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Abstract. Uncertainty in sensor data (e.g., weather, occupancy) complicates the construction

of baseline models for measurement and verification (M&V). We present a Monte Carlo expecta-

tion maximization (MCEM) framework for constructing baseline Gaussian process (GP) models

under uncertain input data. We demonstrate that the GP-MCEM framework yields more robust

predictions and confidence levels compared with standard GP training approaches that neglect un-

certainty. We argue that the approach can also reduce data needs because it implicitly expands the

data range used for training and can thus be used as a mechanism to reduce data collection and

sensor installation costs in M&V processes. We analyze the numerical behavior of the framework

and conclude that robust predictions can be obtained with relatively few samples.

Keywords: Gaussian process modeling, data uncertainty, expectation maximization, measure-

ment and verification.

1. Introduction

Gaussian process (GP) modeling is a powerful statistical modeling framework that proposes a

structure for the covariance matrix of input variables to compute predictions of output variables

[20]. A Bayesian framework is used to train hyperparameters of the input covariance matrix and

to derive a predictive distribution for output variables at test input points. As a result, GP

models can capture complex nonlinear relationships between multiple input and output variables

and can provide mean predictions and associated uncertainty levels. These features make GP

particularly attractive for measurement and verification (M&V), as they can help assess the amount

and resolution of data required to reach desired uncertainty levels. Using real and simulated studies,

Heo, Zavala, and coworkers [10, 8] have demonstrated that GP models can systematically capture

the effect of multiple weather variables (e.g., ambient temperature, relative humidity) as well as

occupancy variables on energy demands and can effectively quantify uncertainty levels.

The standard GP modeling framework [20] has been applied in a number of building applications.

For M&V, GP models were developed to predict baseline energy use during the post-retrofit period

[10], [30]. In fault diagnosis and detection, GP models served to predict system performance
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baselines on the basis of measured operational data [24]. In addition, GP models have been used as

surrogates of complex energy simulation models to reduce computational complexity of tasks such

as model calibration [9], model-predictive control [25], and optimal design [14].

The standard GP framework assumes that input data are known with full certainty, but such is

not the case in many situations. In particular, weather conditions and building occupancy (key

variables suggested in M&V protocols [12, 1]) are often obtained from noisy sensors or they might be

too expensive to measure on site. For instance, government-published weather data are measured

at distant meteorological stations and hence may not capture microclimate conditions around the

specific building site. This situation can lead to significant discrepancy in predicted energy use

[21, 22]. In addition, building occupancy is difficult to measure in real time and with high accuracy

[28]. Occupant densities in office buildings can vary between 4.3 m2 and 22.8 m2 per person, and

this range significantly impacts internal heat gains [15, 11]. Ultimately, variations in input data can

distort energy predictions and can lead to inconsistent confidence levels, making M&V conclusions

unreliable.

This work extends the standard GP framework reported in the literature by explicitely account-

ing for uncertain input data in the learning of the hyperparameters (i.e., model training). We use

the framework of Quiñonero-Candela [18] in which the hyperparameters are learned by maximizing

the likelihood function with marginalized input data (also known as the marginal evidence). The

maximization of the marginal evidence is performed by using a Monte Carlo expectation maxi-

mization (MCEM) algorithm. We call the resulting framework GP-MCEM, which we summarize

as follows. The exact EM algorithm [5] is a coordinate ascent technique that iteratively searches for

the maximum of the log marginal evidence by alternating expectation steps (E-steps) that maximize

a lower bound of the log marginal evidence with respect to a target distribution and maximization

steps (M-steps) that maximize the lower bound with respect to the hyperparameters. The M-step

requires the maximization of the expected value of the likelihood function with respect to the input

data distribution conditional to the output data and hyperparameters. Because the expectation

function is a multidimensional integral and cannot be computed exactly, Monte Carlo estimates are

used instead by sampling the conditional input data distribution. This gives rise to the so-called

Monte Carlo EM (MCEM) method [23].

