
Compiler Optimization for Extreme-Scale Scripting
Timothy G. Armstrong,∗ Justin M. Wozniak,†‡ Michael Wilde,†‡ Ian T. Foster,∗†‡

∗ Dept. of Computer Science, University of Chicago, Chicago, IL, USA
† Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
‡ Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

Abstract—The data-driven task parallelism execution model
can support parallel programming models that are well suited for
large-scale distributed-memory parallel computing, for example,
simulations and analysis pipelines running on clusters and clouds.
We describe a novel compiler intermediate representation and
optimizations for this execution model, including adaptions of
standard techniques alongside novel techniques. These techniques
are applied to Swift/T, a high-level scripting language for flexible
data flow composition of functions, which may be serial or
use lower-level parallel programming models such as MPI and
OpenMP. This paper presents preliminary results, indicating that
our compiler optimizations reduce communication overhead by
70% to 93% on distributed-memory systems.

I. INTRODUCTION

Recent years have seen large-scale computationally inten-
sive applications adopted in many fields, including disciplines
that have not traditionally used high performance comput-
ing. These applications may harness a variety of distributed-
memory resources including clouds, grids, and supercomput-
ers. Traditionally, expert knowledge and laborious develop-
ment have been required in order to use these resources.
Issues such as data distribution, load balancing, and correct
synchronization are major obstacles. New parallel program-
ming models and languages could amelioriate these challenges
for many applications, allowing development of large-scale
parallel applications with greater ease.

Swift is an expressive high-level scripting language with
a significant user base. Swift’s high-level declarative se-
mantics expose implicit parallelism, allowing use of generic
approaches for data distribution, load balancing, and syn-
chronization. Swift’s users build applications with patterns of
parallelism ranging from embarrassingly parallel to intricate
dataflow. Even with trivially simple (yet highly-parallel) ap-
plications, Swift benefits users with automated load balancing
and data movement. It comes into its own, however, for appli-
cations with complex, dynamic, data dependencies, where the
Swift language can express applications with more generality
than more restrictive models such as static task graphs.

Swift/T is a new implementation of Swift that aims for
extreme scalability up to the largest supercomputers [9].
In pursuit of this goal, this paper explores two questions:
what execution model and runtime primitive operations are
needed to support extremely scalable data-driven task parallel
applications, and how can a high-level declarative language be
compiled to make efficient use of these lower-level primitives.

1 blob models[], res[][];
2 foreach m in [1:N_models] {
3 models[m] = load(sprintf("model%i.data", m));
4 }
5
6 foreach i in [1:M] {
7 foreach j in [1:N] {
8 // initial quick evaluation of parameters
9 p, m = evaluate(i, j);

10 if (p > 0) {
11 // run ensemble of simulations
12 blob res2[];
13 foreach k in [1:S] {
14 res2[k] = simulate(models[m], i, j);
15 }
16 res[i][j] = summarize(res2);
17 }
18 }
19 }
20
21 // Summarize results to file
22 foreach i in [1:M] {
23 file out<sprintf("output%i.txt", i)>;
24 out = analyze(res[i]);
25 }

Fig. 1: Example Swift code for an ensemble of simulations.
Execution is ordered purely by data dependencies. This ex-
ample is not expressible with a static task graph because
simulations are conditional on runtime values.

The contributions of this paper are:
• Description of a task-parallel execution model for dis-

tributed memory systems
• A compiler intermediate representation for the model
• Novel compiler optimizations that greatly reduce com-

munication cost, greatly improving Swift/T’s scalability
• Compiler techniques that achieve efficient automatic

memory management in a distributed language runtime

II. DATA-DRIVEN TASK PARALLELISM

The execution model for Swift/T is data-driven task par-
allelism. Figures 1 and 2 illustrate how a high-level Swift/T
script could be efficiently realized as parallel tasks and data.
In the model, tasks and data are dynamically created as
execution progresses, with tasks scheduled based on data
availability. This model is more general and can expose more
parallelism than can other models such as fork-join or static
task graphs [7]. It is attractive for programming heterogenous
and distributed-memory systems because it makes transparent
data movement between devices and automatic placement of
tasks on resources possible. Recent work has shown that
the performance of applications using this execution model
can match or exceed applications coded using lower-level
interfaces, for example message passing or threads [1], [2].



