Detecting Silent Data Corruption through
Data Dynamic Monitoring for Scientific Applications

Leonardo Bautista Gomez and Franck Cappello

Argonne National Laboratory

Abstract

Parallel programming has become one of the best ways to express
scientific models that simulate a wide range of natural phenomena.
These complex parallel codes are deployed and executed on large-
scale parallel computers, making them important tools for scientific
discovery. As supercomputers get faster and larger, the increasing
number of components is leading to higher failure rates. In particular,
the miniaturization of electronic components is expected to lead
to a dramatic rise in soft errors and data corruption. Moreover,
soft errors can corrupt data silently and generate large inaccuracies
or wrong results at the end of the computation. In this paper we
propose a novel technique to detect silent data corruption based
on data monitoring. Using this technique, an application can learn
the normal dynamics of its datasets, allowing it to quickly spot
anomalies. We evaluate our technique with synthetic benchmarks
and we show that our technique can detect up to 50% of injected
errors while incurring only negligible overhead.

Categories and Subject Descriptors C4 [Performance of systems]:
Fault tolerance

Keywords Fault Tolerance, Supercomputers, Silent Data Corrup-
tion, Soft Errors, Bit Flips, Data Entropy.

1. Introduction

Computing-intensive scientific applications need post-petascale ma-
chines to achieve results in a reasonable amount of time. Unfor-
tunately, the increasing number of components in such large ma-
chines leads to a decreasing mean time between failures (MTBF)
for extreme-scale systems. In addition to hardware failures, soft
errors can cause one or multiple bits to spontaneously flip to the
opposite state. This bit flipping might be due to multiple reasons
such as alpha particles from package decay, cosmic rays, or ther-
mal neutrons. Although techniques such as error correcting codes
(ECCs) have been proposed and implemented to tackle soft errors,
the reality is that a significant number of bit flips still manage to pass
undetected. Moreover, the constant need to reduce component size
and voltage, limits the use of soft-error mitigation techniques, dra-
matically increasing the SER in the coming years [1, 3]. Also, some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PPoPP 14, February 15-19, 2014, Orlando, Florida, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2656-8/14/02. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

of those bit flips can introduce errors silently in the data, generating
wrong results; this is called silent data corruption (SDC). To guar-
antee accurate and correct results for scientific applications in the
presence of SDC is one of the hardest challenges of extreme-scale
computing. SDC, by definition, is not detected in the lower levels of
the hardware/software stack. In contrast, higher-level software could
leverage properties of the data dynamics or analyze data patterns in
order to detect outliers that could suggest the presence of corruption.
In this article, we propose a novel fault tolerance technique that
leverages data entropy characteristics of scientific datasets to deter-
mine whether corruption has occurred. Experimental evaluation of
our data dynamic monitoring technique on synthetic benchmarks
show that our detector is able to reduce the number of SDC seen
by the application, by up to 50% and can reach an accuracy of over
98% while incurring less than 1% of overhead to the application.

2. Ultra-light SDC detector

An ultralight SDC detector should impose negligible overhead to
the scientific application, even while executed at high frequency. In
addition, the detector should have the highest achievable accuracy.
The accuracy of a SDC detector is quantified by using two measures:
its recall and its precision. Our universe obeys a set of physical laws
that dictate the behavior of matter and energy. These laws impose
some limits (e.g., nothing travels faster than light) that define what is
physically possible and meaningful and what is not. These physical
limits are inherited by the computational codes that simulate those
phenomena, and they can be used to detect abnormalities. For
instance, a weather simulation holding a temperature field with
values over 500 kelvin is a clear sign of data corruption, because
such temperatures are unlikely to be observed on the surface of our
planet. The presence of these physical limits in the computational
codes executed on supercomputers provides us with our first insight
into detecting data corruption. Unfortunately, when the interval of
possible values is too large, corrupted data is likely to be inside this
interval, decreasing the efficiency of such a strategy.

Our second insight into detecting outliers in large HPC datasets
is closely related to the notion of space. We notice that in a large
number of physical phenomena, points that are close in space exhibit
similar behavior. In the weather example, although the temperature
on the Earth’s surface can vary widely between the equator line and
the poles, any two close points on the planet should have relatively
close temperatures, as well as close pressures, wind speeds, and
the like. The reason is that points close in space are subject to the
same external factors and forces. This observation can be translated
as a sort of local regularity of HPC datasets. This is supported by
the fact that most parallel applications in HPC simulate physical
phenomena by decomposing a space domain in millions of cells,
on which multiple equations are applied, often involving data from
their neighbor cells (e.g., stencil applications). Therefore, when the

difference between neighbor elements in a HPC dataset is unusually
high, it could be due to data corruption.