Using a simulation setting to emulate the energy performance of an advanced multivariable con-

trol system in an office building, we demonstrate that more consistent uncertainty estimates of

energy demands can be obtained by using the GP-MCEM framework compared with standard GP

approaches that neglect input uncertainty. In addition, we demonstrate that much more robust

estimates of hyperparameters can be obtained. In particular, we argue that even an ideal GP

approach (learning hyperparameters by using perfect input data) can suffer from prediction ro-

bustness when confronted with test points slightly outside the training set and, consequently, large

amounts of data can thus be needed to mitigate this lack of robustness. The proposed GP-MCEM

approach, on the other hand, implicitly expands the input data range used for training and can thus

obtain more robust hyperparameters that perform well outside the training set and can thus reduce

training data needs. We perform computational experiments with the GP-MCEM framework to

validate performance with varying numbers of Monte Carlo samples.
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The paper is structured as follows. In Section 2 we derive the GP-MCEM framework, in Section

3 we discuss the algorithmic implementation and convergence properties. In Section 4 we present

a detailed numerical study to demonstrate the advantages of the proposed framework. The paper

closes in Section 5 with conclusions and directions of future work.

2. GP-MCEM Framework

In this section, we derive the framework to train GP models under uncertain input data.

2.1. Setting. Consider a training set with n output data points (e.g., daily energy demands) {yi},
where yi ∈ R, i = 1, ..., n. Consider also a set of uncertain input data points (e.g., occupancy level,

ambient temperature, relative humidity) {xi} where xi ∈ Rd, i = 1, ..., n. Each element of vector

xi is given by xij , j = 1, ..., d and d is the number of input variables. We also define the output

vector y := {yi} ∈ Rn and the input matrix X = {xij} ∈ Rn×d, where the ith input vector xi forms

the ith row of the matrix X.

Each input data observation xi is assumed to be random and independent normally distributed

as xi | φi ∼ N (mi,S), i = 1, ..., n. Here, φi = {mi,S} are the statistics of observation xi where

mi is the mean of each observation xi, i = 1, ..., n. We assume that S := diag(s2
1, ..., s

2
d) ∈ Rd×d

where s2
j ∈ R is the variance of variable xij , j = 1, ..., d. Consequently, the variance for each

jth variable is constant across the observations i = 1, ..., n. In practical terms, this amounts to

assuming a different distribution for each input variable j = 1, ..., d, but the variance of each variable

does not depend on the observation i = 1, ..., n. In addition, it assumes that input variables are

uncorrelated. From a conceptual standpoint, these assumptions are not necessary for the proposed

framework but they greatly simplify implementation of sampling procedures, which we will discuss

later. The statistics (i.e., mean and variance) for X are grouped as Φ = {φi}; and, because of the

assumed structure, we have that the conditional prior of X (conditional distribution of X given

the statistics Φ) is given by

p(X | Φ) =
n∏
i=1

p(xi | φi),(2.1)

where

p(xi | φi) = (2π)−d/2|S|−1/2exp

(
−1

2
(xi −mi)TS−1(xi −mi)

)
, i = 1, ..., n.(2.2)

Here, the matrix determinant is denoted as | · |. The conditional distribution of y given the input

data X and hyperparameters θ ∈ Rp is given by

p(y | X, θ) = (2π)−n/2 |K(θ,X,X)|−1/2 exp(−1
2y

ᵀK(θ,X,X)−1y).(2.3)

Here, K(θ,X,X) = {k(θ,xi,xj)} ∈ Rn×n is the input matrix covariance, θ ∈ Rp are the hyperpa-

rameters, and k : Rp×Rd×Rd → R is the covariance function. While the methods developed here

are applicable to any proper covariance function, we focus on the standard Gaussian covariance

used in most of the literature [10, 30, 24, 9, 14],

k(θ,xi,xj) = θ0 exp

(
−‖x

i − xj‖2

θ1

)
+ θ2δij .(2.4)
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For alternative covariance functions see [20]. Here, we define the hyperparameter vector θ :=

[θ0, θ1, θ2], the Kronecker delta δij , and the Euclidean norm ‖ · ‖.

2.2. Marginal Evidence Derivation. Quiñonero-Candela [18] proposes a couple of approaches

to train a GP model under uncertain inputs. The first approach maximizes the joint posterior

p(X, θ | y,Φ) ∝ p(y | X, θ)p(X | Φ) with respect to θ and X. This can in principle be done

because p(y | X, θ)p(X | Φ) has an an explicit, given by the product of Equations (2.1) and (2.3).

