Performance Analysis of a Reduced Data
Movement Algorithm for Neutron Cross Section
Data in Monte Carlo Simulations

John R. Tramm and Andrew R. Siegel

Argonne National Laboratory, USA
jtramm@mcs.anl.gov

Abstract. Current Monte Carlo neutron transport applications use
continuous energy cross section data to provide the statistical foundation
for particle trajectories. This “classical” algorithm requires storage and
random access of very large data structures. Recently, Forget et al.[1]
reported on a fundamentally new approach, based on multipole expansions,
that distills cross section data down to a more abstract mathematical
format. Their formulation greatly reduces memory storage and improves
data locality at the cost of also increasing floating point computation. In
the present study, we abstract the multipole representation into a “proxy
application”, which we then use to determine the hardware performance
parameters of the algorithm relative to the classical continuous energy
algorithm. This study is done to determine the viability of both algorithms
on current and next-generation high performance computing platforms.

Keywords: Monte Carlo, multi-core, neutron transport, reactor simula-
tion, multipole, cross section

1 Introduction

Monte Carlo (MC) transport algorithms are considered the “gold standard” of
accuracy for a broad range of applications — e.g., nuclear reactor physics, shielding,
detection, medical dosimetry, and weapons design to name just a few examples.
In the design and analysis of nuclear reactor cores, the key application driver of
the present analysis, MC methods for neutron transport offer significant potential
advantages compared to deterministic methods given their simplicity, avoidance
of ad hoc approximations in energy treatment, and lack of need for complex
computational meshing of reactor geometries.

On the other hand it is well known that robust analysis of a full reactor core
is still beyond the reach of MC methods. Tremendous advances have been made
in recent years, but the computing requirements for full quasi-static depletion
analysis of commercial reactor cores is a performance-bound problem, even on
existing leadership class computers. It is also clear that many of the issues related
to scalability on distributed memory machines have been adequately addressed in
recent studies[2][3], and that the path to future speedups involves taking better

advantage of a broad range of multi-core systems. For MC methods this is most
naturally done, as a first step, in a MIMD context, which allows us to most
easily exploit the natural parallelism over particle tracks, each with complex,
nested branching logic. Siegel et al.[4] carried out an in-depth study of on-node
scalability of the OpenMC|[2] transport code, showing encouraging results as
well as limitations due to memory contention. Tramm et al.[5] carried out an
in-depth study based on the XSBench mini-application, further elucidating the
underlying performance bottlenecks that inhibit scalability. Indeed, with less
memory bandwidth per core as nodes become more complex, developing new
approaches that minimize memory contention and maximize use of each core’s
floating point units becomes increasingly important.

Recently, Forget et al.[1] proposed a new algorithm for representing neutron
cross section data in a more memory efficient manner. This algorithm, based on
multipole expansions, compresses data into a more abstract mathematical format.
This greatly reduces the memory footprint of the cross section data and improves
data locality at the expense of an increase in the number of computations required
to reconstruct it when it is needed. As next-generation leadership class computers
are likely to favor floating point operations over data movement|[6][7][8][9], the
multipole algorithm may provide significant performance improvement compared
to the classical approach.

In this analysis we study in-depth two different implementations of the MC
neutron transport algorithm — the “classical” continuous energy cross section
format and the multipole representation format. Then, we assess the on-node
scaling properties and memory contention issues of these algorithms in the context
of a reactor physics calculation.

1.1 The Reactor Simulation Problem

Computer-based simulation of nuclear reactors is a well established field, with
origins dating back to the early years of digital computing. Traditional reactor
simulation techniques aim to solve deterministic equations (typically a variant
of the the diffusion equation) for a given material geometry and initial neutron
distribution (source) within the reactor. This is done using mature and well
understood numerical methods. Deterministic codes are capable of running
quickly and providing relatively accurate gross power distributions, but are still
limited when accurate localized effects are required, such as e.g. at sharp material
interfaces.

