
A Framework for Tracking Memory Accesses in
Scientific Applications

Antonio J. Peña
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Email: apenya@anl.gov

Pavan Balaji
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Email: balaji@anl.gov

Abstract—Profiling is of great assistance in understand-
ing and optimizing applications’ behavior. Today’s profiling
techniques help developers focus on the pieces of code
leading to the highest penalties according to a given per-
formance metric. In this paper we describe a pair of tools
we have extended to complement the traditional algorithm-
oriented analysis. Our extended tools provide new object-
differentiated profiling capabilities that help software de-
velopers and hardware designers (1) understand access
patterns, (2) identify unexpected access patterns, and (3)
determine whether a particular memory object is con-
sistently featuring a troublesome access pattern. Memory
objects found in this way may have gone unnoticed with
the traditional profiling approach. This additional view
may lead developers to think of different ways of storing
data, leveraging different algorithms, or employing differ-
ent memory subsystems in future heterogeneous memory
systems.

I. INTRODUCTION

Analyzing applications’ performance has been
of interest since the early days of computers, with
the objective of exploiting the underlying hardware
to the greatest possible extent. As computational
power and the performance of data access paths
have been increasing, such analysis has become
less crucial in commodity applications. However,
software profiling is still largely used to determine
the root of unexpected performance issues, and it is
highly relevant to the high-end computing commu-
nity, where code is expected to be highly tuned.

The first modern profiling approaches used code
instrumentation to measure the time spent by dif-
ferent parts of applications [1], [2]. Recognizing
that the same functional piece of code may behave

differently depending on the place from where it has
been called (i.e., its stack trace), researchers devised
more advanced tools that use call graphs to orga-
nize profiling information. This approach is limited,
however, to pointing to the conflicting piece of code
consuming large portions of execution time; it does
not provide any hint about the root of that time.
For instance, a highly optimized, compute-intensive
task may legitimately be spending a considerable
amount of time, hiding other possible candidates for
optimization.

A more informative approach consists of dif-
ferentiating time spent in computation from that
spent on memory accesses. In current multilevel
memory hierarchies, cache hits pose virtually no
penalty, whereas cache misses are likely to lead
to large amounts of processor stall cycles. Cache
misses, therefore, are a commonly used metric to
determine whether a performance issue is caused by
a troublesome data access pattern.

In this regard, cache simulators have been used in
optimizing applications [3], [4]. The main benefit of
these is their flexibility, since they enable the cache
parameters to be easily changed and the analysis
repeated for different architectures. A disadvantage
of this profiling approach, however, is the large
execution timings caused by the intrinsically large
cache simulation and system emulation overheads.

The introduction of hardware counters enabled a
relatively accurate and fast method of profiling [5],
[6], [7]. These are based mainly on sampling the
hardware counters at a given frequency or deter-

mined by certain events and relating these measure-
ments with the code being executed. Both automated
and user-driven tools exist for this purpose, and in
some cases code instrumentation is not required.
Unlike their simulator-based counterpart, however,
these limit the analysis to the real platform on
which they are executing on. Although different
architectures provide a different set of counters,
cache misses are commonly available and a widely
used profiling metric.

All these approaches are code focused. They
point developers to the place of code showing large
execution time or large amounts of cache misses.
However, it is not uncommon to perform accesses
to different memory objects from the same line of
code. For instance, a matrix-matrix multiplication
implementation is very likely to access all the three
memory buffers in the same line of code. In this
case, a code-oriented profiler would not provide
enough information to determine the root of the
problem.

The approach pursued in this paper is intended
to complement that view, differentiating those per-
formance metrics by memory object1 [8], [9]. The
intent of this approach is to expose particular objects
showing problematic access patterns throughout the
execution lifetime, which may be imperceptible
from a traditional approach. This view focuses on
data objects rather than lines of code.

