
1

Parallel Data Layout Optimization of Scientific
Data through Access-driven Replication

John Jenkins,∗†‡ Xiaocheng Zou,∗ Houjun Tang,∗ Dries Kimpe,† Robert Ross,† Nagiza F. Samatova,∗
∗Deptartment of Computer Science, North Carolina State University

{xzou2, htang4, nfsamato}@ncsu.edu
†Mathematics and Computer Science Division, Argonne National Laboratory

{jenkins,kimpe,rross}@mcs.anl.gov
‡Corresponding author: jenkins@mcs.anl.gov

Abstract—Efficient I/O on large-scale spatio-temporal scientific
data requires scrutiny of both the logical layout of the data
(e.g., row-major vs. column-major) and the physical layout (e.g.,
distribution on parallel filesystems). For increasingly complex
datasets, hand optimization is a difficult matter prone to error
and not scalable to the increasing heterogeneity of analysis work-
loads. Given these factors, we present a partial data replication
system called RADAR. We capture datatype- and collective-
aware I/O access patterns (indicating logical access) via MPI-
IO tracing and use a combination of coarse-grained and fine-
grained performance modeling to evaluate and select optimized
physical data distributions for the task at hand. Compared with
existing methods, we store all replica data and metadata, along
with the original, untouched data, under a single file container
using the object abstraction in parallel filesystems. Our system
can produce up to many-fold improvements in commonly used
subvolume decomposition access patterns, while the modeling
approach is capable of determining whether such optimizations
should be undertaken in the first place.

I. INTRODUCTION

In high-performance computing (HPC) systems and parallel
filesystems such as PVFS [1], Lustre [2], and GPFS [3],
the distribution of data across multiple storage devices is a
difficult problem, which numerous works have been dedicated
to solving. The combination of high-dimensionality (multiple
variables distributed in a spatiotemporal domain) and dis-
tributed requests over many processes complicates making an
informed decision about how to place data to result in high
performance. The problem is exacerbated when noncontiguous
access patterns are induced on storage, such as subvolume
access. Even optimizations made to reduce or eliminate non-
contiguous disk access, such as two-phase collective I/O [4],
create new access patterns for which the data distribution may
not be optimized.

Previous works have looked at data layout optimization in
an HPC context in two general respects: modifying the logical
layout of data with the goal of producing specialized data
organizations for a specific usage (e.g., range-query processing
on scientific data [5], [6], [7]) and optimizing the physical
distribution of datasets to better match the mapping of process
requests to I/O servers [8], [9], [10], either in place or as
separate entities in storage, and with varying degrees of adapt-
ability. However, these works have some combination of the
following potential problems that we wish to mitigate: mod-

ified logical formats introduce both interoperability concerns
and difficulties related to manual management of the custom
format; works that provide multiple data layouts or replicate
data in multiple formats rely on creating directories/files for
each, leading to a large number of files to process any time
the dataset is used; and the distribution formats are either
fixed or optimize for a single metric (e.g., disk thrashing via
DiskSim [11], requests to a single segment of file).

Given these problems, we present a model-driven, adaptive
layout optimization framework, called RADAR, using direct
parallel filesystem semantics. Our layout optimization is based
on partial replication, allowing a controllable increase in
dataset sizes in exchange for I/O performance optimization.
Furthermore, as opposed to previous works, which fix either
the regions of data to replicate or the replication format, we
allow variability in both. In particular, we present the following
contributions:

1) Adaptive, storage-aware replica management policy.
Given a set of I/O access patterns, our replica layout manager
(Section II-A) uses an I/O performance modeling approach
to (1) create replicas with varied layouts for performance
optimization of input access patterns and (2) to rank replicas
for inclusion under storage-limited scenarios. Furthermore,
our approach can gracefully handle imbalances in both server
loads and client loads, using performance modeling to account
for the former and distribution heuristics to account for the lat-
ter. Using a prototype MPI-IO driver, we show that our method
is effective at accelerating common subvolume decomposition
tasks, showing multifold speedups under many scenarios.

2) Single-container, nonintrusive dataset storage. All replica
data and metadata are stored alongside the original, unchanged
data in a single file container, achieved through direct object-
storage semantics (Section II-B). Distribution of replica data
among a fixed set of replica objects is enabled through a
combination of sparse-file capabilities and a object-slice-based
allocation scheme (Section II-B3).

3) Datatype- and collective-aware MPI-IO tracing. As an
enabling technology, we develop a tracer capable of collecting
full logical I/O requests with low overhead at the MPI-IO-level
(Section II-C). It is configurable to collect either precollective
or postcollective optimizations (or both).

Our paper is organized as follows. Section II describes the
framework, including any necessary background. Section III

2

presents our experiments. Section IV examines related work.
Section V briefly summarizes our conclusions.

II. METHOD

The system workflow, in which access patterns are garnered
from applications and replicated data layouts are created to
optimize for those access patterns, is realized by a number
of components, as shown in Figure 1. First we develop a
datatype-aware, collective-aware I/O trace layer that captures
I/O requests. Then we process traces using a pattern ana-
lyzer, outputting access patterns of interest, such as strided
access. Our replica layout manager ingests these patterns and,
along with previously generated patterns, determines what data
to replicate and in what format. Our replica-aware, object-
storage-based ADIO implementation matches I/O requests to
replications, redirecting the subsequent EOF object operations.

Since the bulk of our methodology lies in the layout
manager and works independent of the method of replica
distribution and access pattern generation, we first discuss it in
Section II-A. Next, we describe the data management policies
employed by our method in Section II-B, followed by the
tracing and trace-analysis components in Section II-C. The
replica-aware ADIO driver is discussed in Section II-D.

A. RADAR Layout Manager

The goal of RADAR’s layout manager component is to
create replicas with a layout that improves I/O performance
under a given set of access patterns. Given this goal, we
consider three questions: (1) How do we generate a data layout
to best improve performance under a particular access pattern?
(2) How do we measure performance “improvement” itself?
and (3) How do we augment our choices with both temporal
information and limits on storage overhead?

To provide a framework capable of answering these ques-
tions in a flexible manner, the layout manager uses the follow-
ing strategies. (1) To optimize in the presence of concurrent
accesses, we generate replicas for time-delimited pattern sets.
(2) To quickly generate and evaluate candidate replica sets,
we adopt a two-phase performance-modeling approach, using
a coarse-grained performance model to quickly produce and
select candidate replica sets and using a fine-grained perfor-
mance model to compare with the original data layout. (3)
Given user-driven, space-constrained scenarios, we employ a
configurable aging mechanism to aid in selecting new replicas
for inclusion, alongside the potential performance improve-
ment calculated by the performance models. Algorithm 1 gives
an overview of the replica creation and decision process, and
the following sections discuss the individual components.

1) Pattern Preprocessing: Preprocessing of the patterns is
driven by our optimization goals: create a replica enabling
efficient access of the pattern, while being aware of concurrent
system operations. The latter has been examined in previous
work by converting all accesses into log-structured, effectively
creating a one-to-one process-to-server mapping [12], [9].
Here we are looking at flexible distribution among multiple
servers for read optimization, rather than write optimization.

Algorithm 1: RADAR layout manager overview
in-out : DS (data store): RADAR MPI file consisting of pattern

store PS, replication store RS, replica metadata RM
input : Pats: set of access patterns to process
input : ∆t: time window size
input : Mf , Mc: fine, coarse-grained perf. models
input : γ: decay function
input : σ: storage upper bound
// split patterns into sets of concurrent accesses

1 β ← partitioning of Pats into buckets by ∆t
2 processed ← { }

// process each pattern subset
3 for [∈ β do

// use coarse-grain model to make candidate replica
4 reps ← opt_replicas(Mf , [)

// use fine-grain model to estimate perf. benefit
5 Cdiff ← Mf([, orig layout) - Mf([, reps)
6 append {Cdiff , reps } to processed

// read existing (benefit, age, replicas) tuples, applying decay
7 existing ← [{γ(c, age), R} | (c, age, R) ∈ PS]
8 merge ← sort(processed ∪ existing)
9 write replica sets in decreasing order from merge, evicting

replicas from merge in increasing order as required by σ, until
no more can be added

Each pattern in our analyzed traces has starting and ending
times. Given these and a value δ, the patterns are partitioned
into buckets, each corresponding to a time window of length δ.
Each bucket is then considered a single entity for the purposes
of performance modeling and optimization. Since each bucket
need not be sorted in our method, the overall process is linear
in the number of patterns.