An alternative formulation, the Monte Carlo (MC) method, simulates the path
of individual neutrons as they travel through the reactor core. As many particle
histories are simulated and tallied, a picture of the full distribution of neutrons
within the domain emerges. Such codes are inherently simple, easy to understand,
and potentially easy to restructure when porting to new systems. Furthermore,
the methodologies utilized by MC simulation require very few assumptions,
resulting in highly accurate results given adequate statistical convergence. The
downside to this method, however, is that a huge number of neutron histories are
required to achieve an acceptably low variance in the results. For many problems

this means an impractically long time to solution, though such limitations may be
overcome given the increased computational power of next-generation, exascale
supercomputers.

1.2 OpenMC

OpenMC' is a Monte Carlo particle transport simulation code focused on neu-
tron criticality calculations|2]. It is capable of simulating 3D models based on
constructive solid geometry with second-order surfaces. The particle interaction
data is based on ACE format cross sections, also used in the MCNP and Serpent
Monte Carlo codes.

OpenMC was originally developed by members of the Computational Reactor
Physics Group at the Massachusetts Institute of Technology starting in 2011.
Various universities, laboratories, and other organizations now contribute to
its development. The application is written in FORTRAN, with parallelism
supported by a hybrid OpenMP /MPI model. OpenMC is an open source software
project available online[10].

1.3 XSBench

The XSBench proxy application models the most computationally intensive part
of a typical MC reactor core transport algorithm — the calculation of macroscopic
neutron cross sections, a kernel which accounts for around 85% of the total runtime
of OpenMC'[4]. XSBench retains the essential performance-related computational
conditions and tasks of fully featured reactor core MC neutron transport codes,
yet at a fraction of the programming complexity of the full application. Particle
tracking and other features of the full MC transport algorithm were not included
in XSBench as they take up only a small portion of runtime in robust reactor
computations. This provides a much simpler and far more transparent platform
for testing the algorithm on different architectures, making alterations to the
code, and collecting hardware runtime performance data.

XSBench was developed by members of the Center for Exascale Simulation of
Advanced Reactors (CESAR) at Argonne National Laboratory. The application is
written in C, with multi-core parallelism support provided by OpenMP. XSBench
is an open source software project. All source code is publicly available online[11].

1.4 RSBench

The RSBench proxy application is similar in purpose to XSBench, but models
an alternative method for calculating neutron cross sections — the multipole
method. This method organizes the data into a significantly more compact form,
saving several orders of magnitude in memory space. However, this method also
requires “unpacking” of this data by way of a significant number of additional
computations (FLOPs).

RSBench is in active development by members of the CESAR group at
Argonne National Laboratory. The application is written in C, with multi-core

parallelism support provided by OpenMP. RSBench is an open source software
project. All source code is publicly available online[12].

2 Algorithm

2.1 Reactor Model

When carrying out reactor core analysis, the geometry and material properties of
a postulated nuclear reactor must be specified in order to define the variables and
scope of the simulation model. For the purposes of XSBench and RSBench, we use
a well known community reactor benchmark known as the Hoogenboom-Martin
model[13]. This model is a simplified analog to a more complete, “real-world”
reactor problem, and provides a standardized basis for discussions on performance
within the reactor simulation community. XSBench and RSBench recreate the
computational conditions present when fully featured MC neutron transport codes
(such as OpenMC') simulate the Hoogenboom-Martin reactor model, preserving a
similar data structure, a similar level of randomness of , and a similar distribution
of FLOPs and memory loads.

2.2 Neutron Cross Sections

The purpose of an MC particle transport reactor simulation is to calculate the
distribution and generation rates of neutrons within a nuclear reactor. In order to
achieve this goal, a large number of neutron lifetimes are simulated by tracking
the path and interactions of a neutron through the reactor from its birth in a
fission event to its escape or absorption, the latter possibly resulting in subsequent
fission events.

