
Nonmne manuscript No.
(will be inserted by the editor)

Characterizing and Modeling Cloud
Applications/ Jobs on a Google Data Center

Sheng Di . Derrick Kondo
Franck Cappello

Received: date I Accepted: date

Abstract In this paper, we char,acterize and model Google applications and
jobs, based on a one-month Google trace from a large-scale Google data center.
We address four contributions: (1) we compute the valuable statistics about
task events and resource utilization for Google applications, based on various
types of resources and execution types; (2) we analyze the classification of
applications via a K-means clustering algorithm with optimized number of sets,
based on task events and resource usage; (3) we study the correlation of Google
application properties and running features (e.g., job priority and scheduling
class); (4) we finally build a model that can simulate Google jobs/tasks and
dynamic events, in accordance with Google trace. Experiments show that the
tasks simulated based on our model exhibit fairly analogous features with
those in Google trace. 95+% of tasks' simulation errors are less than 20%,
confirming a high accuracy of our simulation model.

Keywords Google data center, Cloud task, Characterization and Analysis,
large-scale system trace

This work was supported by ANR project Clouds@home (ANR-09-JCJC-0056-01), also
in part by the Advanced Scientific Computing Research Program, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH1l357, and by the INRIA-Illinois
Joint Laboratory for Petascale Computing.

S. Di
INRIA (France)
Tel.: +1-919-308-8050
E-mail: sheng.di@inria.fr

D. Kondo
INRIA (France)
E-mail: derrick.kondo@inria.fr

F. Cappello
Argonne National Laboratory (USA)
E-mail: cappello@mcs.anl.gov

2 Sheng Di et al.

1 Introduction

Cloud computing [1,2] has emerged as a compelling paradigm for the easy-to-
use and fine-grained resource consumption on the Internet. Workload charac-
terization and modeling for cloud applications is essential for optimizing the
system-wide resource allocation in cloud systems.

Google is a well-known cloud platform, on which there are millions of re-
quests to process across hundreds of thousands of data centers everyday. In
November of 2011, Google [3,4] released its one-month trace for researchers to
study. The trace involves over 650k jobs across over 12k heterogeneous hosts
from a data center. There are totally 40k applications, which are repeatedly
called/used by thousands of users in the form of jobs, and each job is ex-
ecuted in the form of one or more tasks. Over 144 million task events are
recorded. For confidentiality, Google intentionally hides some information like
application names and absolute values of resource usage, yet hashed applica-
tion names and released the relative values of resource usage, which will not
impact the statistical analysis and simulation of Google trace.

In our previous work [5], we characterized the hostload for each host, by
aggregating its running tasks' resource usage on different resource types over
time. We also present some new insights about the differences of hostload
between Cloud and Grid. We found Google host load exhibits higher variance
and larger noise than other Grid/HPC systems, because of the much shorter
Google job length and higher job submission frequencies.

In this paper, we focus on the characterization of Google application fea-
tures statistically. We will mainly answer four such questions:

- What are the particular statistics about workloads, task events and re-
source utilization, with respect to Google applications?

- Can we classify Google applications based on the way their corresponding
jobs are executed? For example, can we find any correlations between task
events and applications' execution types (a.k.a., application types) like
whether the applications can run batch-tasks or not?
From the perspective of applications, are there strong or weak correla-
tions between task events and running features like job priority and task
scheduling cl ass!?
How to build a simulation model based on the above characterization work,
to emulate Google jobs/tasks and events? What is the accuracy of the
simulation as compared to the original Google trace?

Our work will particularly benefit the further research on cloud resource
allocation in the long run. As a matter of fact, lllany contemporary cloud
resource allocation strategies already tried to optimize the performance, by
taking advantage of pre-knowledge about application workload or features.
For example, Meng et a1. [6] endeavored to optimize the resource allocation

1 scheduling class (0-3), according to [3), roughly represents how latency-sensitive a
job/task is, with 3 representing a more latency-sensitive task and 0 representing a non-
production task

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 3

by analyzing the compatibility of running applications encapsulated in virtual
machines (VM) based on their resource usage patterns. Inter-cloud [7] and
Stillwell's virtual resource allocation strategy [8], both assume application ser-
vice workload and behaviors are predictable in their cloud service provisioning
model. Other simulation research (such as [9,10D on cloud computing always
emulate the cloud application workload or events before its further investiga-
tion. Obviously, comprehensive characterization of cloud application features
is a prerequisite for the further improvement of cloud system performance.

To the best of our knowledge, our work is the first attempt to compre-
hensively study the statistical features of cloud applications based on a real
production trace. Although Google just released one-month period of trace
data involved with 12k hosts, one can emulate Google job submissions and
related task events based on our simulation model, for longer test period like
one year and a larger system scale with more hosts.

The remainder of the paper is organized as follows. In Section 2, we briefly
introduce the Google trace and show the overview of Google's job scheduling
system, which serves as a fundamental background of the following analysis.
In Section 3, we present some key findings about Google application proper-
ties, such as the distribution of task events based on application types and
classification of applications with optimized K-means clustering algorithm. In
Section 4, we explore the correlation between application properties and run-
ning features, including job priority and task scheduling class. In Section 5,
we discuss how to simulate jobs based on the characterization of Google ap-
plication features, and also evaluate the validity of our simulation model by
comparing to the original trace. We comprehensively discuss the related works
and highlight the key contributions of our work in Section 6. We conclude the
paper with a vision of the future work in Section 7.

2 System Overview

A Google data center consists of thousands of hosts that are connected via a
high-speed intra-network. One or more schedulers receive and process a large
number of user requests (a.k.a., jobs), each of which is comprised of one or
more tasks. For instance, a map-reduce [11] program will be treated as a job
with multiple reducer tasks and mapper tasks. Different jobs are assigned
with different scheduling priorities, and there are 12 priorities in total. Each
task (actually represented as a Linux program possibly consisting of multiple
processes) is always generated with a set of user-customized requirements (such
as the minimum CPU rate and memory size).

According to Google's usage trace format [4], each task can only exist in
one of the following four states, unsubmitted, pending, running and dead. The
detailed task scheduling mechanism follows a state-transition graph, which can
be found in [4]. The task states transit based on various task events, and there
are totally 9 different event types, which are represented as 0 (task submission),

4 Sheng Di et al.

1 (schedule), 2 (evict), 3 (fail), 4 (finish), 5 (kill), 6 (lost), 7 (update_pending),
and 8 (updateJunning) respectively.

