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ABSTRACT
Spatial data analysis has become ubiquitous as geographic
information systems (GIS) are widely used to support scien-
tific investigations and decision making in many fields of sci-
ence, engineering, and humanities (e.g., ecology, emergency
management, environmental engineering and sciences, geo-
sciences, and social sciences). Tremendous data and compu-
tational capabilities are needed to handle and analyze mas-
sive quantities of spatial data that are collected across mul-
tiple spatiotemporal scales and used for diverse purposes.
CyberGIS has emerged as a new-generation GIS based on
advanced cyberinfrastructure to seamlessly integrate such
capabilities into scalable geospatial analytics and modeling
tools. One of the key challenges and opportunities of Cy-
berGIS research is to build an on-demand service framework
that can manage underlying cyberinfrastructure resources
dynamically, in order to provide responsive support for in-
teractive online CyberGIS analytics for which users can gen-
erate massive service requests in a short amount of time.
This paper presents a cloud computing approach to imple-
menting CyberGIS analytics using cloud computing services
in the CyberGIS Gateway, a multiuser and collaborative on-
line problem-solving environment. The primary purpose of
this research is to address the question of how to achieve
on-demand and scalable CyberGIS analytics that provide a
stable response time to the user. We do that through inte-
gration with the Nimbus Phantom cloud platform. We then
investigate how the cloud platform is able to adaptively han-
dle fluctuating requests for analytics while providing a stable
response time.

1. INTRODUCTION
Spatial data analysis has become ubiquitous as geographic
information systems (GIS) [33] are widely used to support
scientific investigations and decision making in many fields
of science, engineering, and humanities (e.g., ecology, emer-
gency management, environmental engineering and sciences,
geosciences, and social sciences) [5, 9, 10, 35]. Tremendous
data and computational capabilities are needed to handle
and analyze massive quantities of spatial data that are col-
lected across multiple spatiotemporal scales and used for
diverse purposes. CyberGIS [32] has emerged as a new-
generation GIS based on advanced cyberinfrastructure to
seamlessly integrate such capabilities into scalable geospa-
tial analytics and modeling tools. Multiple studies have
demonstrated that CyberGIS is suitable for resolving com-
plex geospatial problems that involve long-running and in-
tensive computation [2, 20, 21, 29]. In the context of timely
decision-making and exploratory research, CyberGIS is in-
creasingly requested to serve as an on-demand computing
platform where users can interactively obtain scientific re-
sults from complicated analyses of big spatial data.

Auto-scaling to provide consistent response time for geospa-
tial analytics, the research problem of this study, has become
an important issue in CyberGIS development for multiple
reasons. First, CyberGIS is an online, geospatial problem-
solving environment whose analytical capabilities are shared
by multiple users. Demands for analytics operations vary
over time and across tasks. The failure to maintain consis-
tent response time during peak demand often has critical
impacts on user experience with CyberGIS. For instance,
in an online GIS course, a large number of students may
want to access a particular CyberGIS analytical service si-
multaneously and obtain and visualize results within class
time. The second reason is associated with the rising trend
of providing exploratory spatial analysis in online problem-
solving environments, in which users interact with analyt-
ical services in real time and generate massive service re-
quests to the backend service infrastructure. For example,
researchers or decision makers may want to make changes



to analysis parameters and understand the effects of those
changes in real time even with large spatial data. To support
this exploratory approach, CyberGIS is asked to support
high-demand analytical service requests and return analy-
sis results responsively (e.g., in exploratory analyses, results
would be expected within seconds). Guaranteeing this level
of service across workloads needs computing platforms where
data and computational capabilities can be adapted not only
to fluctuating numbers of user requests but also to varying
sizes of analytical problems. Fortunately, the service-based
access to a multitude of processing cores and disk/memory
space via cloud computing enables new analytics platforms
in which the data and computational capabilities of Cyber-
GIS can be elastically adjusted to varying amounts of de-
mand. The key challenges in realizing such a platform lie in
deploying spatial analytics on cloud resources, integrating
those resources in the CyberGIS infrastructure, balancing
computational workload across resources, and scaling the
resources dynamically so that acceptable quality of service
can be achieved.