In this paper we present a pair of tools we
developed on top of state-of-the art technologies.
We incorporated per-object tracing capabilities into
the widely used Valgrind instrumentation frame-
work [10]. Next, we extended two of the tools from
its large ecosystem to demonstrate the possibilities
of this approach: Lackey [11] and Callgrind [4]. We
describe the intrinsics of our developments with the
hope that they prove useful for subsequent exten-
sions and research, such as profilers and runtime
systems targeting heterogeneous memory systems.
Indeed, we envision memory-object differentiation
to be a basic technique in these emerging systems
as a means of determining the most appropriate

1We refer as “memory object” to every memory entity as seen from
the code level, that is, statically and dynamically allocated variables
and buffers.

memory subsystem on which to host the different
memory objects according to their access pattern.

The rest of the paper is organized as follows.
Section II introduces the Valgrind instrumentation
framework as the basis for our developed tools.
Sections III and IV describe our modifications to in-
corporate per-object differentiation capabilities into
the Valgrind core and the two tools we target.
Section V reviews related work, and Section VI
provides concluding remarks and ideas for future
work.

II. VALGRIND

Valgrind is a generic instrumentation framework.
A set of tools making use of this generic core
constitute the Valgrind ecosystem. Valgrind’s most-
used tool is Memcheck [12], a memory debugger,
executed by default on Valgrind’s invocation.

Valgrind can be seen as a virtual machine. It
performs just-in-time compilation, translating the
code to a processor-agnostic intermediate represen-
tation (IR), which the tools are free to analyze and
modify.2 Tools tend to use this process for inserting
hooks (instrument) to perform different tasks at run
time. This code is taken back by the Valgrind core to
be executed. The process is performed repeatedly in
chunks of code featuring a single entry and multiple
exit points, called “super blocks” (SBs), as depicted
in Figure 1.

The main drawback of this process is the incurred
overhead. Typically the code translation process
itself—ignoring the tool’s tasks—poses an overhead
of around 4x to 5x.

Valgrind exposes a rich API to its tools, plus a
client request mechanism for final applications to
interact with the tools if needed. The API enables
tools to interact with the Valgrind core, for instance,
to inform the core of the required capabilities at
initialization time, get debug information about the
executed code generated by the compiler (typically
code compiled with the -g option), manage stack
traces, or get information about the thread status. It

2The tools do not directly interact with the IR itself but, rather, with
a high-level application programming interface (API) and processed
data structures to manage it.

Fig. 1. Simplified high-level view of the interaction between Valgrind
and its tools.

also provides a set of high-level containers such as a
arrays, sets, or hash tables. In addition, it facilitates
the possibility of intercepting the different memory
allocation calls to enable tools to provide specific
wrappers for them. The client request mechanism
enables capabilities such as starting and stopping the
tool instrumentation on demand to save execution
time on uninteresting portions of code.

In the following we introduce the two tools we
have extended: Lackey and Callgrind.

A. Lackey

Lackey is an example tool designed to show
Valgrind’s capabilities and its interaction with tools.
Its main functionality is to provide basic statistics
about the executed code, such as number of calls
to user-specified functions, number of conditional
branches, amount of superblocks, and number of
guest instructions. It can also provide counts of load,
store, and ALU (arithmetic logic unit) operations.
Furthermore, it offers the possibility of memory
tracing, that is, printing the size and address of
(almost) every memory access made during the
execution. We will focus on this last capability.
Listing 1 shows an excerpt of a sample output

Listing 1. Sample output from Lackey.
I 04e9f363,5
S 7fefff4b8,8
I 04f23660,3
I 04f23663,7
L 05215e60,8
I 04f2366a,6
I 04f23670,6
I 04f23676,2
I 04f23691,3
I 04f23694,3
I 04f23697,2
==16084==
==16084== Counted 1 call to main()
==16084==
==16084== Jccs:
==16084== total: 567,015
==16084== taken: 312,383 (55%)
==16084==
==16084== Executed:
==16084== SBs entered: 511,667
==16084== SBs completed: 357,784
==16084== guest instrs: 3,279,975
==16084== IRStmts: 18,712,277
==16084==
==16084== Ratios:
==16084== guest instrs : SB entered = 64 : 10
==16084== IRStmts : SB entered = 365 : 10
==16084== IRStmts : guest instr = 57 : 10
==16084==
==16084== Exit code: 0

from this tool with the memory tracing functionality
enabled.