Fig. 2: Visualization of parallel execution of the script from
Figure 1 with parameters M = 2 N = 2 S = 3. We show an
optimized version that efficiently uses runtime tasks and data.

The reason is that sophisticated algorithms, such as work
stealing for task distribution, or data-aware task placement can
be implemented in an application-independent manner. More-
over, the asynchronous execution model effectively masks
latency by dynamic assigning resources when task runtimes
or parallelism patterns are irregular.

III. SWIFT/T RUNTIME SYSTEM

Swift/T uses a scalable, distributed runtime system [8], as
shown in Figure 3. The runtime has no central bottleneck
and can be scaled up arbitrarily by increasing the number
of processes in each role. All communication is through the
distributed data store and task queue services provided by
server processes. Requests to server processes are very low-
latency, typically microseconds, minimizing delays to other
processes. Control processes track data dependencies and
release tasks for execution when ready. Control processes also
execute short-running control tasks. Worker processes execute
computationally or I/O-intensive functions. Worker processes
can execute serial code, or form dynamic “teams” to execute
parallel MPI code [10].

IV. SWIFT/T COMPILER ARCHITECTURE AND
INTERMEDIATE REPRESENTATION

The STC compiler translates a high-level Swift/T program
into optimized low-level code for the runtime. Figure 4 shows
the stages of the compiler. The two middle stages that process
an intermediate representation (IR) of the input program are of
the most interest. The STC compiler uses a single IR through-
out the compiler with two variants. The frontend produces
IR-1, to which optimization passes are applied to produce
successively more optimized programs. IR-2 augments IR-1
with memory management and data passing bookkeeping that
is needed for code generation.

A major contribution of our work is development of an IR
for the execution model of data-driven task parallelism. The
importance of IR design for optimizing compilers is difficult
to overstate [3]. A good IR has several attributes. First, sim-
plicity and uniformity reduces the complexity of optimization
passes. Second, the IR must be high level enough to hide
irrelevant detail so that optimizations can “see the forest, not

Server Process 1

call: f(1, "foo", <9>)
priority: 0 (default)
type:     WORKER
target:   ANY_RANK

Reference to 
data store 9

Scalar 
data

<2>: int 
readers: 1
writers:  1
[empty]

<42>: float 
readers: 2
writers:  0
3.14

<9>: array 
readers: 1
writers:  2
{0: <2>,
  2: <3>,
  5: <5>}

Ready task queue
Task
defn f

Data store

Worker Process 2
State:
running f(2, "bar", <9>)

Worker Process 1
State:
idle, requesting work

Idle: 
requesting work

tasks to
execute

data reads/
writes

Control Process 1

Server Process 2
work stealing

of tasks

dependencies:
{<2>, <9>}

call: g(<2>, <9>)
priority: 0 (default)
type:     CONTROL
target:   ANY_RANK

Waiting tasks

Possible states:
1. Running control task
2. Checking data deps
3. Releasing ready tasks

data creates/
writes

data reads/
notifications

released tasks

tasks to execute

unique id
& type

reference
counts

values

Fig. 3: Runtime architecture. Tasks and data flow across con-
trol/server/worker processes in a distributed memory system.

Frontend

STC Compiler

Executable
code for 
runtime

Distributed
Runtime
System

Swift/T
Script Code Generator

Optimization Post-processing:
Ref. Counting & 
Value. Passing

IR-2

IR-1 IR-1

Fig. 4: STC compiler architecture showing frontend, interme-
diate representations, and code generation.

the trees.” STC mainly aims to optimization communication
so, for example, CPU registers and memory addresses are not
exposed. Third, the IR must be low level enough to expose
relevant details. STC needs to optimize communication, so the
IR makes communication explicit, with explicit task creation
and a distinction between local and nonlocal data.