2) Replica Generation and Ranking – Performance Mod-
eling: We use a simple, constant-time performance model to
generate candidate replicas and a more involved model to give
a relative performance comparison between the original data
layout and candidate layouts. This design decision is made in
order to quickly generate replicas for testing, while retaining
the ability to evaluate against unbalanced access patterns with
respect to either the amount of data requested per-process or
the amount of data processed by each I/O server.

a) Preliminaries: Our models use latency/bandwidth
measurements over both network and storage, assuming seri-
alization of requests at the node level (both client and server)
and requests to storage. Table I shows the relevant variables.
Furthermore, we make a few simplifying assumptions across
both models that, while harmful to general-purpose high-
accuracy performance prediction, still allow us to make valid
measures for comparative purposes over time-gated accesses
in a manner that is computationally reasonable. First, we
assume no pipelining of network and storage operations,
insulating us from false positives arising from slightly different
access schedules but giving a pessimistic view of system
capabilities; we consider both types of costs equally from
an optimization point of view. Second, resource contention
is measured through the aggregation of request latencies and,
in the fine-grained performance model, through penalization
terms on nodes based on the number of distinct requests. This
approach misses some phenomena observed in real runs or
in full system/subsystem simulators [11], such as disk head

3

Fig. 1: RADAR components, across the I/O software stack. The shaded figures delineate our contributions.

TABLE I: Performance Model System Parameters

System parameters
n I/O servers
`net I/O request (network) latency
bnet Network per-byte transfer time
`sto I/O request (disk) latency
bsto Storage per-byte transfer time
rs Local storage readahead

Per-pattern-set inputs
P Set of access patterns with process mappings
p I/O participants (clients)
m I/O participants per node

Coarse-grain model input/outputs
B Total request size across all patterns
np Servers contacted per client
r Average request size per client per server = B/(pnp)

thrashing.
b) Coarse-Grained Model: The coarse-grained model is

a generalization of the cost model created by Song et al. [8] to
optimize accesses under the following characteristics: uniform
access sizes, perfect access distribution among servers corre-
sponding to PVFS data layouts, and single time of issuance
across all processes. This model, while not created for general-
purpose I/O modeling, has proven useful for HPC applications
with regular access patterns and is appropriate for driving our
replica placement method, given that we are in full control of
replica placement and can produce such regular accesses. First,
we discuss the model and generalization; then we discuss how
we find effective replica layouts using it.

The cost model by Song et al. has four separate costs that
are summed to find the final result: Te, the establishment time
for all network operations, Tx, the time to transfer all request
data across the network, Ts, the “startup” time for all storage
accesses, and Trw, the read/write time for all storage accesses.
These costs are computed separately based on the PVFS data
layout being used, which they fix to be a one-to-one process
to server mapping (1-DV), a one-to-all mapping (1-DH), and
a process-group to server-group mapping (2-D). Refer to Song
et al. [8] for more details. We collapse this mapping based on
a simple observation: the parameter being varied across each

of the models is the servers contacted per client. Making this
an explicit variable np allows us to collapse the equations into
a single set:

Te = max(mnp, d
pnp
n
e)`net (1)

Tx = max(mnp, d
pnp
n
e)rbnet (2)

Ts = d
pnp
n
e`sto (3)

Trw = dpnp
n
erbsto. (4)

Note that the np term is within the ceiling/maximum functions,
and not factored out, to ensure the model will remain accurate
for low-client-count scenarios (i.e., pnp < n).

c) Coarse-Grained Model Usage: Given the definition of
the coarse-grained model, we derive a simple replica creation
process, using the following strategy. Assume the underlying
accesses are regular and uniform, compute minnp

(Te + Tx +
Ts + Trw), and then resolve any load balances by over/under
provisioning replica striping across the servers. After comput-
ing B and an average m, simply calculate model values for
np ∈ {1, 2, . . . , n} and choose the minimum. Next, perform
the logical striping under the assumption that r is the actual
request size per client. Then, compute for each pattern which
servers its data resides on. An example mapping is shown
in Figure 2. The intuition behind this layout heuristic is that
patterns with balanced accesses will be optimized as normal,
and overprovisioning for unbalanced accesses with larger
relative sizes will be made up for by underprovisioning for
accesses with smaller sizes, mapping degree of concurrency
to relative access size.

d) Fine-Grained Model: The fine-grained model shares
similarities with the coarse-grained model, using la-
tency/bandwidth modeling at both the network and the storage
levels to generate an overall cost. However, whereas the
coarse-grained model makes some significant assumptions
about access characteristics, we need a more robust model
capable of capturing load imbalance. Our approach consists
of the following two steps, with the underlying steps of

4

Fig. 2: Access pattern over and under provisioning based on
model optimization on balanced accesses (for np = 2)

mapping each pattern in the pattern set to its respective client
process/node and set of contacted servers: (1) compute a
localized T ′e, T ′s and T ′rw for each server, and (2) calculate
the total time to receipt T ′t for each client node based on the
server calculations, with the maximum among them being the
total request time.

The computation of T ′s and T ′rw is relatively straightforward,
with T ′s being the number of noncontiguous blocks (measured
at a page granularity and taking into account readahead)
accessed times the storage access latency and T ′rw being the
total size of all requests to the server times the inverse of the
bandwidth. For T ′rw, we additionally adjust the performance to
account for readahead: if two consecutive requests are within
a readahead window (default 128 KB on Linux), then the disk
latency cost is avoided at the cost of consuming the bytes
separating the two requests.

The computation of T ′e and T ′t are more nuanced, since
we must consider both access latency and wait times for
request/response receipt. Because computing these wait times
exactly would require a known access schedule (as well as a
more architecturally accurate simulation), we instead compute
an approximate. For T ′e, we compute the network latency times
the number of incoming requests, with a penalization term
εe. For this, we take the node contacting the server with the
maximum number of outgoing requests, and we assume that
the request to the server occurs after all of its other requests.
Similarly for T ′t , the penalization term εt is computed by
assuming that the data requested by the given node is issued
after the server’s access schedule, for the contacted server with
the largest load.

Considering the full set of pattern accesses, the computa-
tional cost of evaluating the model is best described by using a
bipartite graph G = (M,N,E), where M represents the client
nodes, N represents the server nodes, and E the mapping of
client nodes to contacted server nodes. Generating the graph
requires time proportional to the number of contiguous blocks
encoded by the pattern set times the average number of servers
containing each block (at most the average vertex degree).
Evaluating the model, akin to traversing each vertex and its

corresponding neighbor set, is linear in |E|.
3) Replica Aging: An important consideration in the

RADAR methodology is how to represent the “age” of a
particular pattern (or set of patterns), with the implication that
the layout manager can prefer “younger” accesses to “older”
ones. While raw timestamps can easily be gathered by tracers,
real time as a measure of age is noisy and rife with pitfalls:
machines can go down, scientists can go on vacation or not
run applications over the weekend, and so forth. Hence, we
need a more robust measure of time.

To provide a robust measure of age relative to application
runs, RADAR defines age to be the amount of data read
from the dataset, normalized by the original dataset size. For
example, consider a simulation that writes X bytes of analysis
data. Afterwards, consider three read-only analysis application
runs (in order of execution): A, B, and C. Under our system,
patterns generated during application A’s run would have an
age of zero, patterns generated during B would have an age
of read(A)/X , and patterns generated during C would have
an age of (read(A) + read(B))/X . The metadata required to
maintain the ages, namely, the total amount of data read from
a dataset, can be stored in the file metadata of the RADAR
MPI file. While this method has some issues of its own, such
as a bias toward larger applications, it nevertheless sufficiently
captures the temporal context necessary to compare the relative
age of access patterns.