Each neutron in the simulation is described by three primary factors: its
spatial location within a reactor’s geometry, its speed, and its direction. At each
stage of the transport calculation, a determination must be made as to what the
particle will do next. Possible outcomes include uninterrupted continuation of free
flight, collision, or absorption (possibly resulting in fission). The determination
of which event occurs is based on a random sampling of a statistical distribution
that is described by empirical material data stored in main memory. This data,
called neutron cross section data, represents the probability that a neutron of
a particular speed (energy) will undergo some particular interaction when it is
inside a given type of material.

To account for neutrons across a wide energy spectrum and materials of many
different types, the classical algorithm, as represented by XSBench, requires use of
a very large data structure that holds cross section data points for many discrete
energy levels. In the case of the simplified Hoogenboom-Martin benchmark,
roughly 5.6 GB! of data is required. The multipole method greatly reduces these
requirements down the the order of approximately 100 MB for all data.

1 We estimate that for a robust depletion calculation, in excess of 100 GB of cross
section data would be required.[14]

2.3 Classical Continuous Energy Cross Section Representation

The classical continuous energy cross section representation, as used by real world
applications like OpenMC), is abstracted in the proxy-application XSBench. This
section describes the data structure used by this algorithm along with the access
patterns of the algorithm.

Data Structure A material in the Hoogenboom-Martin reactor model is com-
posed of a mixture of nuclides. For instance, the “reactor fuel” material might
consist of several hundred different nuclides, while the “pressure vessel side wall”
material might only contain a dozen or so. In total, there are 12 different materi-
als and 355 different nuclides present in the modeled reactor. The data usage
requirements to store this model are significant, totaling 5.6 GB, as summarized
in Table 1.

For each nuclide, an array of nuclide grid points are stored as data in main
memory. Each nuclide grid point has an energy level, as well as five cross section
values (corresponding to five different particle interaction types) for that energy
level. The arrays are ordered from lowest to highest energy levels. The number,
distribution, and granularity of energy levels varies between nuclides. One nuclide
may have hundreds of thousands of grid points clustered around lower energy
levels, while another nuclide may only have a few hundred grid points distributed
across the full energy spectrum. This obviates straightforward approaches to
uniformly organizing and accessing the data.

In order to increase efficiency of , the algorithm utilizes another data structure,
called the unionized energy grid, as described by Leppénen [15] and Romano [2].
The unionized grid facilitates fast lookups of cross section data from the nuclide
grids. This structure is an array of grid points, consisting of an energy level and
a set of pointers to the closest corresponding energy level on each of the different
nuclide grids.

Nuclides Tracked 355
Total # of Energy Gridpoints 4,012,565
Cross Section Interaction Types 5

Total Size of Cross Section Data Structures 5.6 GB
Table 1. XSBench Data Structure Summary

Access Patterns In a full MC neutron transport application, the data structure
is accessed each time a macroscopic cross section needs to be calculated. This
happens anytime a particle changes energy (via a collision) or crosses a material
boundary within the reactor. These macroscopic cross section calculations occur
with very high frequency in the MC transport algorithm, and the inputs to
them are effectively random. For the sake of simplicity, XSBench was written
ignoring the particle tracking aspect of the MC neutron transport algorithm

and instead isolates the macroscopic cross section lookup kernel. This provides a
large reduction in program complexity while retaining similarly random input
conditions for the macroscopic cross section lookups via the use of a random
number generator.

In XSBench, each macroscopic cross section lookup consists of two randomly
sampled inputs: the neutron energy FE,, and the material m,. Given these two
inputs, a binary (log n) search is done on the unionized energy grid for the given
energy. Once the correct entry is found on the unionized energy grid, the material
input is used to perform lookups from the nuclide grids present in the material.
Use of the unionized energy grid means that binary searches are not required on
each individual nuclide grid. For each nuclide present in the material, the two
bounding nuclide grid points are found using the pointers from the unionized
energy grid and interpolated to give the exact microscopic cross section at that
point.

All calculated microscopic cross sections are then accumulated (weighted by
their atomic density in the given material), which results in the macroscopic
cross section for the material. Algorithm 1 is an abbreviated summary of this
calculation.