Our extensions enable Lackey to differentiate
memory accesses to different objects, which will
provide application developers and hardware design-
ers with information about raw access patterns to the
different memory objects.

B. Callgrind

Callgrind is autodefined as “a call-graph gener-
ating cache and branch prediction profiler” and is
intended to be a profiling tool. By default, it collects
the number of instructions, the number of function
calls, and the caller-callee relationship among func-
tion calls (the call graph). All this data is related to
their source lines of code. If the cache simulation is
enabled, cache misses can be used as a performance
metric. By default, it simulates a cache hierarchy
featuring the characteristics of the host computer,
with the aim of providing an accurate estimation
of the host cache behavior. Although in practice the
provided measurements diverge from those obtained
by separate tools based on hardware counters, it is
still a useful profiling tool: the fact that the simulated

cache does not behave exactly as the physical one
is not relevant if the profiling goal is to determine
cache-unfriendly accesses and fix the application’s
access pattern not only for a particular cache imple-
mentation. Additional Callgrind’s features include
a branch predictor and a hardware prefetcher. The
call-graph functionality differentiates this tool from
Cachegrind [13], from which it borrows some code.

After Callgrind has profiled an application, one
can use KCachegrind as a postprocessing tool that
enables the graphic visualization of the collected
data. It loads an output file from Callgrind and
displays the collected counters in an interactive
way, enabling the user to navigate through this
information. Figure 2 shows a snapshot from the vi-
sualization tool for a sample run of the MiniMD [14]
code.3

We have extended this profiler to differentiate
per-object cache misses. We have also fully inte-
grated our developments with KCachegrind in order
to provide the information graphically.

III. CORE EXTENSIONS

Our extensions are based on the development
branch of Valgrind 3.10.0. In this section we in-
troduce the integration of the new functionality not
specifically related to a particular tool. Next section
will cover the way we extended two Valgrind tools,
Lackey and Callgrind, to make use of these new
capabilities.

Our modifications are focused on enabling the
differentiation of memory objects. For that, we in-
corporate functionality to locate the memory object
comprising a given memory address, and store its
associated access data. For our purpose, we differ-
entiate two types of memory objects: statically and
dynamically allocated. These require two different
approaches as explained below.

A. Statically-allocated Memory Objects

Our changes concentrate in the debug infor-
mation functionality that Valgrind exposes to its
tools. Hence, this capability requires applications

3MiniMD is a reduced version of the LAMMPS molecular dynam-
ics simulator [15], [16], [17].

Listing 2. Example of scopes.
// Scope #1
// i1 is valid
i n t i1;
{
// Scope #2
// i1 and i2 are valid
i n t i2;

}
// Scope #1
// Only i1 is valid again

to be compiled with embedded debug information
(usually by means of the -g compiler option).
We developed a new function to locate and record
a variable access (if found), along with auxiliary
functions to handle the debug information objects to
be considered or ignored, get the debug information
from a variable handler, retrieve or print the gath-
ered access information, trace a user-defined set of
variables only, and associate tool-defined identifiers
to the variable objects. In addition, we extended the
variable data structure with two triplets of 64-bit
counters to represent the load, store, and modify
information relative to the number of accesses and
bytes accessed. The “modify” counters are exposed
for performance purposes in case the tool performs
that distinction. Fields to store whether the variable
has been explicitly requested to be traced and a user
identifier are also incorporated.

The information about the statically allocated
variables is distributed among the different binary
objects comprising an application, including the
different dynamic libraries an application may use.
The internal Valgrind representation holds this in-
formation in a linked list of objects—one per bi-
nary object. In addition, different scopes may exist
on which the different statically-allocated variables
may or may not be exposed depending on the current
program counter (see an example in Listing 2). Note
that the address of each variable is only defined
when its scope is active.