Given this formulation of age, we use a configurable decay
function, applying on the performance benefit of already
existing pattern sets. That is, given a benefit measure b and
the difference in age a between the current dataset state and
the age at which the pattern set was generated, the result
of the decay function γ(b, a) is used in place of b in the
replica selection process. Examples are the identity function
(γ(b, a) = b) and an exponential decay function such as half-
life (γ(b, a) = b2−a/X , the half-life in this case corresponds
to a reading of the full dataset).

B. EOF Data Management

1) Background – PVFS and EOF: Recently, the “End Of
Files” (EOF) [13] extension to PVFS [1], a high-performance
parallel filesystem, was created to expose the object storage
abstraction directly into the client space, allowing a richer
and more elegant mapping from application datasets to par-
allel storage systems. The object storage abstraction presents
uniquely identified (typically via a 64-bit ID), extendible linear
byte arrays as the elemental unit of storage; and most parallel
filesystems today distribute a file to a set of objects using a
distribution function, or striping. EOF cuts out the middleman
between file and object set and allows applications to forward
I/O operations directly to individual objects. For example,
dataset metadata can be forwarded to a single object, while the
data itself can be assigned distinct objects based on timesteps,
variables, and so forth.

2) RADAR Object Layout: Since EOF exposes object-based
storage and most components of our method operate on EOF
objects, we first discuss the object layout of the various
data/metadata in our system. More specific details can be

5

Fig. 3: EOF object layout for RADAR.

found in the system components’ respective sections. Figure 3
shows the various types of objects used in RADAR, all under a
single filename. The original dataset is stored as it would be on
any distributed filesystem, striped by some distribution across
multiple storage devices (objects, in our case). We include a
file metadata object since distribution in EOF is relegated to
the user. For RADAR, at file create time we allocate a number
of replica objects equal to the number of data objects. We do so
both for practical reasons (limits on per-file concurrency) and
for semantic reasons (currently, EOF cannot dynamically add
or remove objects from a file container). A replica metadata
object is used to store the mapping of replicas to object
locations. The set of generated access patterns processed by
RADAR is placed in a dedicated object for the results to persist
across multiple application runs.

Under this data management scheme, only two sets of data
exist outside the MPI/EOF file container used by RADAR: the
trace output and trace analysis results. For completeness, we
intend to integrate these intermediate datasets into the RADAR
format, though an option for external output is still important
as a tracer of the given granularity can potentially be useful
for general I/O performance analysis.

3) Replica Object Storage Strategy: A yet undiscussed
component of the RADAR process is how exactly to distribute
a replica. The problem arises from the fact that we are using
a shared set of replica objects to store multiple replicas with
heterogeneous distributions.

To both simplify design and minimize usage of space,
we exploit sparse-file capabilities in the local filesystems
employed by PVFS. Essentially, file blocks not written to are
not stored on the disk. The typical example is a file that is
created on open, and written to once at byte offset 1GB. The
file size reported by stat will simply be the last byte offset
written, while the actual storage used will be a single disk
block, along with metadata.

We divide all objects into allocation units we call object
domains (ODs), an example of which is shown in Figure 4.
An OD corresponds to the full set of replica objects, spanning
a per-object address space with fixed, large-granularity sizes.
Each replication is placed within a single OD, as shown in the
example. In order to avoid biasing replica placement toward
one object or another, replicas are assigned starting objects in
round-robin order. In the figure, for example, the replica shown
begins addressing at the leftmost object, while the next replica
created will begin addressing at the next leftmost object.

Fig. 4: Allocation units in RADAR (“Object Domains,” or
ODs), and replica layout in an OD.

C. I/O Tracer and Analyzer

1) Background – MPI-IO, ROMIO, and ADIO: In the MPI
standard, MPI-IO exposes a datatype-driven file decomposition
and operating method (“views”). That is, MPI datatypes are
defined much like they would for communication, except
the locations are defined with respect to a linear byte store
beginning at offset 0. This approach allows users to easily
map data structures in memory to those in file. For example,
reading and distributing multidimensional arrays can be simply
performed by use of the subarray type for each process.

ROMIO is the implementation of MPI-IO [14] used in
MPICH. ROMIO is implemented by mapping MPI-IO calls
to the ADIO interface [15], which exposes necessary func-
tionality in order to portably implement MPI-IO and allows
separation between MPI functionality and the underlying
filesystem calls (e.g., POSIX vs. native PVFS). Furthermore,
the design of ROMIO is such that filesystem-specific ADIO
targets can be dynamically specified through the filename
argument by prepending the implementation name followed by
a colon (e.g., “lustre:” and “pvfs2:”). This implementation is
enabled by loading tables of function pointers of the particular
filesystem’s implementation of ADIO based on either system
defaults or user requests.

2) ADIO Tracer: With respect to MPI, our layout opti-
mization techniques need to be aware of how MPI-IO calls
translate into actual I/O requests. For example, optimizations
such as two-phase or data sieving may be applied transparently
to the user. PMPI-based (or POSIX-based) tracers make this
difficult – neither have the sufficient information to distinguish
the difference between logical accesses and physical (a PMPI
tracer could conceivably perform this but would require re-
verse engineering of collective optimizations).

Hence, our tracer is designed as an ADIO implementation,
outputting the ADIO function calls as well as offset/length
pairs (either before or after applying collective optimization).
By doing this, we gain the flexibility of examining the I/O
request mapping induced by collective optimizations, while
freeing up the namespace for other PMPI-based methods, such

6

as Darshan [16], [17], or even related works that modify
data layouts (see Section IV). Within the MPICH source, we
enable this primarily through function pointer swapping and
auxiliary data structures added to the MPI file data structure.
Hints passed via the info object enable and set options for
the tracer,; and, if requested, open calls are synchronized to
allow for comparing times of operations in order to determine
concurrency of accesses.

To enable trace functionalities in a generic manner, we
simulate I/O calls from within the trace functions. While this
approach may incur some computational overhead compared
to directly embedding within specific ADIO implementations
(such as our own), we feel that the generic ROMIO-level
tracing can find use beyond this work, and we will explore it
further. Simulating I/O involves iterating over the file datatype,
generating offset/length pairs corresponding to file accesses.

Through simple configuration options (either MPI hints
passed though an info object or environment variables), we
can easily allow our simulated I/O to be applied immediately
upon reaching a collective I/O request (before collective
optimizations), only in the underlying serial I/O operations,
or both, taking advantage of the fact that a single collective
read/write is composed of an optional data exchange phase
followed by numerous serial read/writes.

One issue of concern for tracing and trace analysis is
determining whether operations on different processes are
concurrent, and possibly conflicting. To provide sufficient
information for this, we perform a barrier at file open time,
take the wall-clock time, and record only per-process time
deltas. This approach avoids performing clock synchronization
while giving us a reasonable indication of when operations
occur relative to one another, sufficient for this work.

The output of the tracer includes all ADIO calls, as well as
any offset/length pairs generated through reading or writing,
separated on a per-process basis. Currently, the trace is in
plain-text format, and we do not attempt compression; com-
pression methodologies such as inline pattern analysis and/or
off-the-shelf compressors (e.g., Zlib [18]) will be explored in
future work.

3) Trace Analyzer: The access patterns we are primarily
concerned with are contiguous access patterns (sequential
access of a large space with fixed or average-size request
sizes) and k-d strided access patterns (accesses that differ in
offset by a fixed value, or stride), both of which are common
in HPC I/O workloads. These accesses occur over a linear
address space of bytes but in practice typically correspond
to accesses along spatiotemporal domains or across multiple
variables (e.g., temperature, pressure in a climate simulation).