Consequently, the log of the joint posterior is separable. However, this approach proved to be

unreliable because of the introduction of multiple local minima. The second approach, used in

this work, consists of computing a maximum a posteriori estimate (MAP). This is achieved by

maximizing the posterior p(θ | y,Φ) ∝ p(y | θ,Φ)p(θ). Assuming a flat prior p(θ), this is equivalent

to maximizing p(y | θ,Φ). In addition, we know that

p(y | θ,Φ) =

∫
p(y, X | θ,Φ)dX

=

∫
p(y | θ,X)p(X | Φ)dX,(2.5)

where
∫
p(y | θ,X)p(X | Φ)dX is the so-called marginal evidence. Consequently, we can obtain the

MAP estimate of the hyperparameters θ by maximizing the log marginal evidence,

L(θ) := log

(∫
p(y | θ,X)p(X | Φ)dX

)
= log

(∫
p(y, X | θ,Φ)dX

)
.(2.6)

From a practical standpoint, we note that the marginal evidence is the likelihood function p(y | θ,X)

averaged over the input data. The likelihood function is typically maximized in standard parameter

estimation procedures in which input data observations are assumed to be given (certain). This

observation is important because it highlights that maximizing the marginal evidence has the

implicit effect of capturing the entire range of input data and not only data points as in standard

approaches. As we will demonstrate later, this significantly aids prediction robustness and can be

helpful in reducing data needs.

2.3. EM Algorithm. The log marginal evidence shown in Equation (2.6) has a complicated form

(the expected value is inside the logarithm) and thus direct maximization is not straightforward.

Such maximization, however, can be done indirectly by using the expectation-maximization algo-

rithm, which we now proceed to explain. First note that we have the following lower bound for the

log marginal evidence:

log

(∫
p(y, X | θ,Φ)dX

)
= log

(∫
q(X)

p(y, X | θ,Φ)

q(X)
dX

)
≥
∫
q(X) log

(
p(y, X | θ,Φ)

q(X)

)
dX

:= F(q(·), θ).(2.7)

Here, q(X) represents an arbitrary distribution for X, and Jensen’s inequality estabilishes the

lower bound. The EM algorithm maximizes the lower bound F (q(·), θ) with respect to the density

function q(·) and the hyperparameters θ. This can be done using a coordinate ascent technique.
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In the E-step we maximize F (q(·), θ) with respect to q(·), leaving θ fixed to a current guess, and in

the M-step we maximize F (q(·), θ) with respect to θ, leaving q(·) fixed to the updated value.

For candidate distribution q(·), the EM algorithm uses the posterior distribution p(X | y, θ,Φ).

This is motivated by the relationship,

L = F +D (q(X), p(X | y, θ,Φ)) .(2.8)

Here, D(q(X), p(X | y, θ,Φ)) is the Kullback-Leibler divergence that measures the distance between

distributions q(X) and p(X | y, θ,Φ). Note that because the divergence is a positive quantity, we

have L ≥ F . This relationship thus suggests that, with θ fixed, L is maximized by setting the

distribution q(·) equal to the posterior p(X | y, θk,Φ), where θk is a current guess. We thus define

the current distribution guess as qk(·) = p(X | y, θk,Φ). This gives the E-step, and F(qk(·), θ) can

be written as

F(qk(·), θ) =

∫
p(X | y, θk,Φ) log

(
p(y, X | θ,Φ)

p(X | y, θk,Φ)

)
dX.(2.9)

In the M-step, we now seek to maximize the lower bound F(qk(·), θ) with respect to θ. We note

that p(y, X | θ,Φ) ∝ p(y | X, θ)p(X | Φ). Consequently, Equation (2.9) becomes

F(qk(·), θ) =

∫
p(X | y, θk,Φ) log

(
p(y | X, θ)p(X | Φ)

p(X | y, θk,Φ)

)
dX

=

∫
p(X | y, θk,Φ) log

(
p(y | X, θ)p(X | Φ)

p(y | X, θk) p(X | Φ)

)
dX

=

∫
p(X | y, θk,Φ) log

(
p(y | X, θ)
p(y | X, θk)

)
dX

=

∫
p(X | y, θk,Φ) log p(y | X, θ)dX −

∫
p(X | y, θk,Φ) log p(y | X, θk)dX

:= Q(θ, θk) + C.(2.10)

Here, the second equality follows from Bayes theorem which states that

p(X | y, θk,Φ) ∝ p(y | X, θk) p(X | Φ).(2.11)