The primary purpose of this study is to address the above
challenges by taking a dynamic autoscaling approach in in-
tegrating CyberGIS with cloud resources. To improve the
efficiency of resource usage and achieve the responsiveness
required of interactive CyberGIS analytics, we incorporate
cloud resources into CyberGIS in an on-demand fashion:
since cloud resources are provisioned by using a pay-as-
you-go model, we would like to use them only when com-
pute resources are actually needed instead of using a vir-
tual cluster capable of handling peak load scenarios. Our
approach was implemented with the Nimbus Phantom ser-
vice [14, 27], a multi-cloud auto-scaling service that handles
the provisioning and termination of instances across different
cloud providers, aggregates monitoring information about
the cloud providers and evaluates it against auto-scaling
policies provided by the user. We evaluated the Nimbus-
backed CyberGIS service using a popular spatial regression
function in spatial econometrics [22, 1] integrated in Cy-
berGIS as an application service, whose results must be re-
turned within seconds. We describe in detail how the Cyber-
GIS architecture was extended to use Phantom, and discuss
the details of its implementation. We then show that the
proposed approach both reduces the response time and im-
proves the scalability of the spatial regression application
compared with using a static set of compute nodes within
a local infrastructure. Furthermore, we discuss the prac-
tical considerations and experiences we have gained in the
process.

The work presented here differs from other approaches in
that it provides a flexible scaling-out method for harness-
ing cloud resources in pursuit of on-demand, standard-based
geospatial analytics. It contributes to the CyberGIS and
cloud computing literature through a synthesis of cloud-
based auto-scaling, geospatial analytics, and online user en-
vironments for geospatial problem solving.

2. RELATED WORK
Cloud computing [4] is characterized by on-demand provi-
sioning, resource pooling, rapid elasticity, and measured ser-
vice qualities [18] and provides services in multiple modali-
ties including infrastructure as a service (IaaS), platform as

a service (PaaS), software as a service (SaaS), and data as a
service (DaaS). Both SaaS and DaaS modalities are suitable
for geospatial problem solving, which is has variable needs in
terms of data, computing, visualization, and collaboration
resources. However in order to provide relevant qualities
of service to the user both SaaS and DaaS have to rely on
the capability to provision resources on-demand available
via IaaS. Only recently have users begun migrating spatial
data processing to cloud environments from desktop appli-
cations [6], although distributed spatial data infrastructures
have been widely used to exchange geospatial data and to
visualize it in the form of Web Map Services [15]. Recent
studies have shown that on-demand scalable solutions driven
by and optimized for geospatial problem solving – so-called
spatial clouds – are increasingly important for data-intensive
and large-scale spatial analysis and modeling [7, 34].

Previous research on spatial clouds typically directly em-
ploys commercial cloud services and platforms to build ap-
plications and services. For example, Schnase et al. [23] de-
veloped a climate-analytics-as-a-service system, and Huang
et al. [13] and Shao et al. [24] developed geoprocessing ap-
plications by taking advantage of Amazon Elastic Compute
Cloud, EC2. Baranski et al. [6] created a cloud enabled
spatial buffer analysis service and conducted a stress test
for scalability evaluation, while Blower [8] implemented a
Web Map Service using the Google App Engine. Behzad et
al. [7] conducted hydrological modeling and Gong et al. [12]
implemented geoprocessing capabilities using the Microsoft
Azure cloud computing environment. Zhong et al. [36] in-
vestigated custom-distributed geospatial data storage and
processing framework for large-scale WebGIS, built on top
of the Hadoop platform. Our approach is unique in that
we develop a systematic approach to providing a provider-
independent elastic scaling platform with a focus on a spe-
cific quality of service aspect: response time. We also me-
thodically study its effect on user experience in scenarios
relevant to the community. The techniques developed will
be applicable to a number of geospatial analytics integrated
in the online geospatial problem-solving environment pro-
vided by the CyberGIS Gateway. Elastic autoscaling on
clouds essentially provides load balancing by allowing re-
sources to be dynamically acquired and released according
to changing resource needs. The changing needs can be
met by either scaling horizontally (adding new service in-
stances to distribute additional loads) or vertically (chang-
ing the CPU, memory, and disk resources assigned to an
already running instance). Cloud providers usually offer
only horizontal scaling, since most common operating sys-
tems do not support on-the-fly changing of hardware re-
sources. Typically, horizontal scaling is achieved by actively
monitoring the system load to detect if rules for acquir-
ing or releasing resources are met. Based on the approach
used to derive scaling rules, Lorido-Botran et al. [16] clas-
sify autoscaling techniques based on static threshold-based
rules, reinforced learning, queuing theory, control theory,
and time-series analysis. In contrast to typical schedule-
based and rule-based approaches to autoscaling, Mao and
Humphrey [17] frame the problem of dynamically allocat-
ing/deallocating resources as an optimization problem where
the goal is to minimize the financial cost of allocating re-
sources and the problem is constrained by user-specified
performance requirements (e.g., deadlines). In the current
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Figure 1: Architecture of CyberGIS