To gather the desired access patterns, we built a variant
of the IOSig trace analysis software [19], [20]. We similarly
use a template matching approach; but since our tracer works
at the ADIO level and additionally processes datatypes, the
processing of the traces has been rewritten. For more discus-
sion pertaining to access pattern categorization and discovery,
see [19], [20].

D. Replica-Aware ADIO Driver

The responsibilities of the RADAR ADIO driver are to
interface with EOF, maintain the semantically varying sets
of objects, and remap I/O requests into the replica space,
as appropriate. Aside from the remapping portion, the rest
of the processing is relatively simple, corresponding to load-
ing/distributing file and replica metadata, updating the bytes-
read component (for later use by the layout manager), and
driving some RADAR-specific operations, such as performing
the replication. The replication process itself is discussed in
the next section, while the request remapping is presented in
the section thereafter.

1) I/O Processing in the Presence of Replicas: Given a
set of replicated data layouts and a set of I/O requests (e.g.,
generated by a call to MPI_File_read), the most difficult
task for the RADAR I/O driver is to determine which, if any,
replica to read/write from. This problem can be separated into
two tasks: matching requests (offset/length pairs in file) to
replicas, then choosing which among the replicas to issue the
operation to, or none at all. Note that for this work we consider
only full matches, in which each contiguous block of a request
can be fully satisfied through reading from a single replica.
Partial replica mapping, resulting in reading partly from a
replica and partly from the original data, is a focus for future
work; our intuition is that splitting a single request into multi-
ple locations will result in increased latency costs, especially
in a multireader environment. Answering this concern fully,
however, requires more sophisticated performance modeling.

a) Replica Matching: The matching itself, given an
offset/length pair and a replica, is a simple matter; but the main
concern is coping with an increasing number of replications.
For n replicas, it is preferable not to have to do a naive linear
test of each one: for a large number of small, localized replicas,
this approach would clearly not scale. Furthermore, arbitrary
replicas over strided data (multiple dimensionalities, block
sizes) make using classical spatial-partitioning data structures
such as interval and R-trees unwieldy: the strided pattern
would need to be flattened into its elemental blocks, expanding
the tree size considerably. Replicas over contiguous data can
benefit from these structures, however.

As a compromise between flattening the strided pattern
representation and inducing a linear scan of the full replica
set, we build an inverted index [21], [22] over the file. As
the name suggests, an inverted index maps regions of file
to a list of replicas overlapping with the regions, rather than
mapping replicas to regions of file. Typically, inverted indexes
have been used to accelerate searches such as large-scale
document searching: search terms match to a set of containing
documents, but they have also proved useful in other scientific
data processing scenarios [7], [23]. First, we partition the
extent of the file into bins, where each bin represents a distinct
contiguous region of the file. Then, for each bin we list the
replicas for which locations encoded by the replica overlap
with the bin’s byte boundaries. Hence, queries (i.e., finding the
replicas that may satisfy a given offset/length pair) need only
look at and process the list of replicas in the bins that intersect
with the request. This representation is shown in Figure 5.

7

Fig. 5: Replica lookup using inverted index with bin extension

One problem with the inverted index approach is that
multiple bins may need to be examined, and their replica lists
intersected, in order to fully process queries. To avoid paying
this additional cost, we perform a simple modification of the
per-bin replica list to enable full querying using only a single
bin. Namely, for each entry in the list of per-bin replicas,
we record the bin extension, or the number of bins that the
overlapping contiguous block extends across (in increasing
byte order). For replicas over strided data, we record the
maximum extension over all blocks that overlap in the bin.
Then, given an offset/length pair to query on, we need only
look at the intersecting bin with the smallest byte boundary and
compare the bin extension of the request to the bin extension of
the replica. This modification is also represented in Figure 5,
with the numbers next to the identifiers representing the bin
extension.

To help mitigate a worst-case linear search time of the
inverted index (all replicas overlap with a particular bin) for
every request, we additionally keep a one-element history of
replica matches, with the assumption that it is more likely than
not that a replica will be read multiple times in sequence by
a client. For processing a request, the previous replica read is
matched against first, followed by a query against the inverted
index if the request does not match.

b) Replica Selection: Given an I/O request and a set
of replicas that can satisfy the request, a significant problem
is how to select which replica among the set to read from
that would result in the best performance. This choice is
nonexistent for writing, as all replicas must be updated:
as noted earlier, our primary use-case is accelerating read
performance for multiple analysis workloads; mixed read-
write workloads would not fare well under our methods.
Complicating the selection is that the available information
to make this decision is inherently local (requests occur on a
per-process or possibly per-MPI-aggregator level), consisting
of only the replica metadata.

Our solution to this problem is a simple heuristic we call

TABLE II: Performance Model Variables

System parameters
n 8 I/O servers
rs 128KB Local storage readahead
`net 32.9µs I/O request (network) latency
`sto 6.20ms I/O request (disk) latency
bnet 0.00112µs (867MB/s) Network per-byte transfer time
bsto 0.0212µs (44.98MB/s) Storage per-byte transfer time

smallest containing block (SCB). The idea behind SCB is that
of specialization: we consider replicas with a finer granularity
to be more specialized than those without and hence should
be prioritized in the replica selection process. This generally
means that replicas over strided data will more than likely
be selected over replicas over contiguous data, as each of the
strided data would be more sparse.

Other methods, such as performance models, could certainly
be “swapped” in to make the replica selection as well, as
the data layout is known to all. However, inherently local
performance models cannot have a big-picture view of the
system by which many I/O operations could be happening at
any given time. In this sense, we are relying on the RADAR
layout manager to make informed choices pertaining replicas,
and allowing the I/O mechanism itself to be simpler.

III. EXPERIMENTAL EVALUATION

All experiments were run on the Fusion cluster at Argonne
National Laboratory. Each node contains two quad-core Intel
Xeon processors at 2.53 GHz with 32 GB RAM, and nodes
are connected by InfiniBand QDR. Each node in Fusion
contains local hard-disk storage (250 GB IBM iDataPlex).
Additionally, our implementation of RADAR is based on
MPICH 3.0.2 and PVFS2 2.8.1, patched with EOF. Because
of issues with InfiniBand support for PVFS on Fusion, both
MPI communication and PVFS client-server communication
are performed via TCP over InfiniBand.

A. RADAR-Specific Setup
Since we use a modified version of PVFS and since each

node in Fusion has local storage, we assign a subset of the
nodes to serve as PVFS I/O servers and use the remaining as
I/O clients. We use eight I/O servers in all experiments. Hence,
each server initially contains 8 GB of data, striped using 1 MB
blocks.

Table II shows the performance model parameters we
gathered via microbenchmarks on Fusion. We use the BMI
pingpong utility in PVFS to gather network performance
through PVFS, where BMI (Buffered Message Interface) is
PVFS’s client/server communication interface. We use simple
read benchmarking via collocating a PVFS client with a
server to gather storage performance parameters. Note that
the microbenchmark result for disk bandwidth is much lower
than expected: the bandwidth when not going through PVFS
is 90 MB/s. We were unable to eliminate this discrepancy, but
we believe it to be a result of internal threading and buffering
overheads on the PVFS server.

For our inverted list acceleration structure for replica
lookup, we divided the file into 1,024 bins, each of which
covering a 64 MB extent of data.

8

Row Column Cube

Time
Z

XY

Fig. 6: Subvolume decompositions used in our evaluation
(contiguous in order Z, Y,X, time).