We also have that

Q(θ, θk) :=

∫
p(X | y, θk,Φ) log p(y | X, θ)dX(2.12a)

C := −
∫
p(X | y, θk,Φ) log p(y | X, θk)dX.(2.12b)

Since C is a constant independent of θ, it is irrelevant in the maximization. The next guess for θ

is thus obtained from the maximization or M-step,

θk+1 ← argmax
ξ

Q(ξ, θk).(2.13)

After this, the conditional distribution p(X | y, θk,Φ) is updated in the E-step and the M-step

(2.13) is repeated. This recursion corresponds to the exact EM algorithm.
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3. MCEM Algorithm

The integral in Equation (2.12a) is analytically intractable but can be approximated by Monte

Carlo sampling, which yields the MCEM algorithm. We obtain N data samples Xk(ω), ω = 1, ..., N

from p(X | y, θk,Φ) or, equivalently, from p(y | X, θk) p(X | Φ) to obtain an empirical approxima-

tion of the integral. We then compute an approximate M-step of the form

θk+1 ← argmax
ξ

QN (ξ, θk),(3.14)

where

QN (ξ, θk) =
1

N

N∑
ω=1

log p(y | Xk(ω), ξ).(3.15)

We now summarize the MCEM algorithm. At iteration k, the E-step samples the estimated

posterior distribution p(X | y, θk,Φ) ∝ p(y | X, θk) p(X | Φ), where the structure of the dis-

tributions is given by Equations (2.1) and (2.3). We can thus sample from p(X | y, θk,Φ) us-

ing a Markov chain Monte Carlo (MCMC) algorithm because all that is needed is a routine

that evaluates the target distribution p(y | X, θk) p(X | Φ). We define a method of the form

{Xk(ω)} ← MCMC (p(y | X, θk) p(X | Φ), N). Using these samples, we then obtain an updated

value for the hyperparameters by solving Equation (3.14). The algorithm is presented below.

input : Data y, statistics Φ = {mi,S}, number of MCMC samples N , tolerance τ > 0, and

initial guess θ.

output: Estimates for hyperparameters θ that maximize L.

Set ε← 2 · τ
while ε ≥ τ do
{X(ω)} ← MCMC (p(y | X, θ) p(X | Φ), N)

θ′ ← θ

θ ← argmaxξQN (ξ, θ)

ε← ‖θ − θ′‖1
end

We highlight that the input posterior p(X | y, θk,Φ) does not have a practical form amenable

for sampling. Therefore, the relationship (2.11) is important. This relationship indicates that

the input posterior is proportional to the product of the output posterior p(y | X, θk) and the

input distribution p(X | Φ). This enables the use of MCMC methods such as slice sampling,

which requires knowledge only of the product function p(y | X, θk)p(X | Φ) or the log form

log(p(y | X, θk)) + log(p(X | Φ)) which in our case has a known form.

3.1. Convergence. The exact EM algorithm has a guaranteed improvement in the log marginal

evidence L at each iteration. This results from the fact that, in the E-step at iteration k, the

lower bound is maximized with respect to θ and, consequently, the log marginal evidence increases,

having q(·) fixed at p(X | y, θk,Φ). Once the hyperparameters are updated in the M-step to θk+1,

the Kullback-Leibler divergence becomes nonzero, because the distribution in the previous iteration
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was qk(·) = p(X | y, θk,Φ) and not p(X | y, θk+1,Φ), which maximizes the log marginal evidence

with respect to q(·). Consequently, the increase in the log marginal evidence will be larger than

the increase in the lower bound.

The transition to MCEM sacrifices the guaranteed increase in the log marginal evidence because

the M-step cannot be performed exactly. Numerous papers, however, establish theoretical conver-

gence results for MCEM algorithms. Fort and Moulines establish convergence but require that the

number of MCMC samples at each iteration increases without bound [6]. Booth and Hobert assert

that, even as the sample size increases, the Monte Carlo error remains in the estimate [2]. Delyon,

Lavielle, and Moulines proposed a stochastic approximation EM algorithm that replaces the MC

update with a weighted average of the current and previous Q(·) functions [4]; in this way they

obtain convergence without increasing the number of samples. In the following section, we explore

the empirical behavior of the MCEM method as the number of samples increases.

We highlight that, even in the exact EM algorithm, one cannot to monitor stationarity of L
because of its complicated form. Therefore, we stop the algorithm once the change in the hyper-

parameters is below a tolerance.