Based on Google's task processing model [4], Google traced over 650k jobs
that were scheduled across over 12000 heterogeneous machines within one
month. More than six metrics are collected during the one month of task-
event monitoring, such as CPU usage, assigned memory, observed real memory
usage, page-cache memory usage, disk I/O time, and disk space.

Each job corresponds to a specific application, which is named as "logic
job name" in Google trace. Berkeley's report [12] simply reveals some features
of Google applications. For example, there are totally about 40k different ap-
plications in the trace. The number of jobs per application loosely follows a
Zipf-like distribution, and a few applications are shared among an extremely
large number of jobs (e.g., up to 22k). In this paper, we intensively character-
ize the Google application features in order to support a precise simulation of
Google cloud environment.

3 Characterization of Google Application Properties

In this section, we mainly analyze the statistical properties of Google appli-
cations. For example, the distribution of the number of jobs/events per ap-
plication, the distribution of task events based on various application types,
the optimized clustering for applications based on task events and resource
utilization.

3.1 Mass-count Disparity of Task Events and Resource Usage

We first present the distribution of the number of jobs/events per application,
through mass-count disparity evaluation. Mass-count [13] is a very important
metric used to extract the key features (such as heavy tails) for specific distri-
butions. It is made up of the "count" distribution and the "mass" distribution.
The "count" distribution simply refers to the cumulative distribution function
(CDF) as it counts how many items are smaller than certain size. The "mass"
distribution weights each item, specifying the probability that a unit of mass
belongs to an item. Specifically, their values are calculated based on Formula
(1) and Formula (2), where f(t) refers to the probability density function.

Fc(x) = Pr(X < x)

F. (x) _ -':Clo",,"x t_·_f-.,.(t.,.-) d_t
m - loCO t . f(t) dt

(1)

(2)

By comparing the two curves (mass and count), we can determine whether
the distribution follows Pareto principle [14], heavy tails, or other statistical
features. In the analysis, joint ratio (a kind of Gini coefficient [13]) is a critical
measure index, defined as X/Y, meaning that X% of the items account for
Y% of the mass and Y% of the items account for X% of the mass. A typical

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 5

Pareto principle means that X and Yare very small and very big respectively,
for example, X=10% and Y=90%. The mm-distance (abbreviated as llundis.)
shown in the figure is defined as the horizontal distance of the two points that
are right in the middle of the CDF of the Count curve and Mass curve. Longer
distance means a stronger Pareto principle (a more non-uniform distribution
about the mass).

Figure 1 (a) and (b) show the mass-count disparity, i.e., the mass per
application versus the count per application.

0.8 f(""
u.. 0.6
o
u 0.4

count --
mass - -,-

0.2 r-------
V101n. rallo= 13.3%/86.9%

o 50 100 150 200
of Jobs por Applicalion

(a) # of Jobs per Application

08
counl--
mass - ._-

0.6 __

U 0.4

0 .2

0 -"
o 2000 4000 6000 8000

of Even.s per Applicallon

(b) # of Events per Application

Fig. 1 Mass-Count Disparity of the Number of Jobs/Events per Application

Statistics indicate that 60% of applications each just have only one job and
over 80% of applications have no more than 82 task events. That is, the number
of jobs/ events per application for a large majority of applications is very small.
Through the two figures, we can also clearly observe a typical Pareto principle.
Specifically, 86.7% of jobs belong to only 13.3% of applications and 13.3% of
jobs belong to 86.7% of applications. Similarly, Figure 1 (b) shows that only
5.6% of task events belong to 94.4% of applications and 94.4% of task events
belong to only 5.6% applications. That is, the distribution of the number of
jobs/events is extremely non-uniform and a large majority of applications only
account for very few jobs/events.

We also study the distribution of the CPU workload (or CPU usage) and
memory workload (or memory usage) per application, through mass-count
disparity evaluation. The CPU workload is evaluated by core seconds. For
example, if one job has two tasks executed in parallel, each of which is using
2 cores all the time and their lengths are 100 and 200 seconds respectively,
then this job's CPU workload is equal to 100x2+200x2=600. A job's total
memory workload is evaluated by memory size seconds. For example, if one
job has two tasks, each of which consumes 0.05 memory size2 on average, and
their execution lengths are both 100 seconds, then, the job's total memory
workload is equal to O.05x100x2=1O. One application's workload on CPU or

2 Google trace does not expose the exact memory size used by jobs but their scaled
values compared to the maximum memory capacity of each node . For example, suppose the
maximum memory capacity on a host is 64GB, 0.05 memory size means 0.05x64=3.2GB

Sheng Di et aJ.

memory is computed as the average value of all of its job workloads in the
trace.

In comparison to task events, we just take into account the resource usage
of 18k valid applications, which are completed successfully as recorded in the
trace. Via Figure 2, we find that both CPU workload and memory workload
per application follow a considerably typical Pareto principle. Specifically, only
1.5% (1.8%) of applications contribute to up to 98.5% (98.2%) of CPU (mem-
ory) usage on average, and 98.5% (1.8%) of applications consume extremely
few CPU (memory) usage, i.e., only 1.5% (1.8%). In other words, the resource
utilization per application in a simulated cloud environment is supposed to
conform to such a Pareto principle, otherwise, the emulated benchmark is
skewed against the reality more or less.

0.8

u. 0.6
o
() 0.4

0.2

COUni
mass - ---

ralio",1.5OU98.5%

o 500 1000 1500 2000
Mean CPU Usage per Application

(a) Mean CPU Usage per App

O.B

u. 0.6
o
() 0.4

0.2

counl
mass

rallo- I .B%/98.2'Y.

o 500 1000 1500 2000
Mean MEM Usage per Application

(b) Mean MEM Usage per App

Fig. 2 Mass-Count Disparity of Resource Usage per Application

3.2 Task Event Distribution based on Application Types

Based on the job's intrinsic structure (Le., how many tasks per job and how to
connect them), we split the 40k applications into four execution types (or appli-
cation types), single-task application, sequential-task application, batch-task
application and mix-mode application. Single-task application means that the
corresponding job just has only one task. Sequential-task application indicates
that for this application, the tasks in each corresponding job are generated
(or invoked, submitted) in series. That is, the workload of a whole job will
be completed in form of many small tasks connected one by one, and no two
tasks' execution periods overlap each other. Such an application type often
implies frequent fail/evictjkilljlost events3 , which is consistent with Berkeley

3 According to Google trace [4], there are different factors for task interruptions: (1)
failure event: a task or job was descheduled (or, in rare cases, ceased to be eligible for
scheduling while it was pending) due to a task failure; (2) evict event: a task or job was
descheduled because of a higher priority task or job, because the scheduler overcommitted
and the actual demand exceeded the machine capacity, because the machine on which it was
running became unusable, or because a disk holding the task's data was lost; (3) kill event:

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 7

report [12] (many Google jobs suffer from the crash-loop phenomenon, wherein
the tasks submitted are repeatedly failed, evicted, killed or lost). For batch-task
applications, each job contains at least two tasks executed in an embarrass-
ingly parallel pattern. Mix-mode application indicates a mixed type of the two
application types, sequential-tasks and batch-tasks.