V. COMPILER OPTIMIZATION

We have implemented a significant suite of optimizations
in the STC compiler. Several novel optimizations have also
been implemented that are specific to task parallel execution
models. We have described and evaluated several approaches
that, in essence, rearrange the relationship of tasks within
the IR to reduce task creation and data operations without
reduction in parallelism. The remainder of optimizations are
adapted from techniques used for low-level imperative lan-
guages such as C or Fortran [6]. These optimizations translate
naturally to the task parallel context, since they focus on
identifying and eliminating redundant operations, which serves
to reduce communication as well as machine instructions. Our
contribution is in adapting these optimizations for the STC
IR in particular and for data-driven task parallelism in gen-
eral. Space does not permit description of each optimization.
Grouped by optimization level, the optimizations are:

O0: Naïve compilation strategy with no optimization
O1: Basic optimizations: global value numbering, constant

folding, dead code elimination, and loop fusion
O2: More aggressive optimizations: asynchronous op ex-

pansion, task coalescing, hoisting, and small loop expansion
O3: All optimizations: function inlining, pipeline fusion,

loop unrolling, intrablock instruction reordering, and algebra



VI. DISTRIBUTED REFERENCE COUNTING

Automatic memory management is a requirement for most
high-level languages, and efficient implementation is chal-
lenging [4]. Swift/T is no exception. The Swift language
does not require users to manually allocate and free memory.
Therefore, it must automatically reclaim unused memory once
all references to it are lost. References to data can be held by
many distributed processes, requiring a distributed, automatic
memory management approach. The Swift/T runtime system
supports distributed reference counting, with reference counts
stored for every item of data.

Naïve approaches to reference counting in a distributed
setting can have high overhead, with reference count manipu-
lation operations more than doubling the number of messages
exchanged. Thus, one focus of our research has been to reduce
memory management overhead in Swift/T through compiler
optimization. STC’s IR supports explicit annotation of data
lifetime (e.g., if ownership is passed to a child task). It
also includes standalone operations for manipulating reference
counts, plus support for “piggybacked” reference counts on
data operations. Several techniques have been implemented
for reducing reference counting overhead, including merging,
canceling, and batching the operations.

VII. EVALUATION

To characterize the impact of different optimization levels,
we chose five benchmarks that capture commonly occurring
patterns. Sweep is a parameter sweep with two nested loops
and completely independent tasks. Fibonacci is a synthetic
divide-and-conquer application based on a recursive Fibonacci
calculation with a custom calculation at each node. Sudoku is
a divide-and-conquer Sudoku solver comprising of ∼50 lines
of Swift/T and ∼800 lines of C that recursively divides and
prunes the solution space and terminates early when a solution
is found. Wavefront is a synthetic application in which a two-
dimensional array is filled in with each cell dependent on three
adjacent cells. Simulated Annealing is a production science
application comprising ∼500 lines of Swift/T and ∼2000 lines
of C++ that implements an iterative optimization algorithm.

These applications were compiled at each optimization
level. For two applications, hand-coded versions using the
underlying ADLB runtime library [5] were used as a baseline.

We measure the impact of compiler optimization in two
ways. First, we measure communication by counting run-
time operations, each of which has approximately the same
cost: a message round-trip to a server process. For most
applications, reduced communication should directly lead to
improved scalability and performance, since communication
and synchronization between tasks is the typical bottleneck
for scaling. Second, we measure application speedup at scale
to confirm that reduction in communication translated to
improved performance.

We emphasize that these are preliminary results, and do not
reflect ongoing minor and major improvements to Swift/T.