3.2. Computational Details. The explicit form of function QN (θ, θ0) is given by

QN (θ, θk) =
1

N

N∑
ω=1

log p(y | Xk(ω), θ)

=
1

N

N∑
ω=1

(
−n

2
log(2π)− 1

2
log |K(θ,Xk(ω), Xk(ω))| − 1

2y
ᵀK(θ,Xk(ω), Xk(ω))−1y

)
.(3.16)

Each term in the summation is the log likelihood function maximized in standard GP [20]. The first

and second derivatives of this function are well known [29]. In this work, we use the trust-region

Newton method implemented in Matlab [16]. The gradient is provided in explicit form and second

derivatives are estimated by using finite differences. We use the slice sample procedure implemented

in Matlab to compute the MCMC samples.

Once hyperparameters have been trained, it is desired to make predictions at a set of test data

points. For prediction at a test point Xt, we propose to use a predictive distribution with mean

and covariance,

µ̄(θ,X,Xt) := K(θ,X,Xt)K(θ,X,X)−1y,(3.17a)

K̄(θ,X,Xt) := K(θ,Xt, Xt)−K(θ,X,Xt)K(θ,X,X)−1K(θ,Xt, X).(3.17b)

Here, X and Xt contain only the mean of the uncertain inputs (i.e., we assume zero variance

in the input data). We emphasize that this predictive distribution does not consider the effect

of input data uncertainty. In other words, our approach considers input uncertainty only in the

training phase. As we demonstrate in the next section, this already gives significant improvements

in prediction performance because it robustifies the estimates of the hyperparameters. Predictive

distributions that consider input data uncertainty are much more elaborate and are presented in

[19, 18]. We leave this as a topic of future research.
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Figure 1. Hourly ambient temperature and relative humidity profiles for Chicago

area, 2006.

4. Case Study

In this section, we present a case study to demonstrate that the GP-MCEM approach yields much

more robust predictions compared to standard GP approaches. In addition, we discuss numerical

performance.

4.1. Prediction Performance. We consider a simulated study in which an advanced model pre-

dictive control (MPC) system is used to optimize the operation of the HVAC system of an office

building. Here, we seek to baseline the energy performance of the MPC system. The office building

comprises a well-mixed single space conditioned by an air-handling unit (AHU). Dynamic models

of temperature, species concentration (moisture and carbon dioxide), and pressure are used to sim-

ulate the comfort and air quality conditions of the building space. The MPC system uses all the

available degrees of freedom of the HVAC system (heating and cooling for AHU, moisture removal,

ambient, recycle and exhaust flows) to minimize energy while satisfying comfort and air quality

constraints. This optimization is done adaptively as external variables (occupancy and weather

conditions) change in time. A detailed formulation of the MPC controller and a description of the

building model are presented in [27, 26, 10]. The MPC controller introduces a high degree of cou-

pling between the building control variables, external variables, and the total energy demand; and

it induces nonlinear behavior. This makes the construction of baseline models complicated because

energy performance becomes a strong function of multiple input variables such as occupancy and

ambient conditions.
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The mathematical formulation of the MPC controller has the form

min
u(·)

∫ t+T

t
y(τ)dτ(4.18a)

s.t.
dx

dt
(τ) = fx(x(τ), z(τ),u(τ), ω(τ))(4.18b)

0 = fz(x(τ), z(τ),u(τ), ω(τ))(4.18c)

0 ≤ g(x(τ), z(τ),u(τ), ω(τ))(4.18d)

χ(τ) = Ξ(x(τ), z(τ),u(τ))(4.18e)

x(t) = given, τ ∈ [t, t+ T ].(4.18f)

Here, t is the current time, T is the prediction horizon, x(·) are the dynamic states of the building

(zone temperature, CO2 and H2O concentrations, building air mass), z(·) are the algebraic states

(relative humidity, supply air temperature), u(·) are the degrees of freedom or controls (AHU

electrical energy, ambient air flow, recycle flow), and ω(τ) are external variables such as occupancy

heat and CO2/H2O loads and ambient conditions (CO2, temperature, and relative humidity). The

variable χ(τ) represents the total HVAC electrical energy in the HVAC system.