Algorithm 1 Classical Continuous Energy Macroscopic Cross Section Lookup

1: R(myp, Ep) > randomly sample inputs
2: Locate E, on Unionized Grid > binary search
3: for n € mp do > for each nuclide in input material
4: 0q <—n, Ep > lookup bounding micro xs’s
5: op+—n, B, +1

6: O 4 0q,0p > interpolate
T Y X+pn-o > accumulate macro xs
8: end for

In theory, one could “pre-compute” all macroscopic cross sections on the
unionized energy grid for each material. This would allow the algorithm to
run much faster, requiring far fewer memory loads and far fewer floating point
operations per macroscopic cross section lookup. However, this would assume a
static distribution of nuclides within a material. In practice, MC transport nuclide-
depletion calculations are quasi-static; they will need to track the burn-up of
fuels and account for heterogeneous temperature distributions within the reactor
itself. This means that concentrations are dynamic, rather than static, therefore
necessitating the use of the more versatile data model deployed in OpenMC' and
XSBench. Even if static concentrations were assumed, pre-computation of the full
spectrum of macroscopic cross sections would need to be done for all geometric
regions (of which there are many millions) in the reactor model, leading to even
higher memory requirements.

We have verified that XSBench faithfully mimics the data access patterns
of the full MC application under a broad range of conditions. The runtime of

full-scale MC transport applications, such as OpenMC, is 85% composed of
macroscopic cross section lookups[4]. Within this process, XSBench is virtually
indistinguishable from OpenMC, as the same type and size of data structure is
used, with a similarly random access pattern and a similar number of floating
point operations occurring between memory loads. Thus, performance analysis
done with XSBench provides results applicable to the full MC neutron transport
algorithm, while being far easier to implement, run, and interpret.

2.4 Multipole Cross Section Representation

The multipole representation cross section algorithm is abstracted in the proxy-
application RSBench. This section summarizes the data structure used by this
algorithm along with the access patterns and computations performed by the
algorithm. The multipole representation stores cross section data in the form of
resonances. Each resonance can be characterized by several variables, defining
the parameters of the resonance (i.e., width, height, reaction width, etc.) that can
be used to compute the actual microscopic cross section at any energy within the
resonance. A more in-depth explanation of the mathematics behind the multipole
representation is offered by Forget et al.[1] For the purposes of this analysis,
several factors that play a minimal role in performance, such as the handling of
energy levels in the unresolved resonance region, were ignored.

Data Structure The primary data structure employed by RSBench is a 2-D
jagged array of resonance data structures. The first dimension correlates to each
nuclide present in the reactor. The second dimension correlates to the number
of resonances present in that nuclide (each nuclide has a different number of
resonances, varying from 100 to 6,000)[1]. Each element of this array is a resonance
data structure that holds several pieces of information including the width of the
resonances and several mathematical values that define the shape, magnitude,
and number of poles in the resonance. Compared to the classical method, such as
used by XSBench, this 2-D array is in total much smaller as no unionized energy
grid is necessary and far fewer data points are needed, as shown in Table 2.

Nuclides Tracked 355
Average Resonances per Nuclide 3,000
Total # of Resonances 1,065,000
Cross Section Interaction Types 4

Total Size of Cross Section Data Structures 41 MB
Table 2. RSBench Data Structure Summary

Access Patterns The access patterns of the multipole algorithm are simpler
than the classical methods due to the lack of a unionized energy grid. This means

that for a given neutron energy level and material, generating the macroscopic
cross sections is a relatively simple process. For each nuclide in the material,
a modulus operation is done to determine the index of the resonance that
covers the neutron’s energy. The presence of multiple resonances covering the
same energy level is not considered, as this is a relatively infrequent occurrence
and in our experience does not significantly impact performance. With the
resonance data retrieved, several somewhat lengthy computations are done to
determine the various microscopic cross sections. Macroscopic cross sections are
then accumulated. This process is summarized in Algorithm 2.

