of querying for the available user buffer space just once at the
start of the epoch would no longer be correct. To handle this
scenario, we resynchronize the user buffer information after
every synchronization operation, such as an MPI_WIN_FLUSH.
Such resynchronization, however, can result in loss of per-
formance in cases where the user buffer was not detached
at the target. Unfortunately, the MPI implementation cannot
easily detect this automatically. To alleviate this issue, we allow
users to pass a hint to the MPI implementation at window
creation using the MPI_Info key am_buf_interleave_am_detach.
The default value of true means that the user can interleave
AM operations with MPIX_AM_WIN_BUFFER_DETACH op-
erations, thus requiring additional synchronization as described
above. By setting this value to false, however, the user can
guarantee that MPIX_AM_WIN_BUFFER_DETACH operations

O 00~ WU B W —

if (myrank == 0) {
/* Barrier to ensure that buffers are attached */
MPI_Barrier (MPI_COMM WORLD) ;
MPI_Win_lock (MPI_LOCK EXCLUSIVE, 1, 0, win);

/* AMs should have access to both user buffers #*/

MPIX Am(...);

MPIX Am(...);

MPIX Am(...);

MPI_Win_flush(l, win);
/* Barrier to inform that flush has completed */

MPI_Barrier (MPI_COMM WORLD) ;
MPI_Barrier (MPI_COMM WORLD) ;

/* AMs should have access to one user buffer */
MPIX Am(...);
MPIX Am(...);
MPI_Win_unlock (1, win);

}

else if (myrank == 1) {
MPIX Am win_buffer_ attach(user_buf_1, 100, win);
MPIX Am win_buffer_ attach(user_buf_ 2, 200, win);

/* Barrier to ensure that buffers are attached */

MPI_Barrier (MPI_COMM WORLD) ;

/* Barrier to inform that flush has completed */
MPI_Barrier (MPI_COMM WORLD) ;

/* detach user buffer */
MPIX Am _win_buffer detach(user_buf_ 1, win);
MPI_Barrier (MPI_COMM WORLD) ;

Fig. 3: Buffer detach example

are never interleaved with AM operations, thus requiring no
additional synchronization. In such cases, the additional hand-
shake operation in MPI_WIN_FLUSH can be eliminated.

B. User-Defined Exclusive User Buffers

The second optimization we propose is for cases where the
MPI implementation cannot automatically detect exclusivity of
user buffer access, such as with shared locks or MPI active
target synchronization modes. In some cases, the application
can algorithmically determine the maximum target buffer size
that would be used by other origin processes and thus can
determine the amount of target buffer space available to a given
origin process. In such cases, if the application can pass this
information down to the MPI implementation as an MPI_Info
hint during window creation, the implementation can use this
information to potentially reduce synchronization stalls.

In our proposed approach, we use a target-specific info key
(am_user_buf_<rank>); the info value specifies the byte size
of the user buffer space on that target that is guaranteed to
be available. Note that this value specifies only the guaranteed
buffer space and hence is necessarily conservative. More user
buffer space might be dynamically available to the MPI imple-
mentation, which it can query for, using its handshake protocol.
For AMs that fit in the “exclusive user buffer” space, however,
no further handshake is required.

C. Improving Efficiency in Data Transmission

As described in Section III-B, with MPIX_AM, the
AM handler cannot specify a different amount of output
data size for each segment. Thus, a fixed amount of out-
put data (equal to the maximum AM output size) is re-
turned to the origin process at the completion of the AM.

To alleviate this issue, we propose a new function for
vector-based AMs (MPIX_AMY) and an associated AM han-
dler prototype (MPIX_AMYV_USER_FUNCTION). These func-
tions are referred to as “vector” versions of the original
MPIX_AM_USER_FUNCTION and MPIX_AM functions be-
cause one new vector argument, output_segment_counts,
is added to them. This argument is an integer array of length
num_segments with each entry indicating the count of ele-
ments in the corresponding output segment. For the AM han-
dler, the MPI runtime allocates the output_segment_counts
array, but how much data is actually generated needs to be filled
by the handler function.

a) Output Data Layout: One design choice associated
with vector-based AMs is how much buffer space must be
allocated for the origin output buffer and how data is laid out
in this buffer. Since the amount of data that will be generated is
unknown, the user cannot know the buffer space required. Thus,
we still require the origin output buffer to be large enough to
fit the maximum data size returned by the AM.