Table 1 shows the distribution of the number of applications and various
task events per application type.

Table 1 Distribution of Events w.r.t. Application Types

Sing.-Task Seq.-Task Batch-Task Mix-Mode
of Applications 2551 :1 1015 9910 3286

- "" of Evict Events 41004 54 (;:lU2 1645534 :l63151:l
41 of Fail Events 165551 69565 11242109 2:l52544

0 F Inish Events 0 1654416 16194673
of kin Events 151932 26U439 EI34749 :;UU2560

of Lost Events 1U 9U4 1138 (j599

It is observed that most of applications (over 64%) each just have single
task, and 25% applications correspond to batch tasks. Only 2.6% and 8.3% of
applications raise sequential tasks and mix-mode tasks respectively. Through
this table, not only can we realize that finish-events and fail-events account
for the major portion in all of task events, we can also compare the number
of task events based on different application types. For example, we find that
evict events rarely appear for single-task jobs, but usually happen in either
a batch-task application or a mix-mode application. Only 0.5% and 1.2% of
fail events belong to single-task applications and sequential-task applications
respectively, while about 81.3% belong to batch-task applications. Also, both
the kill events and lost events mainly belong to batch-task application and
mix-mode application. In addition, the finish events mainly exhibit with mix-
mode applications. This means that mix-mode application type works much
more effectively than other types. In contrast, there are no sequential-task
applications finished normally based on the Google trace. This further confirms
a typical crash-loop phenomenon, as reported by C. Reiss et al. [12].

3.3 Optimized Clustering of Google Applications

We further cluster applications based on the statistics of task events and re-
source utilization. We believe such a work revealed some crucial features about
Google applications hidden in the trace, which will definitely benefit the in-
depth understanding and simulation of a large-scale cloud benchmark in the
long run.

The major methodology is K-means clustering algorithm [15], since it can
effectively partition data into Voronoi cells [16]. Its outcome contains multiple

a task or job was canceled or another job or task on which this job was dependent died; (4)
lost event: a task or job was presumably termi nated with a missing record.

8 Sheng Di et al.

sets each containing a unique center and the Euclidean distances of the samples
in a set to the set's center must be smaller than to any other sets' centers. Given
various numbers of sets, the clustering may be largely different, hence, we
also explored the optilllized number (i.e., optimized K) of sets under different
classification degrees.

The objective of our K-means clustering algorithm is to cluster the appli-
cations into several sets, such that the within-cluster sum of squares (WCSS)
could be minimized under a specific degree of classification. We define merge
ratio (MR) to be the ratio of distance(Q,ti) to the average distance among all
centers (denoted by d), where distance(Q,,8) denotes the distance between two
set centers Q and ,8. We also define a threshold, called Merge Ratio Threshold
(denoted by)..), to determine the degree of classification. Obviously,)"d will
serve as the threshold in merging two set centers: if the two set centers are
closer than)"d, the corresponding sets should be merged. In general,).. is in
the range (0,1]. We denote by KM(k,S,<p) the converged solution to the clus-
tering on the sample set S via K-means clustering algorithm, and denote the
set of corresponding centers as CS(k,S,<p), where <p indicates the initial set of
k centers.

Algorithm 1 K-OPTIMIZATION ALGORITHM
Input: N sample data, max # of sets (denoted M), .x (Merge Ratio Threshold);
Output: the number of sets, converged centers, and classified sets of data
begin
1: GS = the set of M Centers initialized by Forgy method [26].
2: repeat
3: Compute KM(ICSI,S,CS);I*ICSI denotes # of elements in CS*/
4: Compute average distance for CS, denoted as d;
5: if (3 aECS,{3ECS, distance(a,f3)<.x.d) then
6: GS=MergeCenters(GS,.x.(i);j*Merge nearby centers in GS* /
7: else
8: break;
9: end if

10: until (I GSI=2);
11: Output IGSI, CS, and KM(iGSI,S,GS);
end

Algorithm 1 aims to optimize the clustering for Google applications, with
optimized number of sets. In our experiments, the initial maximum number of
sets (i.e., M) is set to 100, and we use Forgy method to randomly find the op-
timal solution to the initial case. After that, two relatively nearby centers will
be merged by using their middle point (line 6) and a new K-means clustering
will be performed based on the new set of centers. The two steps will repeat
until each pair of centers are farther than)...(1, where d refers to the average
distance among the centers of the sets.

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 9

3.3.1 Task Event based Application Clustering

Figure 3 shows the optimized clustering of Google applications based on task
event trace, under different degrees of classification. We zoom in the first
three sub-figures for clear observation. Based on the 5 types of task events
(as shown in Table 1), there are totally 5 dimensions per application. The
overall clustering is performed based on the normalized probability of each
task event type per application. For example, if the numbers of the five events
are 100,200,300,400,500 respectively for one application, the coordinate of this
application will be (fg, ft, ft, It, -&). The degree of classification is determined
by Merge Ratio Threshold (denoted as A), which is defined in Appendix. The
lower A is, the finer granularity of the classification is. For example, when A
is set to 0.1 and 0.5 respectively, all applications can be grouped into 71 sets
and 11 sets respectively.