study through integration with the Nimbus Phantom cloud
platform, CyberGIS analytics is able to leverage autoscal-
ing and respond to changing computational demands while
striving to maintain a uniform response time across user re-
quests. Rather than solving an optimization problem our
study emphasizes the process of real-life adaptation of ex-
isting mechanisms to leverage cloud computing and evalu-
ates how well these mechanisms work in practice. Several
commercially available platforms provide services similar to
Nimbus Phantom, but they either do not address multi-
cloud scenarios, and are not open-source, or target a very
specific set of functionality; those features were important
in our context because of the flexibility they offer in an area
that is still unchartered.

3. APPROACH
Our approach is to extend the CyberGIS Gateway [31, 28,
32] to support on-demand and scalable analysis by integrat-
ing the Nimbus Phantom service. We will use a specific
CyberGIS application called CGPySAL (an online environ-
ment through the CyberGIS Gateway to the PySAL spatial
analysis library for spatial econometrics analysis) as a run-
ning example to explain our integration techniques. This
allows us to both explain the integration process and pro-
vide a platform to thoroughly evaluate our approach. In this
section, we first present the existing architecture of Cyber-
GIS. We then describe how this architecture was extended to
autoscaling capabilities, and we discuss the implementation
details of this enhanced architecture.

3.1 Architecture
As shown in Figure 1(a), the CyberGIS architecture consists
of three tiers. The CyberGIS Gateway provides users with
a web interface to submit analysis jobs and get their results.
The GISolve middleware [30] serves as a bridge between the
gateway and high-end computing and storage resources. Fi-
nally, the Cyberinfrastructure component comprises storage
and compute resources together with resource-specific ser-
vices.

The CyberGIS Gateway is an online CyberGIS application
environment allowing a large number of users to simultane-
ously perform compute-intensive, data-intensive, and collab-
orative geospatial problem-solving. The architecture of the
Gateway is service-oriented; each spatial analysis is treated
as a service that is composed of several component services
with user interface support, distributed resource and data
management, and security enforcement. The Gateway pro-
vides us with a unique CyberGIS environment to study how
to effectively utilize and manage cloud infrastructure for
achieving on-demand and scalable CyberGIS analytics.

The GISolve middleware communicates with the Gateway
via REST web service interfaces and facilitates access to ad-
vanced cyberinfrastructure and cloud services. For the spa-
tial regression application accessible through the Gateway,
GISolve manages access to the data store server and the ser-
vices provided by a static virtual cluster that serves as the
compute environment. Specifically, it serves as a job sched-
uler by distributing jobs in a round-robin fashion among the



spatial regression service instances available in the virtual
cluster. It does not implement request queuing, however;
hence, requests are rejected when the capacity of the static
cluster is reached. Once the results are available after the
execution of the service has completed, GISolve handles the
callback and communicates the status of the analysis and
the location of the results to the Gateway. The messages
between the multiple tiers are encoded in JSON format.