Refcount Array Insert Array Lookup Scalar Store

Scalar Load Data Subscribe Data Create Task Get/Put

ADLB O0 O1 O2 O3

20

40

60

80

O
p

s 
(M

ill
io

n
s)

(a) Sweep (107 combinations)
ADLB O0 O1 O2 O3

1

2

3

4

5

O
p

s 
(M

ill
io

n
s)

(b) Fibonacci (n = 24)

ADLB O0 O1 O2 O3
0

100
200
300
400
500
600
700

O
p

s 
(t

h
o

u
sa

n
d

s)

(c) Sudoku (100x100 board)

ADLB O0 O1 O2 O3
0.0
0.2
0.4
0.6
0.8
1.0
1.2

O
p

s 
(M

ill
io

n
s)

(d) Wavefront (100x100 ar-
ray)

ADLB O0 O1 O2 O3
0.0

0.5

1.0

1.5

2.0

2.5

O
p

s 
(M

ill
io

n
s)

(e) Simulated Annealing (125 iterations, 100-way objective func-
tion parallelism)

Fig. 5: Impact of optimization levels on number of runtime
operations that involve message passing or synchronization.

A. Communication Reduction from Compiler Optimization

Figure 5 shows the cumulative impact of each optimization
level on the number of runtime operations. Overall we see
that all applications benefit markedly from basic optimization,
while more complex applications benefit greatly from each
additional optimization level. With all optimizations enabled,
optimized Swift code is comparable to hand-coded ADLB.

B. Application Speedup from Compiler Optimization

Application speedup benchmarks were run on a Cray XE6
supercomputer with 24 cores per node. Unless otherwise
indicated, 10 nodes were used for benchmarks. We measure
throughput in tasks per second dispatched to worker processes;
this metric captures how efficiently the Swift/T system is able
to distribute work and hand control to user code.

Figure 6 shows application speedup. For the O0 and ADLB
Sweep experiment runs and the O1 Wavefront run, the 30-
minute cluster allocation expired before completion. Since
these were the baseline runs, we report figures based on a
runtime of 30 minutes, to be conservative. We omitted Sudoku
because the most challenging problem completed in < 2s: too
short for reliable timings.

With each benchmark, operation count reductions in Fig-
ure 5 gave a roughly proportional increase in throughput. In
Wavefront, the speedup was more than proportional to the
reduction in runtime operations: the unoptimized code exces-
sively taxed the data-dependency tracking at runtime, causing
bottlenecks to form around some data. This result supports the



ADLB O0 O1 O2 O3
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

W
or

k 
T

as
ks

/s
 (

M
il.

)

(a) Sweep: 107× 0s
tasks

ADLB O0 O1 O2 O3
0.0

0.2

0.4

0.6

0.8

W
or

k 
T

as
ks

/s
 (

M
il.

)

(b) Sweep: 107× 0.2ms
tasks

ADLB O0 O1 O2 O3

20

40

60

80

100

W
or

k 
T

as
ks

/s
 (

T
ho

u.
)

(c) Fibonacci: n = 34,
0.2ms tasks

ADLB O0 O1 O2 O3

5

10

15

20

25

30

W
or

k 
T

as
ks

/s
 (

T
ho

u.
)

(d) Wavefront: 100x100,
0.2ms tasks

0 1000 2000 3000 4000
0

5

10

15

O0

O1

O2

O3

Ideal

Cores

Ite
rs
/s
ec

(e) Simulated Annealing: 10 pa-
rameters × 25 iters × 1000
≈ 0.25s tasks

Fig. 6: Throughput at different optimization levels measured in application terms: tasks/sec, or annealing iterations/sec.

Scicolsim Fib Sudoku Wavefront
0%

50%

100%

150%

200%

250%

300%

Off

Unopt

Opt

N
o

rm
a

ilz
e

d
 O

p
e

ra
tio

n
s

Fig. 7: Impact of automatic memory management on runtime
operations. Values are normalized relative to the baseline Off.

hypothesis that runtime operations are the primary bottleneck
for Swift/T. The wide variance between tasks dispatched per
second in different benchmarks is due primarily to differences
in program complexity leading to varying ratios of runtime
data/task operations to work tasks.