10 20 30 40 50 60 70
The Sets Classifted

(a) 71 sets ().=0.1)

:g 111COO
,g 1 CiOtlO

140[10

ltlOOO
't5 !:I OOO t 0000

"0"0
The SelsClassified

(d) 15 sets ().=0.4)

The Sels Classined

(g) 4 sets ().=0.7)

0 " oo 0 '1'500
CI 1;uG

'00 ..J 0 '" 0 300

Hm,
5'400
11 ':310
'l1tlCOO

600
000
"D[]
zoo
0V'O , , 01=2'3Il31<O
Q lht, Sill" ..kJ
0 10 20 30 40

The Sets Classified

(b) 49 sets ().=0.2)

50

:g 18000

i
fr12000

10000
6000

II 6000
§ 4000
z 2000 oL-_

2 4 6 8
The SelsClasslfied

(e) 11 sets ().=0.5)
__ - __

1,.000
; 10000

5 5CtKl z

The SelSClassified

(h) 4 sets ().=0.8)

""""'"Ot;c,======;-'-:l g ,,,,,,,,,1209'
'9 ,.000 2lloo
a. 15rJIl

1000
"0 1:1000

....] "goo Q
z

o Oi!-'-'-0 - ,-, -2-0 ""218, 111301llL)3'
The Sets Classilied

(c) 33 sets ().=0.3)

(f) 6 sets ().=0.6)

i,sooa
]locoa
5 woe z

o I
The ep.Ufjild'

(i) 2 sets ().=0.9)

Fig. 3 Distribution of Applications in The Optimized Clustering based on Task Events

From Figure 3 (a) - (i), we observe that the number of applications per
set does not follow a uniform or normal distribution but a Pareto distribution
with a long tail. That is, most of clustering sets each just contain dozens of
or hundreds of applications, while rninority of sets each contains thousands
of applications or rnore. For example, Figure 3 (d) shows that the largest set

10 Sheng Di et aL

contains over 18k applications while the smallest set just contains 13 applica-
tions.

As shown by the above figure, the applications can be classified based on the
distribution of task/job event types, based on which we can deeply understand
and accurately simulate the task/job events with respect to application types.
Table 2 shows the centers of 4-set clustering (.\=0.8) and 2-set clustering
(.\=0.9) respectively. Based on the 4-set clustering, we find that if the task
events of an application are mostly evict events, the remaining events will be
likely kill events, which accounts 18% in the total number of events. Similarly,
if the fail events dominate the task events for a particular application (its
probability is about 67.5%), its kill events will also exhibit prominently in
the rest of events (the likelihood is up to =55.4%). By contrast, if an
application is often finished (killed) eventually (e.g., with 92.6% finish rate),
other tasks of this application will likely be finished or killed. In addition,
since the numbers of applications in the four sets are about 2.7k, 1.5k, 13.5k,
and 22k respectively, we know that most of applications should terminate with
either a finish event or a kill event. Note that kill event [3] is mainly due to
an external factor like the cancellation by its user or the death of another
dependent job, thus it may also be counted as a normal event by excluding
the external factors like interruption of users. Hence, it can be concluded that
a large majority of applications are prone to be finished normally without
considering external interruptions.

Table 2 Centers of Clustering Sets based on Task Events

(Evict "nte, 1"01 rate . .F Il ls 1 rnte, 1{ ill ('n to. Lost rate)
(1),1l .16 , 0 .023 • 0 .05:1 , n,]!!] , 1l, 1I111 i2r.)

4-Set Classification (u.lI:m , 0,675 , O. Wli , 0,180 , 1) ,11003&)
(A=0,8) (n.019 , 0,008 , 0.083 , 0,890 , 11.001)25)

().Utl7 , 0,005 • 0,926 • 0.061 ,
Cliu;s!Jicat,[on \() .f)12 • 0.11'1 J • I).OW • 11.1158 •

(A= O.!!) (n. 109 • 0.059 • 0,074 . 0.737 , II.UI)1I2.'i)

3.3.2 Workload based Application Clustering

We also study the application clustering based on workload (or resource uti-
lization). We calculate the mean CPU workload and mean memory workload
for each application based on the workloads of its corresponding jobs. Then,
we run our optimized clustering algorithm on all of 18k valid applications. For
each application, there are two dimensions, which indicate the estimated CPU
workload (core seconds) and memory workload (memory size seconds) over
time respectively. Statistics show that a large majority of applications each
use less than one core seconds on average and only a tiny of them (batch-task
applications) each consume over 10 core seconds on average. Accordingly, we
mainly focus on the major portion, i.e., the applications whose mean work-
loads are not extremely large. That is, we filter out the applications whose

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 11

radiuses (i.e., the distance between its coordinate to the origin point - (0,0))
are farther than a threshold (namely radius threshold, denoted as JL). We per-
forlll the clustering algorithm on all of Google applications, based on various
merge rate thresholds (A) and radius thresholds (JL).

In Figure 4, we present the distribution of the number of applications in
the optimized clustering sets based on workload. We observe the number of
applications per set always follows a Pareto-similar distribution (or power law).
With bigger). or bigger JL, the granularity of classification becomes coarser.
For example, Figure 4 (i) shows there are only 3 clustering sets, if the distance
between any pair of centers is kept bigger than 0.5 times as long as the average
distance and any radius is limited to be no larger than 40.

10 20 30 40 50
Th_ SIts Cla&SIfted

(a) >.=0.1,1'=10

(d) >'=0.1,1'=20

2 4 6 e 10 12 14 16 16
The Sets Cht:.Ssified

(g) >.=0.1,J1.=40

6000 __

" 32000

z

o 1 2 3 4 5 S 7 8 9 10
The Sets Classirilld

(b) >.=0.3,1'=10

8000 ,------__ ..--,,'"

87000

0123456
Tho Sels Classilisd

(e) >'=0.3,J1.=20

14000 r------=---,
3 10000
'§: 8000

" '0 6000 I .000
2000 r!J

o L-____
1 2 3

Tho Sels Crassilied

(h) A=0.3,J1.=40

8000

isooo
;";(4000

.!l2000
1000

o 1 2 3
The Sets Classiliad

(c) >.=0.5,1'=10

10000,.---_-__ -_--,

8000

j 6000

4000

i 2000
z

o 1 2 3
The Sels Classilied

(f) A=0.5,J1.=20

16000 r------==--,
j
%10000
'< 6000

" 6000
4000

:! 2000

o 1 2
The Sels Classified

(i) A=0.5,J1.=40

Fig. 4 Distribution of Applications in Optimized Workload Clustering

We further present the locations of the centers of the sets classified in
Figure 5. The centers of the three classified sets shown in Figure 5 (i) are
(11.198,21.835), (21.673,5.351), and (1.992,1.420) respectively. It is clearly ob-
served that majority of applications are with quite low workload (or resource
utilization) in the system. In addition, we observe that the number of applica-
tions in the sets classified based on the workload also follows a Pareto-similar

12 Sheng OJ et al.

distribution. That is, for a few sets, each contains an extremely large number
of applications with little resource consumption, while most of classified sets
contain a small portion of applications with high resource utilization per set.
Note that most of applications are located near to the origin point (0,0), which
is due to either Google application's low CPU utilization and memory usage or
its short execution length. This means that majority of Google applications'
total workloads are tiny.