Based on these observations, we define a threshold ¢4 to trigger
corruption suspicion. Each dataset d of the application has its own
threshold ¢4. When the difference between two neighbor elements
of a dataset is higher than the threshold ¢4, then the detector triggers
a corruption suspicion alert. The threshold ¢4 can be defined as the
historical maximum of the absolute value of the finite difference
between neighbor points. Given this definition, our lightweight
detector consists of a data dynamics monitor, DADYMO that scrubs
the different datasets at the application level during runtime and
that issues an alert in the case of a suspected corruption every
time the difference between two neighbor elements is higher than
the threshold ¢4 of the particular dataset. As we can observe, the
computational work performed inside DADYMO is limited to only
one subtraction and one comparison per element. Such lightweight
execution can be performed at high frequency without disturbing
the application significantly. An application using DADYMO can
quickly detect strange patterns or abnormal variations in the datasets
and then trigger more complex data analysis to determine whether a
corruption has occurred.

100 nmen trhih
90
80
70
60 . . s
- A
%0 R N K O RN L AR
30
20
10

0
0 20 40 60 80 100 120

Rank
B PRECISION @ RECALL

Percentage (%)

Figure 1. DADYMO Precision and Recall

3. Evaluation

In this section, we evaluate the accuracy of DADYMO with a
synthetic benchmark. To evaluate our technique, we developed
an error injector capable of making modifications in datasets at
a binary level (i.e., bit flips). To verify that our injector works
correctly, we overwrote the random bit position with 0 and verified
that the corrupted values were just changing sign (i.e., the first bit in
floating-point representation is the sign bit). We also performed extra
verifications with known values and known bit locations to check
that we were injecting errors correctly. We note that our injector
assumes an equal probability of corruption among all bits.

3.1 DADYMO Performance and Accuracy

First, we set up an experiment using a synthetic benchmark of

a heat distribution simulation executed on over 100 MPI ranks.

Each rank holds a temperature dataset with values in the range of
[260.0, 360.0] kelvin in single precision and a maximum variation
of 1.0 kelvin between neighbor cells. This configuration guarantees
that from one value to its neighbor, only a maximum of 16 bits
(out of 32) changes. We note that in this experiment the finite
difference between neighbor cells varies between 0.0 and 1.0 for
all MPI processes. Then, during the execution we inject over a
thousand bit flips on each rank for a total of over 170, 000 injected
bit flips. During the whole execution, we execute DADYMO at high
frequency in order to detect SDC.

We first want to prove that DADYMO is a lightweight detector
that imposes no (or low) overhead on the application. Thus, we
measure its performance. The performance metric for DADYMO is
the amount of data analyzed per second (i.e., the throughput). We
measure the throughput of DADYMO for each rank and for each
time DADYMO is executed trough the simulation. We observed
that all the processes have the same throughput (700 MB/s). We
emphasize that 700 MB/s is the DADYMO throughput per MPI
process. Thus, in a node with 15 MPI ranks (our system had 16
cores per node, but we used only 15) the total node-level DADYMO
throughput is 10.5 GB/s. The size of the dataset for each rank was
256 MBs; thus each DADYMO execution took just a fraction of a
second, causing less than 1% overhead.

After proving that DADYMO is a lightweight detector, we
evaluate the accuracy of its detections. Thus, we count the number of
detected bit flips and for each detection check whether the detected
bit flip corresponds to an injection or not, so that we get the number
of true detections and false detections. In this way we are able to
get the precision and recall for each rank. We plot the results in
Figure 2. As we can see, all processes have around 50% of recall
and 98% of precision. These results mean that our technique learns
quickly about the data dynamics and makes few false positives (high
precision). We conclude from these results that although DADYMO
does not guarantee corruption-free data, it can substantially reduce
the SDC perceived by the application.

4. Related work

A large literature exists on soft errors rates [1, 4] and detection and
correction techniques. Most of these techniques are implemented
at the hardware level. Most of these strategies, however, target soft
errors in general and do not focus on the particular case of SDC
in parallel scientific applications. For some specific linear algebra
algorithms, one of the most promising techniques against SDC is
algorithm-based fault tolerance (ABFT). ABFT [2] is a technique
that uses extra checksums to correct errors. However, ABFT has
been implemented only on linear algebra kernels.

5. Conclusions

In this work we have highlighted some of the properties of HPC
datasets, such as low variations for close elements. Based on this
property, we proposed to set a threshold ¢4 for each dataset that
indicates the maximum allowed finite difference between neighbor
elements. We evaluated our proposed scheme with synthetic bench-
marks and our results show that our technique can detect over 50%
of silent corruptions (prediction recall) with a precision a nearly
100% for a negligible overhead.

References

[1] Shekhar Borkar. Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation. /EEE Micro,
25:10-16, November 2005.

[2] Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault
tolerance for matrix operations. Computers, IEEE Transactions on,
100(6):518-528, 1984.

[3] Dong Li, Jeffrey S Vetter, and Weikuan Yu. Classifying soft error
vulnerabilities in extreme-scale scientific applications using a binary
instrumentation tool. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
page 57. IEEE Computer Society Press, 2012.

[4] Tezzaron Semiconductor. Soft errors in electronic memory-a white paper,
2004.

This work was supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock

jbullock

jbullock
This work was supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock

jbullock