Algorithm 2 Multipole Macroscopic Cross Section Lookup

1: R(my, Ep) > randomly sample inputs
2: for n € m, do > for each nuclide in input material
3: Fetch Resonance R Covering Energy F,

4: o4 < FLOPs+ R > calculate n(n,y) XS
5 oy < FLOPs+ R > calculate n(n,f) XS
6: 04 < FLOPs+ R > calculate absorption XS
7. ot = 0g + 05 + sigmaq > accumulate total XS
8: Y XY+pn-o > accumulate macro xs
9: end for

The equations used to assemble microscopic cross sections out of the resonance
data are described in detail by Forget et al[l]. Simplified forms of the multipole
equations used by RSBench, the single level Breit-Wigner equations, are given in
Equations 1, 2, and 3. Note that single level Breit-Wigner resonances are not a
full implementation of the multipole methodology, as would be done in a full scale
MC transport application, but do provide a similar FLOP to load ratio and utilize
nearly the same data structure as the full multipole representation. Furthermore,
the effects of neutron spin are neglected under the assumption that all neutrons are
spin zero. These simplifications are made to reduce the programming complexity
of the RSBench application, making it easier to instrument and port to new
languages and systems, while still retaining a similar performance profile to the
full multipole algorithm.

r, [E r?
xE = oi e 1
o(B) =00 T\ E BB 7 12 (1)

E, I? I, 4E-E,)R
”s<E>—”°vEW[r+rA T ()

o(B) =Y 0x+0a (3)
where

I'nE,
r

0o = 4T\2

Opot = 4T R? (5)

A= rao\/% (6)

o, are the microscopic reaction cross sections (radiative capture and fission), o
is the microscopic scattering cross section, o; is the total microscopic cross
section, o, is the peak value of the total resonance cross section, I}, I, and I’
are, respectively, the width for neutron emission, the width for the reaction z,
and the total width of the resonance, E is the energy of the neutron, F, is the
center point energy of the resonance, R is the nuclear radius of the nuclide, A is
the reduced de Broglie wavelength of the neutron, A, is the value of the reduced
wavelength of the neutron at the resonance peak, and o, is the potential
scattering cross section for [= 0 (s-wave) neutrons.

3 Application

To investigate the performance profiles of our two MC transport cross section
algorithms on existing systems, we carried out a series of tests using RSBench
and XSBench on single node, multi-core, shared memory system. The system
used was a single node consisting of two Intel Xeon E5-2650 octo-core CPUs for
a total of 16 physical CPUs. All tests, unless otherwise noted, were run at 2.8
GHz using Intel Turbo Boost.

We performed a scaling study to determine performance improvements as
additional cores were added. We ran both proxy applications with only a single
thread to determine a baseline performance against which efficiency can be
measured. Then, further runs were done to test each number of threads between
1 and 32. Efficiency is defined as

Efficiency,, = RlR: - (7)

, where n is the number of cores, R, is the experimental calculation rate for n
cores, and Ry is the experimental calculation rate for one core.

The tests reveal that even for these proxy-applications of the MC transport
algorithm, perfect scaling was not achievable. Figure 1 and Figure 2 show that
efficiency degraded gradually as more cores were used on the nodes. For the
Xeon system, efficiency at 16 cores degraded to 69% for XSBench and 81% for
RSBench.

One might reasonably conclude that 69% or 81% efficiency out to 16 cores
is adequate speedup. However, next-generation node architectures are likely to
require up to thousand-way on-node shared memory parallelism|[6][7][8][9], and
thus it is crucial to ascertain the cause of the observed degradation and the
implications for greater levels of scalability. Considering nodes with 32, 64, 128,
or 1024 shared memory cores and beyond, it cannot be taken for granted that

10

2.5E+06

2.0E+06

s

1.5E+06

=@=RSBench
=0=XSBench

1.0E+06

Cross Section Lookups/sec

5.0E+05

0.0E+00 . . . ; ; . . .
0 2 4 6 8 10 12 14 16
Threads

Fig. 1. Performance Scaling

performance will continue to improve. We thus seek to identify to the greatest
extent possible which particular system resources are being exhausted, and how
quickly, so that designers of future hardware systems as well as developers of
future MC particle transport applications can avoid bottlenecks.