The performance of the MPC controller (4.18) is simulated by running the system using a receding

horizon of 24 hours with time steps of one hour for an entire year. We used real weather data in the

Chicago area to perform the year-long simulations (see Figure 1). The total daily HVAC energy

is used as the output, and we consider two certain input variables (average daily relative humidity

and average ambient temperature) and an uncertain input variable (average daily occupancy). For

the certain inputs we consider the values presented in Figure 1, and we assume zero variance.

For the uncertain input we consider two cases. The first case assumes that the average daily

occupancy varies mildly as N (500, 502). The second case assumes that occupancy varies strongly

as N (500, 1002). For each case, we generate a training data set and a validation (test) data set

using two different samples from the corresponding distributions. The true occupancy values are

the samples obtained from these distributions. Note that both the training and validation data

sets use the same weather information; occupancy is the only variable that is assumed uncertain.

We compare the performance of three different GP strategies. The first strategy is the ideal-

GP strategy in which we assume that occupancy is known with full certainty, and this is used

for training the model. The second strategy is the standard-GP strategy in which we neglect the

presence of occupancy variations; this is equivalent to assuming that occupancy remains constant

between days and, consequently, is not used for training the model. The third strategy is the

GP-MCEM strategy in which we train the model by capturing occupancy variations.

We first demonstrate that GP modeling can be used to accurately predict the energy outputs of

the MPC controller given three different input variables. We use the ideal-GP strategy in which

we use true occupancy values of the training sample for training. We then test the predictions of

the model using the validation data set.

In the left panel of Figure 2 we present the fit and the 95% confidence intervals for the training set

obtained with the ideal-GP approach. The fit is accurate, demonstrating that GP is able to capture

the multivariable interactions in an effective way. This is a remarkable feature given the complex

structure of the building model and control system used. Also note that the confidence intervals
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are narrow implying that the weather and occupancy data are sufficient to explain energy behavior.

In the right panel we present the GP predictions (using the hyperparameters obtained from the

training set) obtained for the validation set. Surprisingly, we observe significant instability at

certain points, reflected as large confidence intervals. In Figure 3 we present the fit and prediction

for the ideal-GP case with high occupancy variability. Note that the higher variability leads to

energy demands outside the main trend but the fit of the GP model remains highly accurate.

This further illustrates the ability of GP modeling to capture multivariable interactions. Note,

however, that the instability of the predictions in the validation points increases significantly and

large amounts of data might be needed to eliminate such instability.

The high sensitivity of the model to perturbations in input occupancy data can be explained by

the fact that the training data set did not fully cover the variable range. Consequently, it does not

capture the test points in the validation set. This is troubling from a practical point of view because

it implies that significant uncertainty will be observed if the M&V baseline model is used to predict

energy performance (say, next year) at days with similar weather conditions but slightly different

occupancy conditions. The modeler will then be tempted to add those days to the training set to

mitigate uncertainty. Continuous data collection will proceed until the predictions stabilize; but

they will always be vulnerable to occupancy levels outside the collected range, and large amounts

of data will be required. We can thus conclude that the use of “perfect” information does yield a

highly accurate training model but this comes at the expense of significant vulnerability to even

slight data perturbations.
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Figure 2. Ideal-GP case for mild occupancy variation. Fit of training set (left)

and prediction at validation set (right).

In Figure 4 we compare the training performance of the GP-MCEM approach with that of the

standard-GP approach. For the MCEM approach, we used a total of 1000 samples in the E-step.
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Figure 3. Ideal-GP case for high occupancy variation. Fit of training set (left)

and prediction at validation set (right).

As can be seen, the confidence levels of the standard-GP approach are significantly larger than

those of the MCEM approach. The reason is that the standard approach treats the variability in

the outputs as noise when in fact a hidden input variable is responsible for the variation. In Figure

5 we compare the performance of both approaches in the validation set. Figures 6 and 7 compare

performance of standard-GP and GP-MCEM for the case of high occupancy variation. We can see

that the confidence intervals of the standard-GP approach reach impractical levels. The confidence

intervals and predictions of the MCEM approach, however, remain robust even in the presence of

high variability.

The high volatility of the confidence levels observed in the ideal-GP approach is eliminated with

the GP-MCEM approach. For the mild variation case, we see that neglecting occupancy infor-

mation (standard-GP approach) yields even less volatility than does the ideal-GP approach. The

performance of standard-GP, however, is not competitive as we increase variability. These results

raise an interesting property from a data collection standpoint. The GP-MCEM can effectively

reduces data needs by capturing variations in input data because this effectively expands the variable

range used for training. Consequently, even if occupancy data were available, we can use the pro-

posed approach to robustify training. In addition, the GP-MCEM approach provides a systematic

framework to assess the effect of input data variations for different variables on prediction stability.