We follow the algorithm already employed by
Valgrind to locate statically-allocated variables,
leveraged for instance by Memcheck to inform of
the location of an illegal access. This algorithm (see
pseudocode in Listing 3) performs the following
steps:

Fig. 2. Snapshot of KCachegrind for a simple run of MiniMD.

Listing 3. Algorithm to find statically-allocated variables.
f o r instruction_ptr in stack_trace:
debug_info = debug_info_list
whi le debug_info:

i f instruction_ptr in debug_info.txt_mapping:
debug_info_list.bring_front(debug_info)
From inner to outer
f o r scope in debug_info_scopes:
vars = scope.get_variables(instruction_ptr)
f o r var in vars:

i f address in var:
re turn var.user_id

debug_info = debug_info.next
re turn MEM_OBJ_NOT_FOUND

1) Iterate through the stack trace and get the
instruction pointer (IP).

2) Traverse the debug information object list to
find that corresponding to IP.

3) Optimization: bring the found debug infor-
mation object to the front of the list.

4) Iterate through the debug information
scopes, working outwards.

5) Extract the set of variables in the current
scope (valid for the current program counter
on the current stack trace level).

6) Iterate over them until we find one compris-
ing the target address.

The asymptotic computational cost of this algo-

rithm is:
O(st× (dio+ sao))

where st is the maximum stack trace depth, dio is
the number of debug information objects, and sao
the maximum number of statically allocated objects
defined for a given IP.

Note that this distribution of the variables—
derived from the the DWARF format [18] designed
mainly for debuggers—permits performing a search
through the statically-allocated variables defined for
the current IP only. On the other hand, the ad-
dress on which a variable is defined is computed
on demand following Valgrind’s original approach,
precluding from a binary search within the scope.
In future work we plan to explore the viability of
precomputing the addresses of the different variables
of a scope every time they become active in order
to enable scope-wise binary searches.

As this process is time consuming, and users
are likely to focus primarily on its applicationl
variables—not including external libraries, by de-
fault this new functionality will only consider the
debug information comprised on the object contain-
ing the main entry point (that is, the executable ob-
ject). Tools can fully control the debug information

objects to be considered.

B. Dynamically-allocated Memory Objects

Taking advantage of Valgrind’s capabilities, we
intercept the application calls to the memory man-
agement routines and provide wrappers to them.
Following Valgrind’s infrastructure, this feature is
implemented on the tool side as a separate module,
as the management of the memory handling routines
is expected to be tool dependent. Nevertheless, our
developed code is common for the different tools.
On the other hand, the exposed API is similar to
the case of statically-allocated variables described
above.

The information about the dynamically-allocated
objects is kept within an ordered set using the
starting memory address of the memory objects
as the sorting index. This enables binary searches
whose asymptotic computational cost is:

O(log dao)

where dao is the number of dynamically-allocated
objects of a given application. This algorithm is
enabled by the fact that the dynamically-allocated
objects reside in the global scope (in other words,
they are globally accessible), and hence their ad-
dresses do not change among scopes.

We also implemented a merge technique for this
kind of memory objects, similar to that described
in [8]. Merging the accesses of different memory
objects, provided that these were created in the same
line of code and feature a common stack trace,
provides a unique view of objects that in spite of
being created by separate memory allocation calls,
are likely to be considered as a single object from
an application-level view. As an example, consider
a loop allocating an array of lists as part of a matrix
(see Listing 4), or an object being repeatedly created
and destroyed when entering and leaving a function
(Listing 5). Note that the latter needs to be called
from the same line of code (i.e., within a loop) in
order to meet the condition of sharing the same stack
trace. This feature is optional and can be disabled
by the tool.

Listing 4. Example of objects eligible to have their accesses merged:
matrix creation.
f l o a t *vector = (f l o a t *) malloc(HEIGHT);
f o r(i n t i=0; i<n; i++) {

vector[i] = malloc(WIDTH);
}

Listing 5. Example of objects eligible to have their accesses merged:
temporary buffers.
void auxiliary_function(size_t size) {

i n t *tmp_buf = (i n t *) malloc(size);
// ...
free(tmp_buf);

}

i n t main(void) {
size_t size;
f o r(i n t i=0; i<N; i++) {

// ...
auxiliary_function(size);
// ...