With respect to the data layout of the origin output buffer,
however, the most intuitive approach would be to place the
entire output data in a contiguous segment of the output
buffer. While convenient for the user, such a data layout has
several performance shortcomings, particularly with respect
to out-of-order execution of AM segments, as illustrated in
Figure 4. For example, suppose the AM has four segments.
As shown in Figure 4(a), if the latter two segments in the
AM execute and return data earlier, the origin process cannot
know at what offset it needs to place this output data, since
it does now know how much output would be returned by
the first two segments. In such cases, the MPI implementation
has to either buffer out-of-order data or place it in the user
buffer and reorder it once all of the data is available. Both
options are expensive for performance. Arguably, to prevent
this complexity, users can impose strict ordering between AMs,
but that would sacrifice the concurrency of out-of-order AMs
and the associated performance improvement.

Consider an alternative model where the output data is not
placed in a contiguous buffer, but each segment is placed at a
fixed offset calculated based on the maximum output size that
each segment can generate (Figure 4(b)). This model might
be slightly more inconvenient to the user, but the performance
potential of this approach is much higher. In particular, since
the location of each segment’s output data is predetermined,
no additional buffering or reordering is required. Data can
be placed at the right location as soon as it arrives. For our
framework, we chose this approach.

b) Data Packing vs. Data Transmission: In
MPIX_AMYV, because each segment can generate an uneven
amount of data, the generated output data can be noncontiguous
in memory both at the target within the AM handler and
at the origin process. Thus, the MPI implementation at the
target would need to consolidate this data into a temporary
packing buffer in order to send it to the origin process, which
in turn would unpack the data into the origin output buffer. In
contrast, with MPIX_AM, since the amount of data generated
is predetermined, the communication is often from contiguous
memory.

The difference between the packing strategy that
MPIX_AMYV uses and the complete data movement strategy that
MPIX_AM uses can be significant, in favor of MPIX_AMYV,
when the amount of actual data generated is much less

Fig. 4: Different strategies of origin output data layout

than the maximum buffer size. In such cases, packing and
unpacking a small amount of data can be significantly faster
than communicating a large amount of data. However, as
the amount of data generated by the AM handler increases
(as percentage of the maximum buffer size), this difference
vanishes, and the packing overhead starts to dominate. To
overcome this issue, our framework internally maintains a
system-specific threshold for when to pack data and when
to just transmit the entire data. When the amount of data is
below this threshold, we pack and send the data. When above
this threshold, we transmit all the data, including garbage data
in the buffer that was not generated by the AM handler.

Note that in both strategies the entire count array of the
output lengths is transmitted to the origin process. Thus the data
transmitted will be slightly higher than what MPIX_AM would
transmit when the handler generates the maximum amount of
data. In such cases, MPIX_AM would be a better choice.

V. EVALUATION

For our evaluation, we use a 310-node system, with each
compute node consisting of 16 cores (total of 4,960 cores). The
nodes are connected with Intel/QLogic QDR InfiniBand. Our
implementation is based on MPICH-3.1b1. We use two types
of AM operations. The first one is a remote search operation,
where the origin initiates AMs with string sequences in order
to search for matched string sequences in a remote dataset and
return them to the origin. This is the most common operation in
genome assembly applications such as Kiki and SWAP [8]. The
second operation is a remote computation of the summation
of absolute values of two arrays. In the first operation each
segment consists of 20 characters (1 sequence) as input and 20
to 200 characters (1 to 10 sequences) as output (experiments in
Section V-A return 1 sequence per segment, and experiments
in Section V-B return multiple sequences per segment). In the
second operation each segment contains 100 integers as input
and 100 integers as output. All experiments use an internal
system buffer of 8 KB per peer process. In experiments other
than those shown in Figures 5 and 8, each process attaches 32
MB of user buffer.

In Section V-A, we compare the performance of the first
two optimization approaches (excl-lock-opt-impl for autode-
tected exclusive user buffers and win-opt-impl for user-hinted
exclusive user buffers) with a base implementation that does
not take advantage of either optimization (base-impl). In Sec-
tion V-B, we compare the performance of MPIX_AM with that
of the newly proposed vector-based AM, MPIX_AMYV. Because
of space restrictions, we do not present absolute value results
in Sections V-A2, V-A3, and V-A4. They have performance

trends similar to those of the remote search operation.