We highlight that the proposed GP-MCEM approach can also be used to construct models when

limited and/or sparse measurement data are available. For instance, consider the case in which a

sensor fails frequently or is simply to expensive to install. In this case, we can construct a GP model

by providing a typical range for such measurement (e.g., a uniform distribution). Consequently,

the proposed approach can be seen as a mechanism to reduce data collection and sensor costs of

M&V processes.
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Figure 4. Fit of standard-GP (left) and GP-MCEM (right) approaches for mild

occupancy variation (training set).
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Figure 5. Prediction of standard-GP (left) and GP-MCEM (right) approaches for

mild occupancy variation (validation set).

4.2. Numerical Behavior. We compare the performance of the GP-MCEM algorithm as a func-

tion of the number of samples used in the E-step. We performed three replications for every number

of samples tried. The results are presented in Table 1. As can be seen, the number of iterations

taken by the GP-MCEM algorithm stabilizes as the number of samples increases. The variability
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Figure 6. Fit of standard-GP (left) and GP-MCEM(right) approaches for high

occupancy variation (training set).
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Figure 7. Prediction of standard-GP (left) and GP-MCEM (right) approaches for

high occupancy variation (validation set).

of the hyperparameter estimates tends to decrease as well. Some persistent error exists, however,

even in the case with 1,000 samples. Note that this is a general deficiency of stochastic algorithms

including the one implemented here. For this class of algorithms, convergence can be guaranteed

only asymptotically, or one must resort to empirical tests of convergence. Such tests are difficult
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Table 1. Numerical behavior of GP approaches.

Approach N Iter log θ0 log θ1 log θ2

Ideal-GP - - 3.206 7.453 3.290

Standard-GP - - 2.899 7.245 4.906

GP-MCEM

40 56 3.563 7.925 4.531

40 4 3.284 7.480 4.452

40 9 3.447 7.653 4.461

GP-MCEM

200 40 3.658 8.127 4.263

200 12 3.795 8.480 4.313

200 12 3.725 8.309 4.340

GP-MCEM

300 9 3.881 8.592 4.272

300 11 3.838 8.440 4.312

300 10 3.613 8.016 4.220

GP-MCEM

1000 10 3.872 8.576 4.212

1000 9 3.898 8.644 4.089

1000 9 3.863 8.535 4.193

to implement in the EM context because one cannot easily construct estimators for the log mar-

ginal evidence shown in Equation (2.6). In practice, however, we have not observed significant

performance differences in terms of training fit as we vary the number of samples. Consequently,

one might consider terminating the algorithm once the fit of the training set stabilizes for a given

number of replicates. We note, however, that this approach is adhoc and thus more research is

needed on appropriate termination tests.

From Table 1 we can also observe that the output noise parameter θ2 is significantly overestimated

in the standard-GP approach compared with the other approaches. For the standard approach the

logarithmic value is 4.906 while for the GP-MCEM approach the value is around 4.29. At real scale,

the former corresponds to 135.1 and the latter 73.1. This is a difference of nearly 100%, manifested

in much wider confidence levels.

5. Conclusions and Potential Extensions

Accounting for input data uncertainty permits a much more realistic and robust approach to

Gaussian process modeling. In particular, we have demonstrated that significant volatility in pre-

dictions can result even in the ideal case where perfect input data is assumed for training. Because

the standard GP method ignores uncertainty in input data, the accuracy of energy savings estimates

realy more strongly on the quality of data collected for M&V (e.g., number of measured variables,

frequency of measurement, accuracy of sensors), which can substantially increase M&V expenses.

To overcome this limitation, we proposed a GP framework coupled to a Monte Carlo expactation

maximization algorithm (GP-MCEM) to train the GP model under input data uncertainty. We

have demonstrated that the approach can significantly increase robustness and mitigate volatility

in the predictions. The proposed approach can also be used to construct models when limited and

sparse measurement data is available (e.g., by replacing sensor readings with crude estimates and
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providing ranges). This can in turn reduce data collection and sensor deployment costs of M&V

processes.