The cyberinfrastructure tier for this particular application
consists of a data store server and a static compute clus-
ter. The data store server stores data files uploaded by the
user via the CyberGIS Gateway as input to requested op-
erations. It runs a service that extracts metadata from the
input data on upload so as to facilitate subsequent opera-
tions. The static compute cluster consists of a fixed set of
nodes, currently represented as manually deployed virtual
machines (VMs), in the case under investigation configured
to support the spatial regression service. This service ex-
poses interfaces through an Open Geospatial Consortium
Web Processing Service. GISolve uses these interfaces to
communicate with this service.

When a user submits a spatial regression job, the input con-
sists of analysis parameters such as the URLs of (potentially
remote) input data files, model specifications, and estima-
tion methods. The GISolve middleware uploads all input
data to the data store server, validates the request, and sub-
mits jobs to the static compute cluster, where the jobs can
now access the input data and begin computation. Once a
spatial regression job successfully finishes its computation,
an output summary is sent back to the user through the
GISolve middleware and the CyberGIS Gateway. This sum-
mary contains the URLs of output data files, such as reports
of modeling results, tables of predicted values and residu-
als, and descriptions of input parameters. Users can follow
these URLs to download the output files. These output files
are stored as files in the local disks of the VMs providing
the spatial regression services. Since our virtual cluster is
static, we assume that the URLs will remain accessible over
time; and keeping the results on compute nodes allows us to
distribute requests to output files across multiple resources,
thereby improving access times.

We modified this architecture by extending the GISolve mid-
dleware as shown in Figure 1(b) to add autoscaling services
allowing it to dynamically add and remove VMs as needed.

To make effective use of on-demand compute cloud instances,
we extended GISolve’s simple job scheduling capabilities by
adding a load balancer. The load balancer is equipped with a
queue; it receives job requests from the GISolve middleware
and either distributes them to the VMs (when resources are
available) or keeps them in the queue when no more jobs
can be accepted by any of the VMs. The policy used by the
load balancer is to distribute jobs to the instances having
the smallest number of active jobs, in order to distribute
jobs more fairly than with a round-robin approach.

To perform autoscaling with Phantom, we implemented a
custom Phantom Decision Engine [26] that determines the
need to scale up or down the domain of spatial regression
service instances. For this purpose it tracks the number of

requests to the load balancer (the number of queued requests
plus active computations on the VMs). Based on this infor-
mation, the Decision Engine determines the number of VMs
needed and updates the parameters of the corresponding
Phantom domain to provision additional VMs.

The Decision Engine uses the following scaling policy. When
the number of concurrent requests increases, the Decision
Engine instantaneously requests more instances to handle
the increased load. The number of required instances n is
computed with the following formula where CurReq is the
number of current requests (both active and queued) in the
system, MaxReqVM is the maximum limit of requests for
each VM, SCVMs is the number of machines inside the
static cluster and MaxVMs is the maximum number of in-
stances that can be provisioned on the cloud.

n = max(min(d CurReq

MaxReqVM
e)− SCVMs,MaxVMs), 0)

The history of the number of concurrent requests tracked
by the Decision Engine is kept in a circular buffer of con-
figurable length (e.g. 5 minutes). When the number of
concurrent requests decreases, the Decision Engine uses the
maximum number of connections in the circular buffer as a
guide for how many cloud instances should be kept around.
Thus, a drop of traffic will not cause instances to be instan-
taneously terminated: they will be kept in the system for
the duration of the circular buffer history. This policy al-
lows us to keep instances ready to handle a future spike of
traffic and prevents thrashing.

3.2 Implementation
The architecture components are implemented as follows.

The autoscaling service is implemented by using Nimbus
Phantom [14, 27], which provides an easy way for users
to leverage cloud computing resources. The service can
provide high scalability by monitoring resource usage and
application-specific metrics that drive scaling policies. Users
can scale according to a simple threshold-based policy or, as
we have done above, implement more complex policies via a
Decision Engine. In addition, the system can provide an in-
creased level of availability by automatically replacing failed
cloud instances. Users can interact with Nimbus Phantom
through several interfaces: a web interface allows users to
easily and intuitively launch and manage instances, while
two APIs (a native HTTP API and another one compatible
with AWS Auto Scaling) provide scripting and automation
capabilities. Cloud resources are managed through the con-
cept of domains: collections of instances that are running
on one or multiple clouds and whose size can be scaled up
or down.