A. Effect of Exclusive User Buffers

We focus here on four effects: communication latency,
operation throughput, scalability, and network contention.

1) Communication Latency: In Figure 5 we measure the
latency of a single AM with a remote search operation. Two
processes are involved in this experiment: the origin process
issues one AM operation to the target during the RMA epoch.
We vary the message size by increasing the number of segments
in the AM. We can see in Figure 5(a) that the excl-lock-opt-impl
optimization can reduce the latency by around 10% compared
with the base-impl and that the win-opt-impl optimization can
further reduce latency by another 10%. We analyze these results
by measuring the time spent on synchronization messages
in Figure 5(b). The figure indicates that the win-opt-impl
optimization spends no time on synchronization. This result
is expected because with the user buffers already reserved
as “exclusive” at window creation time, the origin process
does not need to exchange any additional messages in order
to reserve user buffers during the RMA epoch. On the other
hand, the excl-lock-impl optimization does spend some time
on synchronization messages, but the time spent does not
increase with message size; in comparison, the synchronization
time spent by the base-impl increases significantly with mes-
sage size. The reason is that the excl-lock-impl optimization
needs to send only one synchronization message right after
MPI_WIN_LOCK in order to reserve all the available user
buffers at the target. Since the base-impl does not utilize any
hints on exclusivity, however, it always needs to wait for
previous AM segments to complete execution and reserve new
buffers for the rest. Note that both the base-impl and excl-
lock-impl optimizations spend zero time synchronizing when
the AM data is less than 200 segments. The reason is that in
these cases the AM data is small enough to fit in the system
buffer on the target.

Figures 5(c) and 5(d) show a similar experiment but for
the absolute value operation. We observe that all three im-
plementations perform similarly when the message size is
small. As the message size grows, however, the two optimized
implementations outperform base-impl.

In Figure 5(e), we measure the latency of two AM opera-
tions with one MPI_WIN_FLUSH in between, with and without
any user hint to specify whether user buffers are detached at
the target during the MPI_WIN_FLUSH operation. As shown
in the figure, the info hint allows communication latency to
improve by around 10%. We further analyze this overhead

Fig. 5: Communication latency

Fig. 6: Operation throughput for remote search Fig. 7: Scalability performance for remote search

Fig. 8: Contention performance for remote search

by measuring just the synchronization time. As shown in
Figure 5(f), the synchronization time is consistently reduced
by 50%. This result is expected because the info hint allows
the MPI implementation to have just one handshake operation
instead of the two handshake operations when there is no hint
from the user. We also studied the absolute values benchmark,
which has similiar performance but is not presented in this
paper because of space restrictions.

2) Operation Throughput: In Figure 6 we measure the
AM operation throughput when the origin process issues 1
to 100,000 AMs during the RMA epoch. The figure shows
that the excl-lock-opt-impl and win-opt-impl optimizations can
achieve around 25% and 30% improvement over base-impl,
respectively. The reason is that both the optimized versions
have trivial synchronization overhead. On the other hand, in
base-impl, the origin process must issue at least one synchro-
nization message before each AM and wait for its response
before issuing that AM. This approach stalls all following work
and limits the peak throughput that is achievable.

3) Scalability Performance: Figure 7 shows the benefit of
the excl-lock-opt-impl optimization when a large number of
origin processes compete for an exclusive lock at the same
target. We run the experiment with an increasing number
of processes. We observe that at 4,096 processes the excl-
lock-opt-impl optimization can achieve 20% improvement in
performance because of reduced synchronization.

4) Network Contention: Figure 8 shows the benefit of the
win-opt-impl optimization when we increase network con-
tention. In this experiment, every four origins share a target
that is not an immediate neighbor of any origin. Each origin
sends a number of AMs to that target. The experiment is set
up such that on each origin, all AMs together will consume at
most 20 MB of the temporary buffer space at the target. We
therefore attach 80 MB of user buffer to the target.