High performance computing (HPC) applications generally have several pos-
sible reasons for performance loss due to scaling:

1. FLOP bound — A CPU can only perform so many floating point operations
per second.

2. Memory Bandwidth Bound — A finite amount of data can be sent between
DRAM and the CPU.

3. Memory Latency Bound — An operation on the CPU that requires data be
sent from the DRAM can take a long time to arrive.

4. Inter-Node Communication Bound — Nodes working together on a problem
may need to wait for data from other nodes, incurring large latency and
bandwidth costs. This is not an issue for this application since we are focusing
only on single node, shared-memory parallelism.

Given these potential candidates for bottlenecks, we aim to determine which
exact subsystems are responsible for performance degradation by performing a
series of studies to identify which specific resources our two kernels exhaust first.

11

100%

95% |

85%

W =@=RSBench
80% \ ==XSBench
75% ‘\

70% w

Efficiency

65% . . . ; ; . . .
0 2 4 6 8 10 12 14 16
Threads

Fig. 2. Efficiency Scaling

4 Experiment & Results

To investigate the performance and resource utilization profiles of both proxy
applications, and to determine the cause of multi-core scaling degradation, we
performed a series of experiments. Each experiment involves varying a system pa-
rameter, monitoring hardware usage using performance counters, and/or altering
a portion of the XSBench and RSBench codes. The following section presents
descriptions, results, and preliminary conclusions for each experiment. For the
purposes of simplicity, we concentrate our analysis on the Intel Xeon system
described in section 3. This allows us to get highly in-depth results as we are
able to run experiments dealing with architecture-specific features and hardware
counters.

4.1 Resource Usage

To better understand scaling degradation in our kernels, we implemented perfor-
mance counting features into the source code of XSBench and RSBench using
the Performance Application Programming Interface (PAPI)[16]. This allowed us
to select from a large variety of performance counters (both preset and native to
our particular Xeon chips). We collected data for many counters, including:

12

ix86arch: : LLC_REFERENCES - Last Level (L3) Cache References
ix86arch: :LLC_MISSES - Last Level (L3) Cache Misses
PAPI_TQOT_CYC - Total CPU Cycles

— PAPI FP_INS - Floating point instructions

These raw performance counters allowed us to calculate a number of composite
metrics, including bandwidth usage, FLOP utilization, and cache miss rate. Each
of the metrics are discussed in the following subsections.

Bandwidth Consumption of available system bandwidth resources used by
XSBench and RSBench is calculated using Equation 8.

. LLC_MISSES x Linesize
Bandwidth = PAPLTOT . CYC x Clock (Hz) (8)

Using Equation 8, we collected the bandwidth usage for our proxy applications
as run on varying numbers of cores, as shown in Figure 3. Note that the maximum
theoretically available bandwidth for the Xeon node is 51.2 GB/s[17]. Figure 3
shows that less than half the available bandwidth is ever used by either of our
proxy applications, even when running at 32 threads per node?.

There is, however, the question as to how much bandwidth is realistically
usable on any given system. Even a perfectly constructed application that floods
the memory system with easy, predictable loads is unlikely to be able to use the
full system bandwidth. In order to determine what is actually usable on our Xeon
system, we ran the STREAM benchmark, which measures “real world” bandwidth
sustainable from ordinary user programs.[18] Results from this benchmark are
shown in Figure 3, and compared to XSBench and RSBench. As can be seen,
XSBench converges with STREAM, leading us to believe that the classical cross
section algorithm is bottlenecked by system bandwidth. In contrast, we find that
the bandwidth usage of RSBench is much more conservative — using less than
half of what XSBench does.

FLOPs Consumption of available system floating point resources used by XS-
Bench and RSBench is calculated using Equation 9.