B. Benchmarks

We evaluate our layout optimization work within the context
of multidimensional array decomposition, a common set of
accesses seen in numerous analysis workloads. Specifically, we
define a three-dimensional volume of data over a fixed number
of contiguous timesteps and use MPI-IO to read selections
of the resulting dataset using four types of decompositions,
shown in Figure 6: row-wise (distribute volume by contigu-
ous plane), column-wise (distribute volume by noncontiguous
plane), block-wise (distribute volume by 3D subvolume) and
timestep-wise (distribute single subvolume from a range of
timesteps). The row-wise decomposition induces contiguous
patterns at each process, while the remaining decompositions
induce multidimensional strided patterns at each process, or
contiguous patterns at each aggregator process in the case of
collective I/O. Note that these access patterns are a super-
set of the access patterns exhibited by several well-known
benchmarks such as MPI-Tile-I/O [24], IOR [25], and PIO-
bench [26], all of which perform accesses with regular (single-
or multidimensional) strides.

For all experiments, we used a subvolume of (time, X, Y, Z)
dimensions (in row-major) 128×256×256×256, each element
of which is a 32-byte structure (e.g., four C doubles). The
total size of this dataset is 64 GB.

C. Decomposition Performance

We test each decomposition using the following MPI pro-
cess configurations with respect to performing I/O: inde-
pendent I/O with all processes on each node participating,
independent I/O with one process per node participating, and
collective I/O with one aggregator per node. The first is a
“naive” approach for parallel I/O, but one that is still used
because of its simplicity as well as for access patterns such
as log-structured, which structures data in the order written
(typically for checkpointing/restarting, but some libraries such
as ADIOS use log-structured with respect to each process’s
writes). The second is similar to the first but represents the
computation model of MPI+threads or MPI+accelerator, in
which a single process on each node performs communication
and I/O while intranode parallelism is used for computation.
The third is more common because it allows optimizations
such as two-phase I/O [4], although with the overhead of
communication and data movement between I/O participants.

Figures 7, 8, 9, and 10 show performance under the different
decompositions both before and after RADAR data replication.
For these runs, we synchronize prior to running the decompo-
sition and calculate bandwidth with respect to the maximum
elapsed time for each individual read. The following points
about these experiments are of interest.

1) All decompositions except the time-based decomposi-
tion decompose the same overall data size of 2 GB (four
timesteps of 512 MB volumes). Thus, with an increasing
number of clients, the average request size decreases and
the number of requests increases, leading to potentially
less efficient access when not using collective I/O.

2) The time-based decomposition defines a fixed-size sub-
volume for each client to read of size 64 MB. As the
number of clients increase, the per-client requests remain
the same, leading to an increase in the total request size.

3) The cube decomposition divides the volume into perfect
cubes (1, 8, 27, 81, 125, etc.) no less than the number
of clients, and clients are assigned multiple blocks to
read, resulting in varying request granularities based
on the number of clients. For instance, a four-client
run will divide the subvolume into eight blocks and
assign two blocks to each client. This can lead to both
load imbalance (processes can be oversubscribed blocks
compared with others) and varied access patterns due
to the possibility of multiple smaller blocks combining
into a single, large, contiguous block.

4) The difference between having a single client per node
and having up to eight is marginal, because of the much
larger performance potential of the network vs. storage.

Figure 7 shows the time-based decomposition. Here, I/O ag-
gregation was disabled by ROMIO because of the per-process
data being both non-interleaved and separated in storage; thus,
it is not shown. Without replication, the aggregate performance
is far below peak performance because of the noncontiguous
accesses. The use of data reorganization through replication
enables high performance across the spectrum, although ta-
pering off once I/O servers begin processing requests from
multiple clients.

Figure 8 shows the cube-based decomposition. This de-
composition results in block sizes of high variance with a
changing number of clients, which is a significant factor
in the overall performance. In the figure, the performance
implications can easily be seen between the four-client and
eight-client decomposition for the nonreplication case, and
the eight-client and 16-client decomposition for the RADAR
case. Regardless, the use of RADAR helps smooth out the
performance characteristics as a result of making the strided
accesses contiguous per client and over/under-provisioning of
replicas based on load. Additionally, for the small-client case,
we notice performance regressions between the no-replication
and replication case. We are currently unable to diagnose this
difference; the generated layout by RADAR is the same and
the I/O driver follows largely the same code path. Unfor-
tunately, collective I/O results were unable to be gathered;
we encountered crashes in the ROMIO implementation and/or
MPI datatype processor when attempting to run our workload.

9

 0

 50

 100

 150

 200

 250

 300

1
(4KB)

2
(4KB)

4
(4KB)

8
(4KB)

16
(4KB)

32
(4KB)

64
(4KB)

128
(4KB)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Time Decomposition (8 Clients per node)

No replication
With replication

Speedup

 0

 50

 100

 150

 200

 250

 300

 350

1
(4KB)

2
(4KB)

4
(4KB)

8
(4KB)

16
(4KB)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Time Decomposition (1 Client per Node)

No replication
With replication

Speedup

Fig. 7: Subvolume-over-time-decomposition results with dif-
ferent process configurations

 50

 100

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(256MB)

4
(1MB)

8
(4KB)

16
(3.8KB)

32
(4KB)

64
(2KB)

128
(2.3KB)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Cube Decomposition (8 Clients per node)

No replication
With replication

Speedup

 100

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(256MB)

4
(1MB)

8
(4KB)

16
(3.8KB)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Cube Decomposition (1 Client per Node)

No replication
With replication

Speedup

Fig. 8: Cube-decomposition results with different process
configurations

Figure 9 shows the column-based decomposition perfor-
mance. This represents a pathological case of I/O, as seen
by the average contiguous block sizes. Hence, performance
without collective optimizations or RADAR is far worse than
any of the other decompositions as the number of clients
increase. RADAR can greatly improve performance over the
original data layout but tapers off for increasing client counts.
The reason, aside from the increased number of requests per
server, may also be implementation-based: the RADAR MPI-
IO driver (along with the native PVFS2 driver) enter processed
datatype offset/length pairs into a queue, then use PVFS2 list
I/O [27] to send the list of requests to the I/O server in one go

(list I/O is most similar to the previously proposed POSIX I/O
extensions readx/writex [28], an interface for specifying
sets of noncontiguous file accesses to noncontiguous memory).
The block size is so small in this case that the queue becomes
full and issues correspondingly small requests. For fairness,
we use the same queue depth of 64 as used by the PVFS2
ADIO implementation (nonconfigurable). As for collective
I/O, RADAR exhibits the same regressions for small client
counts as seen in the other benchmarks, as well as regressions
for larger client counts. Performance for large numbers of
clients drops likely because of underestimating the network
capability when choosing the replica layout: see the following
paragraphs on model performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(4KB)

4
(2KB)

8
(1KB)

16
(512B)

32
(256B)

64
(128B)

128
(64B)

 0

 2

 4

 6

 8

 10

 12

 14

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Column Decomposition (8 Clients per Node)

No replication
With replication

Speedup

 0

 50

 100

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(4KB)

4
(2KB)

8
(1KB)

16
(512B)

 0

 1

 2

 3

 4

 5

 6

 7

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Column Decomposition (1 Client per Node)

No replication
With replication

Speedup

 50

 100

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(4KB)

4
(2KB)

8
(1KB)

16
(512B)

32
(256B)

64
(128B)

128
(64B)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Column Decomposition (1 Aggregator per Node)

No replication
With replication

Speedup

Fig. 9: Column-decomposition results with different process
configurations

Figure 10 shows the row-based decomposition performance,
representing the “best case” for parallel I/O without reorgani-
zation: large, contiguous, non-overlapping blocks. Here, since
the storage is the primary bottleneck and block sizes are very
large, RADAR has little benefit. We also show collective I/O
results, but in this case performance is either unchanged or
reduced because of the data movement overheads.