We did two experiments with this framework. In the first
experiment, we provide a hint of “20 MB” to each origin. In
this case, since all the AMs together can use up at most 20 MB
of buffer space, no additional synchronization is needed by the
MPI implementation. In the second experiment, we provided a
hint of “15 MB” to each origin. In this case, some AMs can
be triggered without having to coordinate with the target, but
such coordination is required for the remaining AMs. From
the evaluation, we observe that even with a hint of “15 MB,”
the performance improves by 20% at scale. With a hint of “20
MB,” the performance improves by 50% at scale.

B. Comparison between MPIX_AM and MPIX_AMV

In our next experiment we measure the throughput of the
remote search operation using three different AM triggers:
(1) MPIX_AM, where no packing/unpacking is performed and
full output segments are returned; (2) MPIX_AMYV (1.0), the
vector-based AM trigger where the MPI implementation always
performs packing/unpacking and returns packed segments; and
(3) MPIX_AMYV (0.8), the vector-based AM trigger where the
MPI implementation performs packing/unpacking when the
percentage of generated data is less than 80%. The maximum
sequences count in each output segment is 10.

Figure 9(a) shows the throughput achieved when the
amount of generated data increases from 10% to 100% of
the maximum output size. When this percentage is below
80%, MPIX_AMYV (0.8) and MPIX_AMYV (1.0) perform better
than MPIX_AM because of the reduced data transmitted. The
throughput of vector-based AM keeps decreasing, however, as
the percentage of data generated rises. When the percentage is
above 80%, their advantage disappears. Further, MPIX_ AMV
(1.0), which always does packing/unpacking of data, performs
around 30% worse than MPIX_AM when the generated data ap-
proaches 100%. MPIX_AMYV (0.8), on the other hand, switches
to sending all the data when the generated data is more than
80%, so its performance loss is limited to 10%.

The overhead of the vector-based AM triggers comes from
two aspects: (1) runtime packing/unpacking and (2) sending
the additional counts array to the origin. To inspect these two
aspects, we plot in Figure 9(b) the actual bytes transmitted.
The figure shows that at 100%, both MPIX_AMV (0.8) and
MPIX_AMYV (1.0) transmit more data than does MPIX_AM,
the difference coming from the additional counts array that the
vector operations need to transmit.

VI. RELATED WORK

Many libraries support AMs, including GASNet [9], IBM’s
Deep Computing Messaging Framework [10], IBM’s Low-level
Application Programming Interface (LAPI) [11], and IBM’s
Parallel Active Message Interface (PAMI) [12]. Unfortunately,
these either are low-level machine-specific libraries or are
not interoperable with the MPI library. In contrast, the MPI-
interoperable generalized AM framework is part of the MPI
implementation and achieves both goals.

Previous work has also been done on supporting AMs on
top of the MPI library. Examples include AM++ [13] and
AMMPI [14]. AM++ is a middle-level library, somewhere
between low-level AM libraries such as GASNet and high-
level RPC systems such as Charm++ [15] and Java RMI [16].
It has the advantage of allowing message handlers to send
arbitrary messages and supports message coalescing and filter-
ing. AMMPI is another implementation of AM over MPI that
is used as a compilation target for several PGAS languages.
Both AM++ and AMMPI are widely portable to virtually any
platform with MPI; however, they are restricted in a number
of ways, including lack of asynchronous progress; inability to
marshal/demarshal datatypes; and absence of explicitly defined
semantics on ordering, concurrency of AMs, and memory
consistency. As far as we know, no existing work has been
done on supporting AMs within the MPI implementation that
can provide such capabilities.

Fig. 9: Operation throughput of MPIX_AM and MPIX_AMYV

VII. CONCLUSIONS AND FUTURE WORK

We analyzed here the performance shortcomings in our pre-
vious work on MPI-interoperable AMs [4] and proposed three
optimization strategies: reducing redundant synchronization
messages automatically or through user hints and improving
efficiency of data transmission. We also described a reference
implementation of these optimization strategies; and, using a
comprehensive set of benchmarks, we demonstrated significant
performance improvements in evaluations.

As future work, we plan to investigate the usage of AMs
in applications from various domains including bioinformatics
(e.g., genome assembly applications) and computational chem-
istry (e.g., the MADNESS application from Oak Ridge Labo-
ratory, which emulates AM functionality using MPI+threads).