The queueing load balancer is implemented by using the
HAProxy HTTP load balancer version 1.4.18 [25]. HAProxy
is an open source TCP/HTTP load balancer that supports
distributing HTTP requests among a pool of backend servers.
We selected HAProxy for two reasons: (1) it can queue re-
quests when all backend servers are used, which allows us
to support large waves of incoming requests, and (2) it pro-
vides metrics on the managed workload, such as numbers of
queued and active requests, which enables us to determine
when resources need to be scaled.



The Decision Engine component leverages a command line
tool called haproxyctl [11] to periodically retrieve the num-
ber of connections to HAProxy. The Decision Engine uses
the Nimbus Phantom native HTTP API to request a change
in the number of cloud instances. The Decision Engine pe-
riodically queries Phantom in order to follow the status of
instances that are being provisioned. When new instances
are provisioned, it integrates them in the pool of backend
servers known to HAProxy. It considers an instance to have
finished booting and be ready for integration once the HTTP
port is open (which means that the HTTP server has been
started).

To make a newly provisioned instance known to HAProxy,
one must modify HAProxy’s configuration file and reload.
Doing so, however, creates a new process with the updated
configuration, while the old process stays alive to handle
the existing connections. Thus, the existing request queue
stays with the old process, which does not know about any
new cloud instances. To get around that difficulty, we use a
feature of HAProxy that can dynamically enable or disable
existing backend servers. Since the instance IP addresses are
not known in advance, we send HAProxy traffic to a pool of
ports of the local machine, and we redirect to the correct in-
stance with Destination Network Address Translation using
iptables.

The spatial regression service uses PySAL [22] to provide
all analytical capabilities for the regression services. It can
estimate general linear models through the ordinary least-
squares method. In addition, it utilizes advanced methods,
such as the generalized methods of moments and maximum
likelihood estimation, to deal with spatial linear models that
explicitly account for spatial neighborhood effects in model
specification, errors, and both. This component is almost
completely unchanged in the cloud architecture. Only the
configuration of the VMs is modified in order to store output
files directly on the data store server. The data store server
provides an NFS export that spatial regression service VMs
mount when they are booted.

4. EXPERIMENTAL RESULTS
We ran a series of experiments comparing the behavior of a
static cluster of instances and the same static cluster aug-
mented with cloud instances dynamically. We set a max-
imum limit on the number of cloud instances that can be
provisioned dynamically at the same time.

All experiments were performed on the FutureGrid Open-
Stack cloud hosted on the Alamo cluster at the Texas Ad-
vanced Computing Center. We used dedicated instances for
several components of the architecture. The HAProxy load
balancer was hosted on an instance with 512 MB of RAM
and 1 VCPU. The data store was hosted on an instance
with 2 GB of RAM, 1 VCPU, and a 20 GB disk. Both the
static and dynamic virtual clusters were composed of Alamo
m1.small instances with 2 GB of RAM, 1 VCPU, and a 20
GB disk. All instances used recent Ubuntu amd64 distribu-
tions. They are interconnected with Gigabit Ethernet.

The Phantom service was running on the FutureGrid Nim-
bus cloud hosted on the Hotel cluster at Argonne National
Laboratory.

Spatial regression requests were submitted to CyberGIS with
the load testing tool Apache JMeter [3] from a client machine
on the Internet with a latency distance of approximately 150
ms to the Alamo cloud. For our experiments we bypassed
the CyberGIS Gateway and the GISolve middleware and
configured JMeter to interact directly with HAProxy. This
approach allowed us to use the WPS interface of the spatial
regression service directly, which simplifies the scripting of
the requests.