D. Model Verifications

We now look at how the performance modeling approach
compares with the performance shown in Section III-C. The
goal of the performance models is to show whether a specific

10

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

1
(512MB)

2
(256MB)

4
(128MB)

8
(64MB)

16
(32MB)

32
(16MB)

64
(8MB)

128
(4MB)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Row Decomposition (8 Clients per node)

No replication
With replication

Speedup

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(256MB)

4
(128MB)

8
(64MB)

16
(32MB)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Row Decomposition (1 Client per Node)

No replication
With replication

Speedup

 100

 150

 200

 250

 300

 350

 400

1
(512MB)

2
(256MB)

4
(128MB)

8
(64MB)

16
(32MB)

32
(16MB)

64
(8MB)

128
(4MB)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

S
p
e
e
d
u
p
 u

s
in

g
 R

e
p
lic

a
ti
o
n
s

I/O Clients
(Average Block Size per Client)

Row Decomposition (1 Aggregator per Node)

No replication
With replication

Speedup

Fig. 10: Row-decomposition results with different process
configurations

data layout can be improved by a modified data layout via
replication. Note that this goal is different from strict perfor-
mance accuracy: here, the primary measurement of interest is
the accuracy of relative performance between two layouts (one
with replicas, one without). Since the models do not perform
full system simulation, they are unsuitable for general-purpose
performance prediction.

Figures 11, 12, and 13 show the results, comparing the
model-derived performance of both the original layout and the
layout under replication with the median of the performance
shown in Section III-C. We additionally show the estimated
performance using the coarse-grained model corresponding
to the best layout. In general, the “best layout” found cor-
responded to the heuristic of spreading each pattern’s data
across as many servers as possible until overlap occurs, in
which case the distribution contracts accordingly. Also, as
discussed, results for time-based and cube-based collective
decomposition are not shown.

Overall, the model results capture some degree of perfor-
mance difference between the original layout and the candidate
replica set layout. Large, contiguous accesses are shown to
have little difference between both the original and replicated
layouts, implying that creating the replica set would result in
minimal, if any, gain. Alternatively, smaller, noncontiguous
accesses are correctly shown to have a large degree of benefit

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Column Decomposition (1 Aggregator per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Row Decomposition (1 Aggregator per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

Fig. 13: Model results against median empirical performance
(1 aggregator per node).

by the models.
A few nontrivial aspects of the test system and software

prevent the models from performing more accurately. First, the
model assumes that additional nodes and servers correspond
to additional network resources to draw upon. As seen in
the time-based decomposition (fixed access sizes per client),
this is not the case. Hence, more accurate, architecture-
specific network modeling is needed. Furthermore, the cost
models generally overestimate the performance: we believe
this overestimation to be the cause of our readahead sim-
ulation being optimistic in its ability to effectively cache
pages without interfering with normal system performance.
Our performance models also do not model the communication
phase of optimizations performed during collective I/O and
hence overestimate the overall performance.

E. Replica Inverted List Performance

To test the efficacy of our inverted list approach to replica
lookup, we measured the median entries per bin for all the
experiments shown in Section III-C. For these measurements,
bins having no entries were discarded from the computation:
we wish to measure effectiveness only for regions of file
accessed by the read benchmarks. Furthermore, we used an
internal threshold of ten for enabling the inverted list and,
hence, have no results for run configurations that did not
produce enough replications.

The results can be seen in Table III. For the individual
I/O case of the read benchmarks tested, each process’s read
workload reduces to a multidimensional strided access pattern
and hence produces exactly one replica, meaning that the
upper bound on the number of replicas is the core count.
The effectiveness of the method depends on the degree of
interleaving: fine-grained interleaving at the level of bytes, as
seen by the column decomposition, obtain no benefit, since
each replica touches all nonempty bins. In contrast, the other

11

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Time Decomposition (8 Clients per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Cube Decomposition (8 Clients per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Column Decomposition (8 Clients per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Row Decomposition (8 Clients per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

Fig. 11: Model results against median empirical performance (8 clients per node).

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Time Decomposition (1 Client per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 100

 150

 200

 250

 300

 350

 1 2 4 8 16

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Cube Decomposition (1 Client per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Column Decomposition (1 Client per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 1 2 4 8 16

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Row Decomposition (1 Client per Node)

No replication
With replication
Model (no rep.)
Model (w/rep.)

Coarse-grain
Model (w/rep.)

Fig. 12: Model results against median empirical performance (1 client per node).

decompositions see a larger degree of benefit, especially the
time-based decomposition, in which each process accesses a
distinct, nonoverlapping portion of file with a large separating
stride.

IV. RELATED WORK

We divide our discussion of related work into three parts:
replicaton in storage systems, replication outside storage sys-
tems, and detecting I/O access patterns.

A. Replication in Storage Systems

Data replication in storage systems is a well-researched
topic in many domains. Many parallel/distributed filesystems,
such as Hadoop File System (HDFS) [29] and Google File
System (GFS) [30], [31], built for task-centric, data-intensive

TABLE III: Median replica entries per nonempty inverted list
bin

Decomp. Config. Clients
16 32 64 128

Col
ind., 8/node 16.0 32.0 64.0 128.0
ind., 1/node 16.0 N/A N/A N/A
collective N/A 1.0 2.0 4.0

Row
ind., 8/node 2.0 4.0 8.0 16.0
ind., 1/node 2.0 N/A N/A N/A
collective N/A N/A 1.5 2.0

Cube ind., 8/node 6.0 8.0 16.0 36.0
ind., 1/node 6.0 N/A N/A N/A

Time ind., 8/node 1.0 1.0 1.0 1.0
ind., 1/node 1.0 N/A N/A N/A

workloads, as well as the Ceph filesystem [32], have data repli-
cation as a first-order feature. Furthermore, for current filesys-
tems used in HPC (e.g., PVFS [1], Lustre [2], PanFS [33])

12

where fault tolerance is typically provided through hardware
redundancy, data replication is beginning to be explored. For
example, Tantisiriroj et al. developed a shim layer for PVFS
for the purpose of executing Hadoop workloads, enabling
readahead buffering, making striping information available to
the Hadoop scheduler, and modifying PVFS’s data placement
policy to provide data replication [34]. In addition, local
filesystem replication has been explored in local filesystems
in a performance context by reorganizing data to minimize
rotational latency and maximize locality [35], [36].

Database systems also widely use replication, both as a fault
tolerance method similar to filesystems and as a performance
optimizer by replicating “chunks” of the database using query
history as a guide [37], [38]. Also, recent works in Mon-
etDB [39] have enabled dynamic replication of columns via a
method called database cracking [40], [41], which replicates
columns and reorganizes/indexes the replicated data as queries
are performed on it.

Other areas such as on-demand (e.g., video) services [42],
[43] and data grid systems [44], [45] have used replication to
maximize data availability and throughput.

B. I/O Middleware and User-Level Replication

Recently, the use of replication to ensure high availability or
improve performance have been explored outside the storage
system, that is, as either new high-level libraries or alongside
I/O middleware. Son et al. [46] show the possibility of han-
dling replication-based fault tolerance at the middleware level,
performing file block replication using the PMPI interface.
For MPI-based applications that use a one-to-one, process-
to-file mapping, Song et al. [8] created three replications
with different file-to-disk mappings: file-per-storage-node, full
striped files, and partially striped files. Yin et al. extended
Song’s model to handle one-dimensional and two-dimensional
strided accesses [47]. Zhang et al. [9] used replication through
PMPI to minimize disk head thrashing by playing back local
disk traces with DiskSim [11].

C. Capturing and Detecting I/O Access Patterns

Because gathering and systematically deriving system usage
information from an application or set of applications is a
highly important task, many solutions have been developed
that attack the problem from a multitude of directions. The
majority of these methods cover more areas than just I/O.
Numerous methods have been developed to work specifically
on MPI and PMPI (MPI’s profiling interface), such as the MPI
Parallel Environment (MPE) [48] for full MPI event tracing
and mpiP [49] for lightweight, statistical measures. Dynamic
instrumentation methods include automatic instrumentation at
compile time through source code analysis [50], as well as
runtime binary instrumentation through IOPin [51], based on
the Pin [52] framework. The ScalaTrace family of MPI tracers
focus on compressed trace generation [53], [54], [55], [56],
using histogram generation and a combination of intranode
and internode trace compression. Additionally, Darshan [16],
[17] focuses on center-wide usage patterns by combining local,
subsystem metrics (such as block device profiling with the

Sysstat [57] and fsstat [58] tools) and application-level metrics
(instrumented through POSIX and MPI-IO).