}
}

IV. EXTENDING VALGRIND TOOLS

This section covers the extensions we made to
the Lackey and Callgrind tools from the Valgrind
ecosystem, as well as sample use cases.

A. Lackey

As introduced above, Lackey instruments the
code to get different statistics about the executed
application. Besides, it provides memory access
tracing capabilities which report the type (instruc-
tion, store, load, or modify), address, and size of the
access (see Listing 1). We focus on this last feature,
extending it to identify the memory object accessed.

We modified the memory tracing feature to make
use of the functionality described in Section III.
Following the observation that applications tend to
feature far lesser dynamically-allocated objects than
their statically-allocated counterpart, and that they
tend to cover a much larger amount of memory
space, we first perform the search in the dynamic
set of objects for performance purposes.

Listing 6 shows an excerpt from the output of our
extended tool. For each access to a known memory
object, it specifies its type (G: global, L: local, D:
dynamic). In the static case (G or L), the name of
the variable, the offset from the beginning of the
buffer, and the name and line of the file defining

Listing 6. Sample memory trace from our extended Lackey.
I 0040b532,3
S ffeffef20,8 L timer+0 [ljs.cpp:271]

I 0040b535,4
S 057acd10,8 D +0 1392

I 0040b539,5
S 057acd18,8 D +8 1392

I 0040b53e,5
S 057acd20,8 D +16 1392

I 0040b543,5
S 057acd28,8 D +24 1392

I 0040b548,5
S 057acd30,8 D +32 1392

it are printed. For the dynamic case, an execution
context identifier is provided. Listing 7 shows the
final summary from our tool, including the totals per
object as well as the grand totals. The section for
dynamically-allocated objects contains the execution
context identifier used in the memory trace. This
output can be sorted by any column as requested by
the user.

The output showed in listing 6 is intended to
be visualized for (very) short executions. To facili-
tate post-processing analysis, we also provide CSV-
formatted output. This output additionally includes
the instruction counter and the execution context
identifier of the line of code of each memory access.
It does not include instruction accesses, as they are
out of the scope of our extensions. Another useful
capability we included is the option to annotate the
output from the user source (using Valgrind’s client
request capabilities), to facilitate the identification
of different parts of the code of interest to users.

To demonstrate the possibilities of this tool, we
have developed a simple script to analyze and plot
the CSV output from our extended Lackey tool.
Figure 3 shows a pair of examples of this analysis
from the CESAR mini-apps [19]. These are from
short runs of CIAN (CESAR Integrated Analytics)
in Figure 3a and Nekbone in Figure 3b. In this case
we selected the most used dynamically-allocated
variables from the summary of the accesses. In
addition, we included an annotation in the Nekbone
case to plot a vertical line to identify a point of
interest in the graph.

B. Callgrind

In Callgrind we followed a similar approach as
in Lackey to identify the accesses to the different

(a) CIAN Coupling raw access pattern to the four most
accessed memory buffers.

(b) Nekbone raw access pattern to the five most accessed
memory buffers.

Fig. 3. Example of raw access patterns from the extended Lackey
tool.

memory objects. This tool helps on targeting cache
misses, that is, accesses to the main memory rather
than raw accesses. With these capabilities, users
are able to explore the per-object cache misses.
We included the same tracing capabilities as in
Lackey, enabling the analysis of the per-object cache
misses along the execution of the program. Similar
graphs to those shown in Figure 3 can be obtained
from our extended Callgrind, although comprising
main memory accesses (cache misses) rather than
raw accesses. In addition, we included support for
integration with the KCachegrind visualization tool,
by making use of the existing infrastructure. Fig-
ure 4 shows a snapshot of a KCachegrind output for