I. "
I.

]8 "08 '118 ..
'as ;: ;: ;:
[4

"2 "2 "2

0 • • 0 4 S I. 0 4 S I. • 4 6
CPU Workload CPU Workload CPU Workload

(a) A=0.1,,.=10 (b) A=0.3,,.=10 (c) A=0.5,,.=10

2. 2. 2'

js js }s
3\0 3\0 3\ •

Is
..
is .

• • 0 10 • 10 I.
CPU Workload CPU Workload

(d) A=0.1,,.=20 (e) A=0.3,,.=20 (f) A=0.5,,.=20

4. .. 4 •
3. 3. 35 . :a.·,; ,

i'
"'. "'. i'
• s s

• •
35 '"

0 5 I. ,S 20 2§ 30 3S .. 0 • 10 " 20 2' 3D
CPUWol1doad CPU Workload

(g) A=0.1,,.=40 (h) A=0.3,,.=40 (i) A=0.5,,.=40

Fig. 5 Application Workload and Centers of Clustering Sets

4 Correlation of Google Application Properties and Running
Features

10

20

35 40

We study the correlation of Google application properties (mainly about statis-
tics of different types of task events) and running features, including job prior-
ity and scheduling class. In Google trace, priority (1-12) and scheduling class
(0-3) are used in job scheduling. Bigger priority value indicates higher execu-
tion priority. Bigger value of scheduling class implies a 1110re latency-sensitive

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 13

task (e.g., serving revenue-generating user requests) while smaller value means
a non-production task (e.g., development, non-business-critical analysis, etc.).

In our study, we find there exists a partial correlation (or weak correlation).
In the following text, we first show the distribution of the number of appli-
cations based on running features, including scheduling class and job priority.
And then, we characterize the correlation between application task events and
the running features.

Figure 6 (a) presents the percentage of applications with respect to the job
priority. It is observed that applications are distributed non-uniformly based on
job priorities. All applications can be classified into three groups, low-priority,
mid-priority, and high-priority. Most of applications are located at priority
1, 2, 3, 5, 9, and 10. Figure 6 (b) shows the percentage of applications with
respect to job scheduling class. Since larger scheduling class value implies more
latency-sensitive task and smaller value means a non-production task, Figure
6 (b) indicates that Google applications are not very sensitive to latencies and
tend to be non-production tasks in general.

30%

N 25%

20%

'0 15%
Q)

10%

5% • 1 2 3 4 5 6 7 8 9101112
Priority

(a) Percentage of App w.r.t. Priority

tf) 45%
§ 40%

35% 130% _ 25%
20%
15%

5i 10%
5% a.

:L-'

r-:
w !'TlI

Scheduling Class

(b) Percentage of App w.r.t. Class

Fig. 6 Percentage of Applications w.r.t. Static States

Figure 7 shows the number of task events w.r.t. task features, including
job priority and task event type. We can observe that a large majority of
task events occur with relatively low job priorities like 1, 2, 3, and 5. The
distribution of task events w.r.t. event types is also fairly non-uniform, based
on Figure 7 (b). Specifically, in comparison to over 45 million task submission
events, there are less than 20 million task finish events and about 10 million
task kill events (Note that kill event is due to external interrupt by task user, so
it may not be treated as abnormal event.). That is, there are over
of abnorll1al task events, such as task fail, task evict, and task lost. In other
words, when emulating a real cloud benchmark or environment, one has to
carefully investigate the situation with such a high rate of abnormal task
events.

We statistically exploit the distribution of task events based on job pri-
orities, which reveals a partial correlation (or weak correlation) between task
event types and job priorities. Through Figure 8, it is observed that a large
majority of task evict events belong to the lowest-priority tasks, which is be-

14

80M
70M
60M
50M
40M
30M
20M
10M .. n

1 2 3 4 5 6 7 8 9101112
Priority

(a) # Task Events w.r.t. Priority

Sheng Di et al.

50M
45M
40M
35M
30M
25M
20M
15M
10M
5M

__
012345678

Event Type

(b) # Task Events w.r.t. Event Type

Fig. 7 Distribution of Task Events w.r.t. Properties

cause of a fairly high probability of low-priority tasks being preempted by
high-priority ones. We also observe that the number of normal task events
(including task finish events and task kill events) decreases with increasing
priorities for low-priority task events (e.g., priority value = 1, 2, 3). This is
mainly due to the decreasing number of task events with increasing task prior-
ities. In comparison, we find that the normal event ratios (defined as the ratio
of the number of normal events to the total number of five types of events
listed in Figure 8) for relatively low priorities (=1,2,3,5) are 35.6%, 68.9%,
94.0% and 95.5% respectively. This means that priority is a key factor that
determines the task event ratio for low-priority tasks to a certain extent, be-
cause the tasks with lower priorities are prone to be preempted. However, such
a rule does not fit the high-priority tasks. For example, the percentages of task
finish events reach up to 100% for the three priorities, 6, 8 and 12, while the
normal event ratios for priority 7, 9, 10, and 11 are limited to 92.2%, 92.6%,
17.3%, and 30.0% respectively.

12M

E 10M
" ,jj 8M
'" i(l

6M t-a
:;; 4M
D

2M z

1 2

II u

JI

c:::::=J # eviCl.81,fe('l1S
C:::::::1 # rail events

lin ish events
_ # kill events
C:.::.':.:i # lost evenls

.
3 4 5 6 7 8 9 10 11 12

Priority

Fig. 8 Distribution of Event Types w.r.t. Priority

Finally, we present the distribution of task events based on scheduling class,
in Figure 9. One interesting observation is that the number of task events for
each of the three types (evict, fail and finish) decreases quickly with increasing
scheduling class values. Moreover, unlike the correlation between task events
and priority, the normal event ratios based on the four scheduling class values

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 15

are 57.3%, 57.9%, 82.6%, and 38.5% respectively, delivering a rather uniform
distribution especially for low-scheduling-class tasks.

16M
c:::=:::::J # evict @vcnJ;!I

14M (:::::::J # hdl e'lf.'nls

12M = :
10M ["::.:-:::'1 # Iosl evenls

>- 8M
6M
4M

Z 2M

Scheduling Class
Fig. 9 Distribution of Event Types w.r.t. Scheduling Class

5 Simulation Model based on Google Application Features

Based on Google application features extracted from Google's one-month trace
data, we build a statistical model that can simulate Google jobs and tasks sub-
mitted onto a large-scale Google data center. In this section, we first introduce
the simulation model, and then evaluate it by comparing the generated work-
load/hostload to that of the original trace data.