Once acceptable profiles or logs of application/system
performance are gathered, they can be mined for emergent
patterns. Statistical learning methods can be used in a general
sense to capture high-level patterns such as block-to-block
association [59], [60], [61], [35]. Recent methods specifically
for HPC have been developed, again typically through the
MPI/MPI-IO layers. For example, Byna et al. developed an
MPI-based I/O prefetching methodology based on detecting
multidimensional striding patterns of varying sizes [19]. Also,
He et al. investigated PLFS index compression using pat-
tern recognition under a checkpointing use-case [62]. The
IOSig [19] trace analyzer convert I/O operations to compact
and parameterized representations called I/O signatures using
a template matching approach, which iteratively attempts to
match specific patterns (e.g., regularly strided) to the sequence
of I/O accesses.

V. CONCLUSION

Effective data distribution in large-scale analysis systems
is an integral component of achieving high-performance I/O,
especially in the presence of complex, noncontiguous work-
loads such as the volume decompositions we have presented.
Through the tight coupling with a filesystem view of the data
as a set of distinct objects, we were able to create arbitrary
data layouts optimized for the access patterns induced on the
dataset, all in a single container. RADAR is a promising step in
the direction of automated specialization of data layouts based
on application-specific needs and access patterns, providing
both increased performance and an initial ability to reason
about the “worth” of layouts for the purpose of marshalling
usage of limited space for optimized data distributions. We
also have shown that optimization-aware tracing methodolo-
gies (i.e., MPI-IO two-phase aware) can be an effective tool for
adaptive layout optimization works, alleviating the optimiza-
tion layer from needing a deep understanding of intermediate
optimizations.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, under Contract No. DE-AC02-06CH11357.

REFERENCES

[1] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur, “PVFS: A
parallel file system for linux clusters,” in Proceedings of the 4th Annual
Linux Showcase and Conference, 2000, pp. 317–327.

[2] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in
Proceedings of the 2003 Linux Symposium, 2003.

[3] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083349

[4] R. Thakur and A. Choudhary, “An extended two-phase method for
accessing sections of out-of-core arrays,” Scientific Programming, vol. 5,
no. 4, pp. 301–317, 1996.

13

[5] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H.
Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham, R. Ross,
and N. F. Samatova, “ISABELA-QA: query-driven analytics with
ISABELA-compressed extreme-scale scientific data,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC. New York, NY,
USA: ACM, 2011, pp. 31:1–31:11. [Online]. Available: http:
//doi.acm.org/10.1145/2063384.2063425

[6] Z. Gong, D. A. B. II, X. Zou, Q. Liu, N. Podhorszki, S. Klasky, X. Ma,
and N. F. Samatova, “PARLO: PArallel Run-time Layout Optimization
for scientific data explorations with heterogeneous access patterns,” in
the 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid’13), Delft, The Netherlands, 2013.

[7] J. Jenkins, I. Arkatkar, S. Laksminarasimhan, D. A. Boyuka II, E. R.
Schendel, N. Shah, S. Ethier, C. Chang, J. Chen, H. Kolla, S. Klasky,
R. Ross, and N. F. Samatova, “ALACRITY: Analytics-driven lossless
data compression for rapid in-situ indexing, storing, and querying,”
Transactions on Large Scale Data and Knowledge Centered Systems
(TLDKS), vol. 8220, pp. 95–114, 2013.

[8] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A cost-intelligent application-
specific data layout scheme for parallel file systems,” in Proceedings
of the 20th International Symposium on High Performance Distributed
Computing, ser. HPDC ’11. New York, NY, USA: ACM, 2011, pp. 37–
48. [Online]. Available: http://doi.acm.org/10.1145/1996130.1996138

[9] X. Zhang and S. Jiang, “InterferenceRemoval: Removing interference of
disk access for mpi programs through data replication,” in Proceedings
of the 24th ACM International Conference on Supercomputing, ser.
ICS ’10. New York, NY, USA: ACM, 2010, pp. 223–232. [Online].
Available: http://doi.acm.org/10.1145/1810085.1810116

[10] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A segment-level
adaptive data layout scheme for improved load balance in parallel file
systems,” in Cluster, Cloud and Grid Computing (CCGrid), IEEE/ACM
International Symposium on, 2011, pp. 414–423.

[11] J. S. Bucy, J. Schindler, S. Schlosser, G. Ganger, and Contributors, “The
disksim simulation environment version 4.0 reference manual,” Carnegie
Mellon University Parallel Data Lab, Tech. Rep. CMU-PDL-08-101,
2008.

[12] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: A checkpoint filesystem
for parallel applications,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, ser. SC
’09. New York, NY, USA: ACM, 2009, pp. 21:1–21:12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654081

[13] D. Goodell, S. J. Kim, R. Latham, M. Kandemir, and R. Ross, “An
evolutionary path to object storage access,” in Proceedings of the Seventh
Workshop on Parallel Data Storage, ser. PDSW ’12, 2012.

[14] R. Thakur, R. Ross, E. Lust, and W. Gropp, “Users guide for ROMIO: A
high-performance, portable MPI-IO implementation,” Mathematics and
Computer Science Division, Argonne National Laboratory, Tech. Rep.
ANL/MCS-TM-234, 2004.

[15] R. Thakur, W. Gropp, and E. Lusk, “An abstract-device interface
for implementing portable parallel-I/O interfaces,” in Proceedings
of the 6th Symposium on the Frontiers of Massively Parallel
Computation, ser. FRONTIERS ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 180–187. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=795667.796725

[16] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale I/O workloads,” in IEEE International
Conference on Cluster Computing, ser. Cluster’10, 2009, pp. 1–10.

[17] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOC), vol. 7, no. 3, pp. 8:1–8:26, Oct. 2011. [Online].
Available: http://doi.acm.org/10.1145/2027066.2027068

[18] J.-l. Gailly and M. Adler, “Zlib general purpose compression library,”
http://zlib.net/, Jan. 2012.

[19] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
prefetching using MPI file caching and I/O signatures,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. IEEE, 2008, pp. 1–12.

[20] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting
application-specific parallel I/O optimization using IOSIG,” in Cluster,
Cloud and Grid Computing (CCGrid), 2012, pp. 196–203.

[21] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compress-
ing and Indexing Documents and Images, 2nd ed. Morgan Kaufmann,
1999.

[22] J. Zobel and A. Moffat, “Inverted files for text search engines,”
ACM Computing Surveys, vol. 38, no. 2, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1132956.1132959

[23] S. Lakshminarasimhan, D. A. Boyuka, S. V. Pendse, X. Zou,
J. Jenkins, V. Vishwanath, M. E. Papka, and N. F. Samatova, “Scalable
in situ scientific data encoding for analytical query processing,”
in Proceedings of the 22nd International Symposium on High-
performance Parallel and Distributed Computing, ser. HPDC ’13.
New York, NY, USA: ACM, 2013, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2462902.2465527

[24] “Parallel I/O benchmarking consortium,” http://www.mcs.anl.gov/
research/projects/pio-benchmark/.

[25] “Interleaved or random (IOR) parallel filesystem I/O benchmark.”
[Online]. Available: https://github.com/chaos/ior

[26] F. Shorter, “Design and analysis of a performance evaluation standard
for parallel file systems,” Master’s thesis, Clemson University, 2003.

[27] A. Ching, A. Choudhary, W.-K. Liao, R. Ross, and W. Gropp, “Non-
cotiguous I/O through PVFS,” in IEEE International Conference on
Cluster Computing, 2002, pp. 405–414.

[28] M. Vilayannur, S. Lang, R. Ross, R. Klundt, and L. Ward, “Extending
the POSIX I/O interface: A parallel file system perspective,” Argonne
National Laboratory, Tech. Rep. ANL/MCS-TM-302, 2008.