In comparing hand-coded with Swift/T versions we note
some anomalies. Scaling of hand-coded ADLB on Sweep was
poor, since it relied on a single process to create all work tasks.
The Swift/T version, in comparison, scaled well because it was
able to automatically parallelizing work task creation between
all control processes. In contrast, the hand-coded Fibonacci
program outperformed the Swift/T version because it spread
creation and execution of tasks between all worker and control
processes. Figure 6e shows strong scaling for the Simulated
Annealing benchmark. The O2 and O3 optimization levels
demonstrate greatly improved scalability from the O0 baseline.

C. Reference Counting

We also performed experiments to determine the perfor-
mance overhead of automatic memory management. We ran
the same benchmarks under three configurations, with all other
optimizations enabled: Off, where memory management is dis-
abled; Unopt, with reference counting optimizations disabled;
and Opt, with those optimizations enabled. Figure 7 shows the
results. The Sweep benchmark is omitted since at O3 no shared
data was allocated. The results demonstrate the effectiveness
of the reference counting optimizations. The overhead imposed
by memory management is reduced to 2.5%-25% for three out
of four benchmarks. Sudoku is an exception because reference
counting optimizations do not yet handle struct data types.

VIII. CONCLUSION AND FUTURE WORK

We have described a set of optimization techniques that
can be applied to improving efficiency of distributed-memory
task-parallel programs expressed in a high-level programming

language. Our performance results support two major claims:
that a high-level scripting language is a viable model pro-
gramming model for scalable applications with demanding
performance needs and that applying a wide spectrum of
compiler optimization techniques in conjunction with runtime
techniques greatly helps in achieving this aim.

Swift/T offers a powerful solution for rapid application
development and scaling. It has been used for science appli-
cations running on up to 8,000 cores in production and over
100,000 cores in testing. The work presented in this paper was
essential to reaching this scale.

Future work will further improve on the results reported
here. We have identified opportunities for significant further
communication reduction with efficient data representations
and more intelligent optimization of iterative loops. Limita-
tions of reference counting optimizations for struct data types
have also been addressed following the experiments presented.

ACKNOWLEDGMENTS

This research is supported in part by the U.S. DOE Office
of Science under contract DE-AC02-06CH11357, NSF grant
ACI-1148443, and by NIH grant S10 RR029030-01 through
computing resources provided by the Computation Institute
and the Biological Sciences Division of the University of
Chicago and Argonne National Laboratory.

REFERENCES

[1] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade,
and J. Labarta. Productive programming of GPU clusters with OmpSs.
In Proc. IPDPS ’12.

[2] S. Chatterjee, S. Taşirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan. Integrating asynchronous task parallelism
with MPI. In Proc. IPDPS ’13.

[3] F. Chow. Intermediate representation. ACM Queue, 11(10), Oct. 2013.
[4] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. John Wiley & Sons, Inc., New York,
NY, USA, 1996.

[5] E. L. Lusk, S. C. Pieper, and R. M. Butler. More scalability, less
pain: A simple programming model and its implementation for extreme
computing. SciDAC Review, 17:30–37, Jan. 2010.

[6] S. S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[7] S. Taşirlar and V. Sarkar. Data-Driven Tasks and their implementation.
In Proc. ICPP ’11.

[8] J. M. Wozniak, T. G. Armstrong, E. L. Lusk, D. S. Katz, M. Wilde,
and I. T. Foster. Turbine: A distributed memory data flow engine for
many-task applications. In Proc. SWEET ’12.

[9] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster. Swift/T: Large-scale application composition via distributed-
memory data flow processing. In Proc. CCGrid ’13.

[10] J. M. Wozniak, T. Peterka, T. G. Armstrong, J. Dinan, E. Lusk, M. Wilde,
and I. Foster. Dataflow coordination of data-parallel tasks via MPI 3.0.
In Proc. EuroMPI ’13.