5.1 Statistical Simulation Model of Job/Task Emulation on a Google Data
Center

We present the simulation model for emulating Google jobs (tasks) in Figure
10. It can be split into five layers from bottom to top, to perform K-means clus-
tering on applications, statistics analysis on applications, correlation analysis
of applications, correlation analysis on jobs/tasks, and simulation of Google
jobs/tasks respectively. The output of the lower layers serve as the input of
the higher layers.

We describe each layer shown in Figure 10 as follows.

K-means clustering analyzer: This layer is used to generate a group of set
centers, which can differentiate applications based on their properties like
resource utilization per application. It can help researchers to justify the
applications' characteristics individually. Each clustering set corresponds
to an application template, based on each of which we can generate a set
of application instances, according to the simulation requirements.
Statistics analyzer of application types: This layer is used to specify appli-
cation types for the simulated application instances. It determines whether
an application instance can have multiple tasks and how the tasks are con-
nected per job.

16

Simulation of Google Jobsrrasks, based on Job Arrivals,
Task Events, Task Resource Utilization, etc.

Sheng Di et al.

Correlation Analyzer for Jobs vs. Tasks :>

.Q g.
r U. S Correlation Analyzer for co ::J

Iication/Jobrrask Properties & Runnin %
Q.

K-means Clustering Analyzer for Google Applications

Fig, 10 Simulation Model of Cloud jobs/tasks based on Google trace

- Analyzer of correlation between application/job/task properties and their
running features: This layer is used to specify the running features of ap-
plications/jobs/tasks, related to how many jobs per application, applica-
tion's job priority and scheduling class, and so on. At this layer, there
will be some job/task templates generated, which can be used to further
emulate job/task instances.

- Analyzer of correlation of jobs vs. tasks: When emulating a job instance,
a set of tasks and task events will be generated beforehand. Each task
is associated with a set of requests and utilization on different types of
resources like CPU rate and memory size. A task is also associated with a
set of events such as evict and fail events. They will be simulated based on
the statistics of events over Google trace.
Simulation of jobs/tasks: Finally, we can finish the whole simulation ac-
cording to the characterization of application properties. Each task simula-
tion is executed in terms of the state transition graph, which can be found
in [3]. Various job/task events (including submission, evict, failure, kill,
and so on) are generated in accordance with the statistics of the job/task
arrival intervals extracted from the one-month Google trace, to be shown
in next section. The resource utilization of a simulated task is generated
based on the usage statistics (or distribution) of all of the tasks with the
same job.

Note that we do not specify job scheduling policy in our simulation model,
because of two factors. On one hand, Google trace providers have not disclosed
the details about their scheduling policies because of privacy, so this part is
a black box for us. On the other hand, in general, the users actually intend
to design their own particular scheduling policies for their own simulations to
suit various purposes, thus we believe simulating Google jobs/tasks based on
Google trace already meets lllajority of users' needs.

Characterizing and Modeling Cloud Applications/ Jobs on a Coogle Data Center 17

5.2 Evaluation of Simulation Model

In this part, we present the evaluation results based on our silllulation model,
to confirm its validity. We first make use of maximum likelihood estimate
to analyze the probability distribution of job/task arrival interval. Then, we
present the simulation effect through the five-layer simulation model, by com-
paring the properties like workload of the simulated jobs/tasks to those in
original trace.

In order to simulate the dynamic arrivals of jobs/tasks, we need to study
the job arrival intervals based on Google trace. In Figure 11 (a), we present
the distribution of the overall job arrival intervals as well as some well-known
probability distribution fitting curves generated via maximum likelihood esti-
mate method. It is observed that the job arrival intervals do not follow any
well-known probability distributions explicitly. On the other hand, we show in
Figure 11 (b) the distribution of task arrival intervals on a particular Google
host. It is observed that the best-fit probability distribution of task arrival
intervals on each host is exponential distribution to a certain extent. That is,
the task arrival follows a Poisson-similar process [17] in Google trace.

OB

LL 0.6
o o

0.4

02

of Samples •

-=--------
OL-__

Q 20 40 60 80 100
Job Interval (Second)

(a) Job Arrival Interval

OB

02

O!!iitrloolkl'l of samples .
gg ==

Filled LaPlace Distribul on -----
Flnad NorrnDl Dislribul on
Filled Dislrlbutian

o 2000 4000 6000 BOOO 10000
Task Arrivallnlerval (Second)

(b) Task Arrival Interval

Fig. 11 Distribution of Job/Task Arrival Interval

In our simulation, we do not adopt any off-the-shelf distributions (e.g.,
exponential distribution) to emulate the task arrival intervals, because thus
would cause skewness as observed. Instead, we randomly select job/task inter-
vals from all of the interval samples listed, such that the generated job/task
intervals exactly approach the probability distribution of Google trace.

As follows, we evaluate the simulation effect of our job/task simulation
model (Figure 10) through an example. Suppose a user wants to investigate and
simulate the jobs/tasks based on particular applications with distinct resource
utilization on CPU rate and memory size, and the parameters of K-means
clustering algorithm are set as A=0.5 and J-t=20. Then, he/she can simply
perform the simulation based on the statistics with our characterization.

We show the K-means clustering results (4 sets classified) based on resource
utilization in Figure 12. In each set, we randomly select 20 applications as the
basic application templates to generate jobs for further investigation.

18

20

..
15

Ql

'" :J!
::::J

10
0
E

Set I
Sel #2

G Set #3
u Set #4

AppibUon
COli ors ,of Qjs

0

10
CPU Usage

15

Sheng Di et al.

" X

20

Fig. 12 K-means Clustering Sets and Sampled Applications

As follows, we simulate jobs/task events in accordance with the trace based
job/task arrival intervals. Based on the generated jobs/tasks, we further com-
pute the statistics (including average resource utilization per application and
hostload values based on tasks' resource utilizations).

We compute the average CPU/memory utilization for each of the 80 sam-
pled applications based on the simulated jobs/tasks, and compare them to
that of original jobs/tasks in the trace, as shown in Figure 13. From Figure 13
(a), it is observed that the mean resource utilization of our simulated tasks per
application and the statistics in the trace are fairly similar to each other. We
also evaluate the simulated resource utilization via error ratio, which is defined
as the ratio of the sjm,ulation enol' to the resource utilization of original tasks
in the trace i e Ili of, s-inm/,a'Mon & I,rllce . Through

, . ., t he nlell'Jl t e:SD'\lrce 1',tilua,ho71 hl i u:. trace.
Figure 13 (b), we can observe that 95+% of tasks' simulation errors are less
than 20%, w.r.t, the mean CPU and memory utilization per application.