PAPI_FP_INS
FLOPs = 5 P TOT.Cve

x Clock (Hz) 9)

Using Equation 9, we were able to determine the FLOP performance of our
proxy applications, as shown in Figure 4. We found that XSBench achieved at
most 3.6 GFLOPs, while RSBench achieved over twice the FLOP performance,
at 8.4 GFLOPs.

2 The 16-core Xeon node used in our testing features hardware threading, supporting
up to 32 threads per node.

13

60

50

N
o

= = System Spec
STREAM
=0=XSBench

M ~@=RSBench

Bandwidth (GB/s)
w
o

[N]
o

10

0 4 8 12 16 20 24 28 32
Threads

Fig. 3. Bandwidth Usage Scaling

Cache Misses Another important metric for application performance is the last
level cache (LLC) miss percentage. Modern CPUs, as used in our Xeon node, rely
heavily on caching to minimize the cost of data loads and stores. Caches are split
up into several levels, each growing larger but also with significantly higher access
times. When the CPU makes a data read request, all levels of cache are checked.
If the data is not found in cache, then it must be retrieved from main memory
(DRAM) on the node. Accessing main memory takes orders of magnitude longer
than accessing cache, meaning that applications with exceptionally high cache
miss rates are often slow, as CPUs are left sitting idle as data arrives from main
memory. Using PAPI performance counters, we were able to calculate the last
level (L3) cache miss rates using Equation 10. We found that across all cores,
for any number of threads 1 through 16, the LLC miss rate of XSBench was
65%, while the LLC miss rate of RSBench was only 45%. While those may seem
like trivial differences, this factor alone can account for a nearly 50% savings in
bandwidth to main memory.

LLC_MISSES y
LLC_REFERENCES

The significant difference in number of cache misses between the two algo-
rithms can be explained by the differences in Table 1 and Table 2. The data

Cache Miss % = 100 (10)

14

6
5 /
/ ==RSBench
4
/ :(e =E-XSBench
3 / f

GFLOPs

0 4 8 12 16 20 24 28 32
Threads

Fig. 4. FLOP Usage

structure used in the multipole algorithm is small enough, at 41 MB, to have a
large portion of it fit into cache.

5 Conclusions

We have performed an in-depth analysis of two different implementations of the
MC neutron transport algorithm — the “classical” continuous energy cross section
format (i.e., XSBench) and the multipole representation format (i.e., RSBench).
We have also assessed the on-node scaling properties and memory contention
issues of these algorithms in the context of a robust reactor physics calculation.

Through our investigations of the classical MC neutron cross section lookup
algorithm, via XSBench, we found that it achieves bandwidth usage extremely
close to the practical maximum of 25.8 GB/s when running 32 threads per
node. At this point, the MC particle transport algorithm becomes limited by the
available system bandwidth. Adding cores, hardware threads, or improving other
latency masking techniques will not result in faster calculation rates; bandwidth
must be increased for performance to increase for this algorithm.

We also found that the multipole algorithm (i.e., RSBench) uses less than
half as much bandwidth and achieves over twice the FLOP performance when

15

compared to the classical algorithm. This is a more desirable performance profile
for scaling on next-generation systems, as processor cores per node and computa-
tional capacity is expected to greatly outpace increases in bandwidth to main
memory. Furthermore, the multipole algorithm requires less latency masking
hardware as memory loads and cache misses are less frequent, meaning that
threads can be kept busier than in the classical algorithm. Finally, the multipole
algorithm has been shown to be capable of better scaling (81% efficiency at 16
cores per node vs. 69% for the classical algorithm), which also suggests better
potential for on-node scaling in next-generation, many core systems.

6 Future Work

There are additional capabilities that do not yet commonly exist in full-scale
MC neutron transport algorithms, such as on-the-fly Doppler broadening to
account for the material temperature dependence of cross sections, that we
plan to implement in XSBench and RSBench for experimentation with various
hardware architectures and features. This addition is predicted to enhance the
advantages of the multipole algorithm as Doppler broadening is an inherently
easier task when cross section data is already stored in the multipole format.