[29] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies, ser. MSST
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.
[Online]. Available: http://dx.doi.org/10.1109/MSST.2010.5496972

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp.
29–43. [Online]. Available: http://doi.acm.org/10.1145/945445.945450

[31] M. K. McKusick and S. Quinlan, “GFS: Evolution on fast-forward,”
Queue, vol. 7, no. 7, pp. 10:10–10:20, Aug. 2009. [Online]. Available:
\url{http://doi.acm.org/10.1145/1594204.1594206}

[32] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed file
system,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, ser. OSDI ’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 307–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298485

[33] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the Panasas
parallel file system,” in Proceedings of the 6th USENIX Conference
on File and Storage Technologies, ser. FAST’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 2:1–2:17. [Online]. Available:
\url{http://dl.acm.org/citation.cfm?id=1364813.1364815}

[34] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B.
Ross, “On the duality of data-intensive file system design: Reconciling
HDFS and PVFS,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC’11. New York, NY, USA: ACM, 2011, pp. 67:1–67:12. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063474

[35] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis, “BORG: Block-reORGanization for
self-optimizing storage systems,” in Proccedings of the 7th Conference
on File and Storage Technologies, ser. FAST ’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 183–196. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1525908.1525922

[36] H. Huang, W. Hung, and K. G. Shin, “Fs2: Dynamic data
replication in free disk space for improving disk performance
and energy consumption,” in Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, ser. SOSP ’05. New
York, NY, USA: ACM, 2005, pp. 263–276. [Online]. Available:
http://doi.acm.org/10.1145/1095810.1095836

[37] S. Narayanan, U. Catalyurek, T. Kurc, V. S. Kumar, and J. Saltz, “A
runtime framework for partial replication and its application for on-
demand data exploration,” in High Performance Computing Symposium,
SCS Spring Simulation Multiconference, ser. HPC ’05, 2005.

[38] L. Weng, U. Catalyurek, T. Kurc, G. Agrawal, and J. Saltz, “Servicing
range queries on multidimensional datasets with partial replicas,” in
IEEE International Symposium on Cluster Computing and the Grid,
ser. CCGrid ’05, vol. 2. IEEE, 2005, pp. 726–733.

[39] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the
memory wall in MonetDB,” Communications of the ACM, vol. 51,
pp. 77–85, December 2008. [Online]. Available: http://doi.acm.org/10.
1145/1409360.1409380

14

[40] S. Idreos, M. Kersten, and S. Manegold, “Database cracking,” in
Proceedings of the 3rd International Conference on Innovative Data
Systems Research, ser. CIDR’07, 2007.

[41] S. Idreos, “Database cracking: Towards auto-tuning database kernels,”
Ph.D. dissertation, University of Amsterdam, 2010.

[42] T.-S. Chua, J. Li, B.-C. Ooi, and K.-L. Tan, “Disk striping strategies
for large video-on-demand servers,” in Proceedings of the Fourth
ACM International Conference on Multimedia, ser. MULTIMEDIA ’96.
New York, NY, USA: ACM, 1996, pp. 297–306. [Online]. Available:
http://doi.acm.org/10.1145/244130.244231

[43] J. H. Korst, “Random duplicated assignment: An alternative to strip-
ing in video servers,” in Proceedings of the Fifth ACM International
Conference on Multimedia, ser. MULTIMEDIA ’97. ACM, 1997, pp.
219–226.

[44] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, “Data
replication strategies in grid environments,” in Proceedings of the Fifth
International Conference on Algorithms and Architectures for Parallel
Processing, ser. ICA3PP’02. IEEE, 2002, pp. 378–383.

[45] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B. Tier-
ney, “File and object replication in data grids,” Cluster Computing,
vol. 5, no. 3, pp. 305–314, 2002.

[46] S. W. Son, R. Latham, R. Ross, and R. Thakur, “Reliable MPI-IO
through layout-aware replication,” in Proceedings of the 7th IEEE
International Workshop on Storage Network Architecture and Parallel
I/O, ser. SNAPI ’11, 2011.

[47] Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-direct and layout-
aware replication scheme for parallel i/o systems,” in IEEE International
Symposium on Parallel and Distributed Computing, ser. IPDPS’13,
2013, pp. 345–356.

[48] A. Chan, W. Gropp, and E. Lusk, “User’s guide for MPE: Extensions for
MPI programs,” Argonne National Laboratory, Tech. Rep. ANL/MCS-
TM-ANL-98/xx, 2003.

[49] J. S. Vetter and M. O. McCracken, “Statistical scalability analysis of
communication operations in distributed applications,” in Proceedings
of the Eighth ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming, ser. PPoPP ’01. New York,
NY, USA: ACM, 2001, pp. 123–132. [Online]. Available: \url{http:
//doi.acm.org/10.1145/379539.379590}

[50] S. J. Kim, Y. Zhang, S. W. Son, R. Prabhakar, M. Kandemir, C. Patrick,
W.-k. Liao, and A. Choudhary, “Automated tracing of I/O stack,” in
Proceedings of the 17th European MPI Users Group Conference on
Recent Advances in the Message Passing Interface, ser. EuroMPI’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 72–81. [Online].
Available: \url{http://dl.acm.org/citation.cfm?id=1894122.1894132}

[51] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and
A. Choudhary, “IOPin: Runtime profiling of parallel I/O in HPC
systems,” in 7th Parallel Data Storage Workshop, ser. PDSW’12, 2012.

[52] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN conference on Programming
Language Design and Implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190–200. [Online]. Available: \url{http:
//doi.acm.org/10.1145/1065010.1065034}

[53] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski,
“ScalaTrace: Scalable compression and replay of communication traces
for high-performance computing,” Journal of Parallel and Distributed
Computing, vol. 69, no. 8, pp. 696–710, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2008.09.001

[54] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz, “Preserving
time in large-scale communication traces,” in Proceedings of the 22nd
Annual International Conference on Supercomputing, ser. ICS ’08.
New York, NY, USA: ACM, 2008, pp. 46–55. [Online]. Available:
\url{http://doi.acm.org/10.1145/1375527.1375537}

[55] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable
I/O tracing and analysis,” in Proceedings of the 4th Annual
Workshop on Petascale Data Storage, ser. PDSW ’09. New
York, NY, USA: ACM, 2009, pp. 26–31. [Online]. Available:
http://doi.acm.org/10.1145/1713072.1713080

[56] X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth,
“Probabilistic communication and I/O tracing with deterministic replay
at scale,” in Proceedings of the 2011 International Conference
on Parallel Processing, ser. ICPP ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 196–205. [Online]. Available:
http://dx.doi.org/10.1109/ICPP.2011.50

[57] S. Godard, “Sysstat utilities home page,”
http://sebastien.godard.pagesperso-orange.fr/index.html.

[58] S. Dayal, “Characterizing HEC storage systems at rest,” Carnegie Mellon
University Parallel Data Laboratory, Tech. Rep. CMU-PDL-09-109.

[59] T. M. Madhyastha and D. A. Reed, “Learning to classify parallel
input/output access patterns,” IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 8, pp. 802–813, Aug. 2002. [Online].
Available: \url{http://dx.doi.org/10.1109/TPDS.2002.1028437}

[60] J. Oly and D. A. Reed, “Markov model prediction of I/O
requests for scientific applications,” in Proceedings of the 16th
International Conference on Supercomputing, ser. ICS ’02. New
York, NY, USA: ACM, 2002, pp. 147–155. [Online]. Available:
http://doi.acm.org/10.1145/514191.514214

[61] N. Tran and D. A. Reed, “Automatic ARIMA time series modeling
for adaptive I/O prefetching,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 4, pp. 362–377, Apr. 2004. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2004.1271185

[62] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H.
Sun, “Discovering structure in unstructured I/O,” in Proceedings of the
Seventh Workshop on Parallel Data Storage, ser. PDSW ’12, 2012.

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the
Government.