REFERENCES

[11 T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active Messages: A Mechanism for Integrated Communication and
Computation,” in Proceedings of the IEEE International Symposium on
Computer Architecture (ISCA), New York, NY, USA, 1992.

[2] Message Passing Interface Forum, “MPI: A Message-Passing Interface
Standard Version 3.0,” Sep. 2012, http://www.mpi-forum.org/docs/docs.
html.

[3] X. Zhao, D. Buntinas, J. Zounmevo, J. Dinan, D. Goodell, P. Balaji,
R. Thakur, A. Afsahi, and W. Gropp, “Towards Asynchronous and MPI-
Interoperable Active Messages,” in Proceedings of the IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid), 2013.

[4] X. Zhao, P. Balaji, W. Gropp, and R. Thakur, “MPI-Interoperable
Generalized Active Messages,” in Proceedings of the IEEE International
Conference on Parallel and Distributed Systems (ICPADS), 2013.

[5] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and
K. Underwood, “Remote Memory Access Programming in MPI-3,”
Argonne National Laboratory, Tech. Rep., 2013, (under review at
the ACM Transactions on Parallel Computing). [Online]. Available:
http://www.mcs.anl.gov/~balaji/tmp/mpi3-rma.pdf

[6] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features
of the Message-Passing Interface. MIT Press, 1999.

[7]1 F Xia and R. Stevens, “Kiki: Massively Parallel Genome Assembly,”
https://kbase.us/, 2012.

[8] J. Meng, J. Yuan, J. Cheng, Y. Wei, and S. Feng, “Small World
Asynchronous Parallel Model for Genome Assembly,” Springer Lecture
Notes in Computer Science, vol. 7513, pp. 145-155, 2012.

[91 D. Bonachea, “GASNet Specification, v1.1,” University of California,

Berkeley, Tech. Rep. CSD-02-1207, Oct. 2002.

S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E.

Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,

[10]

(11]

[12]

[13]

[14]

[15]

[16]

and C. J. Archer, “The Deep Computing Messaging Framework: Gener-
alized Scalable Message Passing on the Blue Gene/P Supercomputer,” in
Proceedings of the International Conference on Supercomputing (ICS),
New York, NY, USA, 2008, pp. 94-103.

G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. J. Harrison, R. K.
Govindaraju, K. Gildea, P. DiNicola, and C. Bender, “Performance
and Experience with LAPI - A New High-Performance Communication
Library for the IBM RS/6000 SP,” in Proceedings of the International
Parallel Processing Symposium (IPPS), Mar. 1998.

S. Kumar, A. R. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cer-
nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and
B. Steinmacher-Burrow, “PAMI: A Parallel Active Message Interface for
the Blue Gene/Q Supercomputer,” in Proceedings of the IEEE Interna-
tional Parallel Distributed Processing Symposium (IPDPS), 2012.

J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:
A Generalized Active Message Framework,” in Proceedings of the
International Conference on Parallel Architectures and Compilation

Techniques (PACT), New York, NY, USA, 2010, pp. 401-410.
D. Bonachea, “AMMPI: Active Messages—over MPI -
Overview,” http://www.cs.berkeley.edu/~bonachea/ammpi/.

L. V. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” SIGPLAN Not., vol. 28, no. 10, pp.
91-108, Oct. 1993.

J. Waldo, “Remote Procedure Calls and Java Remote Method Invoca-
tion,” IEEE Concurrency, vol. 6, no. 3, pp. 5-7, Jul. 1998.

Quick

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mcs.anl.gov/~balaji/tmp/mpi3-rma.pdf
http://www.cs.berkeley.edu/~bonachea/ammpi/

	Introduction
	Overview of MPI-Interoperable AMs
	Performance Shortcomings of MPI-Interoperable AMs
	Synchronization Stalls in Data Buffering
	Inefficiency in Data Transmission

	Optimization Strategies for MPI-Interoperable AMs
	Autodetected Exclusive User Buffers
	User-Defined Exclusive User Buffers
	Improving Efficiency in Data Transmission

	Evaluation
	Effect of Exclusive User Buffers
	Communication Latency
	Operation Throughput
	Scalability Performance
	Network Contention

	Comparison between MPIX_AM and MPIX_AMV

	Related Work
	Conclusions and Future Work
	References