Each experiment was run only once. We averaged the re-
sponse time of all the requests during one experiment to
produce the results and also display the standard deviation
of the response time as error bars.

While the service interface does not impose any restrictions
on the locations of input data, in the interest of simplicity
here we assumed that the input files are hosted on the data
store server.

4.1 Large Requests
In our first experiment, we use a scenario representing scien-
tists using the CyberGIS platform as part of their research
work. These users work on a small number of files with
large sizes. The scientists make regular requests with dif-
ferent settings in order to explore the correlations in their
data sets. We simulate this scenario with the following con-
ditions. Each user performs 5 requests for spatial regression
on a data file with 1,000,000 entries and 9 variables. Each
user pauses 10 seconds between the requests (time to change
the settings). We vary the number of users concurrently ac-
cessing the platform from 8 to 16. We configured Apache
JMeter to use a ramp-up period of 30 seconds, in order to
add variability to the arrival time of the requests. We use a
static virtual cluster of 5 instances. We set a maximum of
10 dynamic cloud instances. We keep a request history of 2
minutes.

In this experiment, each instance is set up to process only
one concurrent request, since requests on large files require
a lot of resources and several concurrent large requests on
the same machine can lead to errors due to free memory
shortage.

Figure 2 shows the average response time experienced by
users in two scenarios: the first (blue) with a service served
by a static virtual cluster of 5 instances, and the second (red)
with the static virtual cluster augmented with instances dy-
namically provisioned from the cloud. The figure shows that
while the average latency increases steadily in the static vir-
tual cluster, our auto-scaling architecture handles the in-
creasing load more efficiently by provisioning a proportional
number of cloud instances dynamically. In this case, our
system deploys enough instances (green line) to have each
concurrent user handled by a separate instance. To better
analyze what happens when extending the static resources
dynamically with cloud instances, we show in Figure 3 the
number of requests to the system and the number of active
instances (both the number of dynamic cloud instances and
the total number of instances) in the previous experiment
with 16 concurrent users. We observe that as the number of
requests gets to 16, the number of dynamic cloud instances
increases shortly after. The lag between the increase in the
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Figure 2: Average response time for concurrent re-
quests on large input files
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Figure 3: Impact of concurrent requests

number of requests and the increase in active instances is
explained by the time taken by the cloud to provision in-
stances. The number of dynamic cloud instances peaks at
10, since this is the maximum that we have set. Without
this limit it would peak at 11 (16 concurrent requests mi-
nus 5 static VMs). In Figure 4, we show how those extra
instances help reduce the response time for users. Each red
bar corresponds to the response time of a separate request.
We see that the first group of 16 requests at the beginning of
the experiment is answered with increasing response time:
the first requests are answered in between 40 to 50 seconds,
while the slowest response takes close to 150 seconds. How-
ever, this heavy load on our five static instances causes extra
cloud instances to be provisioned dynamically. We then ob-
serve that the response time decreases as more instances be-
come available, and stabilizes back around 40 to 50 seconds.
The high response time at the beginning of the experiment
explains why Figure 2 shows a higher response time for 16
concurrent users than for 8, even though once enough in-
stances are provisioned, the same response time should be
provided.

4.2 Small Files
Our second set of experiment corresponds to a scenario where
a classroom of students are attending a CyberGIS tutorial.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  100  200  300  400  500  600
 0

 5

 10

 15

 20

R
es

po
ns

e 
tim

e 
(s

)

N
um

be
r o

f i
ns

ta
nc

es

Time (s)

Impact of dynamic cloud instances over response time

Response time
Dynamic cloud instances

Total instances

Figure 4: Impact of dynamically adding cloud in-
stances over response time

As they follow the instructions of the tutorial, a large num-
ber of students make repeated requests to the service. These
requests use small files, since students do not need large data
sets to learn the software. We simulate this scenario with the
following conditions. Each student performs five requests for
spatial regression on a small data file. Each student pauses
10 seconds between requests (time to change the settings).
We vary the number of students concurrently accessing the
platform from 32 to 64. We use a single instance for the
static resources. We set a maximum of 10 dynamic cloud
instances. We keep a request history of 2 minutes.