0.' "'M"'c-. n-'C"'P::-U"'o7,
0.09 Mean CPU of Trace

5 0.08 Mean MEM of Simulalion
0.07 Mean MEM of Tlace

5 0,06
m 0,05

0.04
£ 0.03 ..

0.02 'II , a.t

0.01 _;". .. _
o o 10 20 30 40 50 60 70 80

Application ID

(a) Simulation vs. 'frace

1
0.9
0.8
0.7

u... 0.6

S
0.3
0.2 CPU Utill.iIllc" __

o 0,05 0,1 0,15 0.2 0,25 0,3 0.35
Error Aatio

(b) Error Ratio

Fig, 13 Comparison between Simulation & 'frace w,r.t. Application

We also simulate the one-year host/oad by summing the emulated tasks '
resource utilization on the same host over time, and compare it to the statistics
of the original one-month trace in Figure 14. It is observed that the distribution
of the hostload values simulated is very close to that of the ones aggregated
based on the original trace. With the same CDF values, the average values

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 19

of the emulated hostload and original hostload differ within 10%, confirming
the accuracy of our simulation. We can also observe that the hostload values
summed based on emulated tasks exhibit higher than that of the original trace.
This is because the original Google tasks are executed with some constraints
and scheduling policies while the emulated tasks are not.

0.8

"- 06
0
0

04

0.2

0
0 02

average hostload value

(a) Mean Value

Fig. 14 Evaluation of Hostload Simulation

6 Related Work

0.8 r(
"- 0 6
o o

0.4

o
o

orlgln.I . ,,,,·monlh ho"Io.d -
Ol\D"yC!at _ .. _-

0.2 0.4 0.6 0.8
Variance of Hosiload

(b) Variance

Recently, there have been many existing works characterizing Google's trace
for the in-depth understanding of the cloud environment. Sharma et al. [18]
developed a new metric called Utilization Multiplier (UM) based on task place-
ment constraints and machine properties, in order to precisely characterize the
impact of task constraints to the task scheduling delay. They also studied how
to synthesize representative task constraints and machine properties, and how
to incorporate this synthesis into existing performance benchmarks. Mishra et
al. [19] classified Google task workload by leveraging some off-the-shelf algo-
rithms like K-means clustering [15], while our K-means clustering algorithm is
performed on application workload. Zhang [20] characterized the task usage
shapes in Google clusters. All of the three works are based on a rather small
set of 4-day Google trace that was only used internally by Google Inc ..

Since Google publicly released a large set of one-month trace [3,4]' more
and more researchers have been extensively studying the characteristics of
Google cloud environment in different facets. Liu et al. [21] roughly charac-
terized sllch a trace, including machine population, statistics of daily machine
events and job/task events. In comparison to their work, our previous work [5]
characterized Google workload and hostload more comprehensively, includ-
ing various statistical analysis (such as mass-count disparity and Quantile-
Quantile plot) about job priority, job/task length, job submission frequency,
host load fluctuation, peak resource llsage, job queuing state, etc. We also pro-
vided a clear comparison between Google workload and Grid workload. As
compared to our previous work, Reiss et al. [12] addressed some new insights

20 Sheng Di et al.

about Google trace. For example, they carefully characterized resource re-
quests vs. resource usage, the relative distribution and discussed challenges in
Google task scheduling.

In addition to the research based on Google trace, there are some character-
ization works based on other cloud systems. Ganapathi et al. [22] adopted a so-
called Kernel Canonical Correlation Analysis (KCCA) method to model and
predict the workload based on Hadoop Distributed File System (HDFS) [23]
and map-reduce mechanism [11]. Li et al. [24] proposed a CloudProphet frame-
work to predict the application performance, in terms of the non-production
trace that is generated from a self-implemented prototype. Jackson et al. [25]
provided a performance analysis of HPC applications on the Amazon Web Ser-
vice platform. They show that network communication is a serious bottleneck
for HPC applications when running on widely distributed sites over WAN.

In comparison to all of the research described above, we focus on the
static/dynamic features and resource utilization of Google applications. We
address at least two new insights about Google applications. On one hand, we
characterize the features of application workload/events in terms of various
application types and via K-means clustering with optimized number of
sets. On the other hand, we comprehensively analyze the correlation between
application properties and running features, which can serve as a foundational
support to a more precise simulation of cloud benchmark in the long run.
Finally, we build a simulation model based on the characterized Google appli-
cation features, and confirm its accuracy by comparing the statistics between
its emulated tasks to the ones in the original trace. Our work significantly
advances beyond the simple workload characterization like [5,12,18-21].

To summarize, we compare all of related works to our work in Table 3.

Table 3 Summarization of Related Works
Related Work Focus and Features Limitation
Sharma et 0.1. [Hll task pl_accment constraints & machine properties only 4-day trace
Mishra et 0.1. [19) classification of Google task workload only 4-day trace
Zhang [20) chara.cterization of Google task usage shapes only 4-day trace
Liu et 0.1. [21) popn ation, task macihne events, etc. a rough analysis
our previous work 5 compare Google trace and GIid trace miss app featul'es
Reiss et al. 112L H1: ll f y nf ClIdg-l0 trace miss app features
Ganapathi et al.J22 woc u n ll t predict workload based on HDFS Iniss fcat.llrL'S
Li et al. 24 N'l."{ ict.iol1 tif npp p(1r truce
.J ackson ct al. 25 HrC 1><11 rOrln .IJWtl UIlD. ySIR over 1\ WS miss app featu res

7 Conclusion and Future Work

In this paper, we glean some new insights about Google application properties
and features based on a one-lllonth Google trace with about 40k applications,
and also build a five-layer model for simulating Google jobs/tasks. Some key
findings are listed below.