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357. The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory (“Argonne”) under
Contract DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up, nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

References

1. Forget, B., Xu, S., smith, k.: Annals of Nuclear Energy. Annals of Nuclear Energy
64(C) (February 2014) 78-85

2. Romano, P.K., Forget, B.: The OpenMC Monte Carlo particle transport code.
Annals of Nuclear Energy 51(C) (January 2013) 274-281

3. Romano, P.K., Forget, B., Brown, F.B.: Towards scalable parallelism in monte
carlo particle transport codes using remote memory access. (2010) 17-21

4. Siegel, A.R., Smith, K., Romano, P.K., Forget, B., Felker, K.G.: Multi-core perfor-
mance studies of a Monte Carlo neutron transport code. International Journal of
High Performance Computing Applications (March 2013) 1-25

jbullock
Typewritten Text

16

10. :

11.

12.

13.

14.

15.

16.

17.

18.

Tramm, J., Siegel, A.R.: Memory Bottlenecks and Memory Contention in Multi-Core
Monte Carlo Transport Codes. In: Joint International Conference on Supercomput-
ing in Nuclear Applications + Monte Carlo, Paris, Argonne National Laboratory
(October 2013)

Dosanjh, S., Barrett, R., Doerfler, D., Hammond, S., Hemmert, K., Heroux, M.,
Lin, P., Pedretti, K., Rodrigues, A., Trucano, T., Luitjens, J.: Exascale design
space exploration and co-design. Future Generation Computer Systems (0) (2013)
Attig, N., Gibbon, P., Lippert, T.: Trends in supercomputing: The european path
to exascale. Computer Physics Communications 182(9) (2011) 2041 — 2046
Rajovic, N., Vilanova, L., Villavieja, C., Puzovic, N., Ramirez, A.: The low power
architecture approach towards exascale computing. Journal of Computational
Science (0) (2013) —

Engelmann, C.: Scaling to a million cores and beyond: Using light-weight simulation
to understand the challenges ahead on the road to exascale. Future Generation
Computer Systems (0) (2013) —

Openmc monte carlo code. https://github.com/mit-crpg/openmc (January
2014)

: Xsbench: The monte carlo macroscopic cross section lookup benchmark. https:
//github.com/jtramm/XSBench (January 2014)

: Rsbench: A mini-app to represent the multipole resonance representation lookup
cross section algorithm. https://github.com/jtramm/RSBench (January 2014)
Hoogenboom, J.E., Martin, W.R., Petrovic, B.. MONTE CARLO PERFORMANCE
BENCHMARK FOR DETAILED POWER DENSITY CALCULATION IN A
FULL SIZE REACTOR CORE Benchmark specifications. Ann Arbor 1001 (2010)
48109-42104

Romano, P.K., Siegel, A.R., Forget, B., smith, k.: Data decomposition of Monte
Carlo particle transport simulations via tally servers. JOURNAL OF COMPUTA-
TIONAL PHYSICS 252(C) (November 2013) 20-36

Leppénen, J.: Two practical methods for unionized energy grid construction in
continuous-energy Monte Carlo neutron transport calculation. Annals of Nuclear
Energy 36(7) (July 2009) 878-885

: Papi - performance application programming interface. http://icl.cs.utk.edu/
papi/index.html (September 2013)

Intel®: Xeon® processor e5-2650 cpu specifications. http://ark.intel.com/
products/64590/ (September 2013)

McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (December 1995) 19-25

https://github.com/mit-crpg/openmc
https://github.com/jtramm/XSBench
https://github.com/jtramm/XSBench
https://github.com/jtramm/RSBench
http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/papi/index.html
http://ark.intel.com/products/64590/
http://ark.intel.com/products/64590/
jbullock
Typewritten Text

	Performance Analysis of a Reduced Data Movement Algorithm for Neutron Cross Section Data in Monte Carlo Simulations