Several opportunities for future research promise to build upon the demonstrated successes, par-

ticularly in the prediction phase in which we explicitly account for input uncertainty [7, 19]. This

paper focused on demonstrating the benefits of the GP-MCEM framework through an illustrative

case study in which only occupancy uncertainty was considered. From a pragmatic standpoint, the

current GP-MCEM framework is capable of accounting for uncertainty in multiple input variables

as long as they are uncorrelated. For variables exhibiting correlations such as weather variables

(outdoor temperature, solar radiation, relative humidity), the current framework will tend to over-

estimate uncertainty. Consequently, extensions are needed to deal with correlated variables; in

particular, more efficient MCMC procedures are needed that are capable of sampling from signifi-

cantly more complex input distributions in a computationally efficient manner. From an algorithmic

standpoint, an ascent-based MCEM method capable of recovering the ascent property of EM with

high probability can significantly aid numerical performance [3, 13, 23, 2]. In addition, methods are

needed that exploit parallelism and enable matrix-free settings, in order to accelerate computational

performance [17].

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, under Contract

DE-AC02-06CH11357.

References

[1] ASHRAE, Ashrae guideline 14: Measurement of energy and demand savings, American Society of Heating,

Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA, 2002.

[2] J. G. Booth and J. P. Hobert, Maximizing general linear mixed model likelihoods with an automated Monte Carlo

EM algorithm, J. Roy. Statist. Soc. Ser. B Stat. Methodol. 61 (1999), no. 1, 265–285.

[3] B. S. Caffo, W. Jank, and G. L. Jones, Ascent-based Monte Carlo expectation-maximization, J. Roy. Statist. Soc.

Ser. B Stat. Methodol. 67 (2005), no. 2, 235–251.

[4] B. Delyon, M. Lavielle, and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm,

Ann. Statist. 27 (1999), no. 1, 235–251.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm,

J. Roy. Statist. Soc. Ser. B Stat. Methodol. 39 (1999), no. 1, 1–38.

[6] G. Fort and E. Moulines, Convergence of the Monte Carlo Expectation Maximization for curved exponential

families, Ann. Statist. 31 (2003), no. 4, 1220–1259.

[7] A. Girard, C. E. Rasmussen, and R. Murray-Smith, Gaussian process priors with uncertain inputs: Multiple-step

ahead prediction, Tech. Report TR-2002-119, Department of Computing Science, Glasgow University, Glasgow,

Scotland, 2002.

[8] Y. Heo, D. Graziano, V.M. Zavala, P. Dickinson, M. Kamrath, and M. Kirshenbaum, Cost-effective measurement

and verification method for determining energy savings under uncertainty, Proceedings of ASHRAE Annual

Conference (2013).

[9] Y. Heo, Choudhary R., and Augenbroe G. A., Calibration of building energy models for retrofit analysis under

uncertainty, Energy and Buildings 47 (2012), 550–560.

[10] Y. Heo and V. M. Zavala, Gaussian process modeling for measurement and verification, Energy & Buildings 53

(2012), 7–18.



16

[11] P. Hoes, J. L. M. Hensen, M. G. L. C. Loomans, B. de Vries, and D. Bourgeois, User behaviour in whole building

simulation, Energy and Buildings 41 (2009), no. 3, 295–302.

[12] IPMVP, International performance measurement and verification protocol: Concepts and options for determining

energy and water savings, volume 1, Efficiency Valuation Organization, 2010.

[13] W. Jank, Implementing and diagnosing the stochastic approximation EM algorithm, J. Comput. Graph. Statist.

15 (2006), no. 4, 803–829.

[14] Y. J. Kim, K. U. Ahn, C. S. Park, and I. H. Kim, Gaussian emulator for stochastic optimal design of a double

glazing system, Proceedings of 13th International Building Performance Simulation Association Conference, 2013.

[15] I. P. Knight and G. N. Dunn, Evaluation of heat gains in UK office environments, Worldwide CIBSE/ASHRAE

Gathering of the Building Services Industry, Edinburgh, Scotland, 2003.

[16] Matlab, Optimization toolbox users guide R2013b, The MathWorks Inc., 2013.

[17] A. Mihai, J. Chen, and L. Wang, A matrix-free approach for solving the parametric Gaussian process maximum

likelihood problem, SIAM Journal on Scientific Computing 34 (2012), no. 1, A240–A262.
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