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 21

The number of jobs/events per application follows a typical Pareto princi-
ple (joint ratio 10%) and the resource utilization per application follows
an extremely typical Pareto principle (joint ratio < 2%).
All applications can be split into 4 types based on whether they allow
batch-task execution mode. There exists a certain correlation between task
events and the four application types. For example, about 81.3% offail task
events belong to batch-task applications.
We also design a K-Illeans clustering algorithm with optimized number of
sets to classify applications based on task events and resource utilization
(or workload). We observe a Pareto-similar distribution on the number of
applications per set.
There exists a partial correlation between Google application properties
and running features. The running states of tasks with low priorities are
determined by priority levels. The normal event ratio increases with in-
creasing priorities for low-priority tasks, while that exhibits a rather uni-
form distribution especially for low-scheduling-class tasks.
The simulation model built with the above characterized application fea-
tures can effectively emulate Google jobs/tasks and relative events in ac-
cordance with the original Google trace. 95+% of tasks' simulation errors
are less than 20%, confirming a high accuracy of our simulation model.

We believe our work is fairly significant especially to the in-depth un-
derstanding of the characteristics and behaviors of cloud applications. In the
future, we plan to further complete our simulation model by adding various
scheduling policies, further simplifying the use of our model for users.

Acknowledgements We thank Google Inc, in particular Charles Reiss and John Wilkes,
for making their invaluable trace data available. This work was supported by ANR project
Clouds@home (ANR-09-JCJC-0056-01), also in part by the Advanced Scientific Computing
Research Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH1l357, and by the INRIA-IlIinois Joint Laboratory for Petascale Computing.
Government License Section:
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Ar-
gonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on behalf of the Government.

References

1. Armbrust M, Fox A, Griffith R, Joseph A et al (2009) Above the clouds: A berkeley view
of cloud computing. EECS, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-28.

2. Vaquero L, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards
a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1):50-55.

3. Wilkes J, More Google cluster data (2011) Google research blog, posted at
http://googleresearch.blogspot.com/20l1/11/more-google-c1uster-data. htm I.

4. Reiss C, Wilkes J, Hellerstein J (2012) Google cluster-usage traces: format + schema.
Google Inc., Mountain View, CA, USA, Technical Report.

22 Sheng Di et al.

5. Di S, Kondo D, Cirne W (2012) Characterization and comparison of cloud versus gdd
workloads. IEEE International Conference on Cluster Computing (Cluster'12), pp. 230-
238.

6. Meng X, Isci C, Kephart J, Zhang L, Bouillet E, Pendarakis D (2010) Efficient resource
provisioning in compute clouds via vm multiplexing. Proceeding of the 7th international
conference on Autonomic computing (ICAC'10), New York, NY, USA: ACM, pp. 11-20.

7. Buyya R, Ranjan R, Calheiros R (2010) Intercloud: Utility-oriented federation of cloud
computing environments for scaling of application services. 10th International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP'1O), pp. 13-31.

8. Stillwell M, Vivien F, Casanova H (2012) Virtual machine resource allocation for service
hosting on heterogeneous distributed platforms. Preceedings of IEEE 26th International
Conference on Parallel Distributed Processing Symposium (IPDPS'12), pp. 786-797.

9. Calheiros R, Ranjan R, Beloglazov A, De-Rose C, Buyya R (2011) Cloudsim: a toolkit
for modeling and sin:lUlation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper, 41(1}, pp. 23-50.

10. Di S, Wang C.-L. (2013) Dynamic optimization of multi-attribute resource allocation in
self-organizing clouds. IEEE 'ITansactions on Parallel and Distributed Systems (TPDS),
24(3):464-478.

11. Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on large clusters.
5th USENIX Symposium on Operating Systems Design and Implementation (OSDI'04),
pp. 137-150.

12. Reiss C, Tumanov A, Ganger G, Katz R, Kozuch M (2012) Towards understanding
heterogeneous clouds at scale: Google trace analysis. Intel science and technology center
for cloud computing, Carnegie Mellon University, Pittsburgh, PA, USA, Tech. Rep. ISTC-
CC-TR- 12-101.

13. Feitelson D (2011) Workload Modeling for Computer Systems Performance Evaluation.
[Online]. Available: http://www.cs.huji.ac.il;-feit/wlmod/.

14. Koch R (1997) The 80/20 principle: the secret of achieving more with less. Nicholas
Brealey.

15. Macqueen J (1967) Some methods for classification and analysis of multivariate ob-
servations. Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and
Probability, pp. 281-297.

16. Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams (2nd ed.). ser. Series in Probability and Statistics.
John Wiley and Sons, Inc ..

17. Ross S (2010), Introduction to Probability Models (10th Edition) . Academic Press.
18. Sharma B, Chudnovsky V, Hellerstein J, Rifaat R, Das C (2011) Modeling and synthe-

sizing task placement constraints in google compute clusters. Proceedings of the 2nd ACM
Symposium on Cloud Computing (SOCC'I1), New York, USA: ACM, 2011, pp. 3:1-3:14.

19. Mishra A, Hellerstein J, Cirne W, Das C.-R. (2010) Towards characterizing cloud back-
end workloads: insights from Google compute clusters. SIGMETRICS Perform. Eva!. Rev.,
37(4):pp. 34- 41.

20. Zhang Q, Hellerstein J.L., Boutaba R (2011) Characterizing task usage shapes in
google compute clusters. Large Scale Distributed Systems and Middleware Workshop
(LADIS'l1).

21. Liu Z, Cho S (2012) Characterizing machines and workloads on a Google cluster. 8th
International Workshop on Scheduling and Resource Management for Parallel and Dis-
tributed Systems (SRMPDS'12), pp. 397-403.

22. Ganapathi A, Chen Y, Fox A, Katz R.H., Patterson D.A. (2010) Statistics-driven work-
load modeling for the cloud, ICDE Workshops'10, pp. 87-92.

23. Shvachko K, Kuang H, Radia S, and Chansler R (2010) The hadoop distributed file
system. IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST'10),
pp. 1-10.

24. Li A, Zong X, Kandula S, Yang X, Zhang M (2011) Cloudprophet: Towards application
performance prediction in cloud. ACM SIGCOMM Student Poster, pp. 426-427.

25. Jackson KR., Ramakrishnan L, Muriki K at al (2010) Performance analysis of high
performance computing applications on the amazon web services cloud. Proceedings of
the IEEE 2nd International Conference on Cloud Computing Technology and Science
(CloudCom'10) . Washington, DC, USA: IEEE Computer Society, pp. 159-168.

Characterizing and Modeling Cloud Applications/Jobs on a Google Data Center 23

26. Hamerly G, Elkan C (2002) Alternatives to the k-means algorithm that find better clus-
terings. Proceedings of the 17th international conference on Information and knowledge
management(CIKM'02), New York, NY, USA: ACM, pp. 600-607.