Listing 7. Excerpt of a summary of an execution by our extended Lackey.
==10322== 1.- Access to Statically-Allocated Memory
==10322==
==10322== Loads Stores Accesses Load Bytes Store Bytes Total Bytes T Size Location
==10322== ---
==10322==
==10322== -- /home/user/soft/miniMD_1.2/miniMD_ref/miniMD --
==10322== 0 1 1 0 8 8 L 8 argv [ljs.cpp:72]
==10322== 2 0 2 16 0 16 L 8 comm [integrate.cpp:71]

--- Some contents skipped from this sample excerpt ---
==10322== ---
==10322== 21,033 1,148 22,181 126,080 5,445 131,525 T 3,016
==10322==
==10322== 2.- Access to Dynamically-Allocated Memory
==10322==
==10322== Loads Stores Accesses Load Bytes Store Bytes Total Bytes T Size EC
==10322== ---
==10322==
==10322== 5,400 5,400 10,800 43,200 43,200 86,400 D 16,000 ECU #1384
==10322== malloc [buf_send = (MMD_float*) malloc((maxsend + BUFMIN) * sizeof(MMD_float));]
==10322== Comm::Comm() [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/comm.cpp:47]
==10322== main [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/ljs.cpp:270]
==10322==
==10322== 18 15 33 144 120 264 D 40 ECU #1392
==10322== malloc [array = (double*) malloc(TIME_N * sizeof(double));]
==10322== Timer::Timer() [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/timer.cpp:38]
==10322== main [/home/user/soft/miniMD_1.2/miniMD_ref/Obj_default/ljs.cpp:271]

--- Some contents skipped from this sample excerpt ---
==10322== ---
==10322== 34,370 95,659 130,029 248,772 771,408 1,020,180 T 2,333,792
==10322==
==10322== 3.- Grand Totals
==10322==
==10322== Loads Stores Accesses Load Bytes Store Bytes Total Bytes Size
==10322== ---
==10322==
==10322== 55,403 96,807 152,210 374,852 776,853 1,151,705 2,336,808

MiniMD from our extended Callgrind, displaying
the read cache misses for the memory object with
execution context identifier 1636.

V. RELATED WORK

A previous study on hardware-assisted object-
differentiated profiling [9] extends the Sun ONE
Studio compilers and performance tools to offer
object-differentiated profiling based on hardware
counters. While this technique features low over-
heads, it does not provide the flexibility of the
software solutions based on system emulators. In
addition, because of the intrinsics of the hardware
architectures, its granularity is limited.

MemSpy [8], [20] was an early “prototype tool”
providing object-differentiated profiling. It imple-
mented a technique similar to ours to merge ac-
cesses to different memory objects. It was based
on the Tango [21] system simulator. To the best of
our knowledge, this tool was never made publicly

available, and both the Tango and MemSpy projects
were discontinued. An interesting feature of this tool
is the simulation of the memory subsystem, enabling
the possibility of using the processor stall cycles as
a performance metric.

In our research we attempt to revive the work
started by these previous approaches by providing
object differentiation capabilities to a state-of-the-
art framework: Valgrind. We aim our tools to be
useful for today’s application profiling needs and the
basis for advanced functionality and research (see
Section VI).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a pair of tools
providing object-differentiated analysis based on a
state-of-the-art and widely used technology: the
Valgrind instrumentation framework. We have de-
scribed our design and the implementation details,
and we have illustrated its use from two of the tools

Fig. 4. Snapshot of the Kcachegrind tool with extended per-object information.

of the Valgrind ecosystem—Lackey and Callgrind—
that we extended for this purpose. Our extensions to
Lackey enable the analysis of the raw access patterns
to the different objects, which can be useful for
detecting unexpected accesses. The per-object ca-
pabilities we incorporated into Callgrind provide an
additional profiling view to developers, by exposing
memory objects presenting consistently troublesome
access patterns, which may have been hidden in
traditional profiling approaches; and this additional
view may help in designing different algorithmic
approaches.

In future work we will explore the possibility of
adding memory simulators such as DRAMSim2 [22]
to our framework, to enable the measurement of
processor stall cycles. Our goal is to use the ex-
tended tools along with the memory simulator in the
study of heterogeneous memory systems, in order to
determine the best memory subsystem in which to
place the different objects according to their out-of-

die access patterns.