In this experiment, the maximum number of requests per
instance is set to 8. Requests on these small files are less
resource intensive than in the previous experiment; hence,
several requests can be scheduled concurrently on the same
VM. We set the maximum number of cloud instances to 10
(in addition to the existing static instance).

Figure 5 shows the average response time of requests for
various number of students (32, 48, and 64). The error bars
represent the standard deviation of the response time. We
can clearly see that the average response time rises signifi-
cantly when using a single static VM: from 62.5 seconds for
32 students up to more than two minutes for 64 students,
an increase of more than 113%. In comparison, the response
time when using cloud instances is lower (23 seconds for 32
users) and rises more slowly (29.5 seconds for 64 students,
an increase of less than 30%). As in the previous experi-
ment, the number of cloud instances increases linearly with
the number of concurrent users.

5. USE CASE ANALYSIS
The spatial regression application accessible through the Cy-
berGIS Gateway is open for access to the spatial economet-
rics community and other CyberGIS user communities. The
typical usage models of the application on the Gateway cor-
respond well with the two scenarios (large data analysis,
large number of analysis) that were studied in Section 4.
The auto-scaling approach achieved through the integration
with the Nimbus Phantom cloud platform plays the key role
in satisfying the demanding responsiveness requirements of
these scenarios that conventional job-queue-based comput-
ing model was not able to meet. Compared with the original
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Figure 5: Average response time for the student
tutorial use case

solution that dedicated a static virtual cluster for the analy-
sis, the modified auto-scaling based cloud computing model
has the advantage of leveraging a large amount of cloud com-
puting resources in an on-demand fashion. In fact, through
our experiments we have shown the modified solution lever-
aging auto-scaling is well positioned to meet the computa-
tional and scalabilities requirements posed by both usage
models.

Encouraged by this study we are investigating how to use
the auto-scaling cloud platform to integrate other Cyber-
GIS analytics with interactive requirements (e.g., FluMap-
per [21]) or other response time requirements (e.g., appli-
cations with sporadic high-load access from classroom) and
are also compute-intensive and/or data-intensive. Accord-
ingly, we have identified additional features that our ap-
proach needs to support: in particular data models that can
use cloud-provided storage to persist across the lives of VM
instances as well as scale to feed potentially large numbers
of VMs. Additionally, we will study further how our sys-
tem can dynamically adapt to variable request sizes, so that
a mix of requests can be handled exploring optimal assign-
ments to resources at job or load balancer level. On the
resource management level we seek to make the response
times more reliable and uniform so that they can be repre-
sented as a true quality of service; this can be achieved via
approaches based on pre-deployment and prediction as e.g.
in [19], as well as coordination of multiple resources includ-
ing storage and networking. Finally, last on our wishlist is
correlating the response time to the cost aspects of our ser-
vice: while our initial implementation ran on FutureGrid it
is likely that future deployments will use a range of private
and commercial clouds and thus leveraging results like [17]
will have increased significance.

6. CONCLUDING DISCUSSION
In this paper, we presented our work on extending the archi-
tecture of CyberGIS to dynamically add on-demand cloud
resources in order to improve the responsiveness of spatial
data analysis and highlight the parts of the system that had
to be adapted to achieve this goal. We implemented our
solution in the context of the CGPySAL application, which
gives access to PySAL spatial regression modeling for spa-

tial econometrics analysis. Our experiments, performed on
a FutureGrid cloud, show that our system can automatically
react to changes in the number of user requests and can pro-
vision additional cloud resources accordingly. This allows
the response time to remain low with a growing number of
requests, which is crucial for maintaining the responsiveness
requirements of CyberGIS. While our solution shows good
scalability in two separate use cases using different compute
node configurations, we will need to investigate further how
to dynamically and economically support variable request
sizes. Although we did not encounter data-related limita-
tions in our evaluation, we will also investigate how our sys-
tem can scale the data storage backend in order to support
rapidly the growing sizes of spatial data sets.
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