ACKNOWLEDGMENTS

This work is part of the “System Software for
Scalable Applications” PRAC allocation support by
the National Science Foundation (award number
OCI-1036216). This work was also supported in part
by the U.S. Dept. of Energy under contract DE-
AC02-06CH11357.

REFERENCES

[1] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A
call graph execution profiler,” ACM Sigplan Notices, vol. 17,
no. 6, pp. 120–126, Jun. 1982.

[2] A. Srivastava and A. Eustace, “ATOM: A system for building
customized program analysis tools,” ACM SIGPLAN Notices
– Best of PLDI 1979–1999, vol. 39, no. 4, pp. 528–539, Apr.
2004.

[3] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “CMP$im: A
Pin-based on-the-fly multi-core cache simulator,” in Proceed-
ings of the Fourth Annual Workshop on Modeling, Benchmark-
ing and Simulation (MoBS), 2008, pp. 28–36.

[4] J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A tool suite
for simulation based analysis of memory access behavior,” in
Computational Science-ICCS 2004. Springer, 2004, pp. 440–
447.

[5] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci,
“A scalable cross-platform infrastructure for application per-
formance tuning using hardware counters,” in Supercomputing,
ACM/IEEE 2000 Conference, Nov 2000, pp. 1–42.

[6] A. C. de Melo, “The new Linux ’perf’ tools,” in Linux
Kongress, 2010.

[7] W. E. Cohen, “Tuning programs with OProfile,” Wide Open
Magazine, vol. 1, pp. 53–62, 2004.

[8] M. Martonosi, A. Gupta, and T. Anderson, “MemSpy: Analyz-
ing memory system bottlenecks in programs,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 20, no. 1, pp. 1–12,
1992.

[9] M. Itzkowitz, B. J. Wylie, C. Aoki, and N. Kosche, “Memory
profiling using hardware counters,” in Supercomputing, 2003
ACM/IEEE Conference. IEEE, 2003, pp. 1–13.

[10] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in ACM Sigplan
Notices, vol. 42, no. 6. ACM, 2007, pp. 89–100.

[11] ValgrindTM Developers, “Lackey: an example tool,”
http://valgrind.org/docs/manual/lk-manual.html, 2013.

[12] J. Seward and N. Nethercote, “Using Valgrind to detect un-
defined value errors with bit-precision.” in USENIX Annual
Technical Conference, General Track, 2005, pp. 17–30.

[13] N. Nethercote, “Dynamic binary analysis and instrumentation,”
Ph.D. dissertation, University of Cambridge, 2004.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving perfor-
mance via mini-applications,” Sandia National Laboratories,
Tech. Rep., Sep. 2009, http://www.sandia.gov/∼maherou/docs/
MantevoOverview.pdf.

[15] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” Journal of Computational Physics, vol. 117, no. 1,
pp. 1–19, 1995.

[16] S. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh ewald
and rRESPA for parallel molecular dynamics simulations,”
in Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing, 1997.

[17] Sandia National Laboratories, “LAMMPS molecular dynamics
simulator,” http://lammps.sandia.gov, 2014.

[18] M. J. Eager, “Introduction to the DWARF debugging format,”
http://www.dwarfstd.org/doc/Debugging using DWARF.pdf,
2007.

[19] Argonne National Laboratory, “Center for exascale simulation
of advanced reactors,” http://cesar.anl.gov, 2014.

[20] M. Martonosi, A. Gupta, and T. E. Anderson, “Tuning memory
performance of sequential and parallel programs,” Computer,
vol. 28, no. 4, pp. 32–40, 1995.

[21] H. Davis, S. R. Goldschmidt, and J. L. Hennessy, “Tango: a
multiprocessor simulation and tracing system,” in Proceedings
of the International Conference on Parallel Processing, Aug.
1991, pp. 99–107.

[22] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A
cycle accurate memory system simulator,” Computer Architec-
ture Letters, vol. 10, no. 1, pp. 16–19, jan.-june 2011.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

