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a b s t r a c t

We create a mathematical framework for modeling trucks traveling in road networks, and
we define a routing problem called the platooning problem. We prove that this problem is
NP-hard, even when the graph used to represent the road network is planar. We present
integer linear programming formulations for instances of the platooning problem where
deadlines are discarded, which we call the unlimited platooning problem. These allow us
to calculate fuel-optimal solutions to the platooning problem for large-scale, real-world
examples. The problems solved are orders of magnitude larger than problems previously
solved exactly in the literature. We present several heuristics and compare their perfor-
mance with the optimal solutions on the German Autobahn road network. The proposed
heuristics find optimal or near-optimal solutions in most of the problem instances consid-
ered, especially when a final local search is applied. Assuming a fuel reduction factor of 10%
from platooning, we find fuel savings from platooning of 1–2% for as few as 10 trucks in the
road network; the percentage of savings increases with the number of trucks. If all trucks
start at the same point, savings of up to 9% are obtained for only 200 trucks.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Companies have significant economic and environmental incentives for reducing the fuel consumption of heavy-duty
vehicles (HDVs). Since fuel costs represent a third of the total operational costs of an HDV (Schittler, 2003), even small
advances in fuel efficiency will noticeably increase profits for many organizations. Because vehicles account for a large per-
centage of total carbon emissions—20% according to Schroten et al. (2012), a quarter of which comes from HDVs—reductions
in HDV fuel usage can yield substantial progress toward achieving carbon reduction goals. For example, the European
Commission (2011) has stated goals of decreasing carbon emissions by 60% by 2050; such ambitious goals can be achieved
only by a multifaceted approach.

In addition to ongoing research into engine efficiency and aerodynamic vehicle design, a supplementary method for
reducing fuel use is to form vehicle platoons. By driving vehicles in a single lane in close proximity, as can be seen in
Fig. 1, fuel reductions of up to 20% are possible for the nonleading vehicles (Robinson et al., 2010; Bonnet and Fritz, 2000).

Such platooning is profitable, however, only under certain circumstances. The reduction in fuel use depends on the dis-
tance between the trucks in a platoon and on the speed of the platoon. Bonnet and Fritz (2000) show trailing HDVs traveling
at 80 km/h experience a 21% fuel reduction when the distance between the vehicles is 10 m, while the fuel reduction is 16%
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for an intervehicle distance of 16 m. The fuel reductions for the same vehicles and distances traveling at 60 km/h are approx-
imately 16% and 10%, respectively. Naturally, safety considerations must be addressed when driving HDVs at such close dis-
tances; see Tatchikou et al. (2005) and Taleb et al. (2010). Demonstrating that platoons can operate safely in a variety of
settings must be shown before they can be adopted on public roadways.

Some platooning paradigms, such as PATH (Browand et al., 2004) or Dolphin (Tsugawa et al., 2000), assume the existence
of roadside systems to facilitate intervehicle communications. We assume the vehicles themselves are equipped with the
necessary technologies (e.g., LIDAR, WiFi) for platoon formation and maintenance. Such technologies are increasing found
on new HDVs; see, for example, Shladover (2007).

In addition to safety and technological concerns, excessive traffic can greatly reduce platooning benefits, since low-speed
platooning would provide almost no reduction in aerodynamic drag. Since vehicles will likely not be platooning through
large urban centers, we assume throughout that the time required to travel a road is fixed independent of time, as is the case
for large portions of the U.S. Interstate Highway System. We consider this case since these long stretches of low-traffic road
are likely where platooning will provide the most fuel-saving benefits. Routing individual vehicles (and platoons) through a
time-varying network is an active area of research; see Lecluyse et al. (2009).

Most research in the vehicle platooning literature concerns the maintenance and safe maneuvering of an existing platoon
of vehicles; see Kavathekar and Chen (2011). Little attention has been paid to optimally coordinating the formation and dis-
solution of platoons to minimize total fuel use as many vehicles move throughout a road network. The few articles that pro-
pose methods for increasing platooning opportunities acknowledge the difficulty of finding the exact routing that minimizes
fuel use (Baskar et al., 2013; Larson et al., 2013), but none formally address the problem’s computational complexity.

In this paper we attempt to maximize the amount of fuel saved by vehicles capable of platooning on a road network. If
platooning opportunities are present, the routes may differ slightly from the obvious shortest path routes, in order to max-
imize fuel savings. We formally define the platooning problem, a vehicle routing problem concerned with minimizing the
fuel consumption by platooning trucks given a collection of starting points, destinations, and deadlines. We do not consider
the effects of traffic on the fuel consumption. The motivation behind this approach is our desire to isolate the problem and
regard the computational complexity of a pure deterministic problem. For vehicle routings that also address the effects of
traffic congestion but do not consider platooning, see Franceschetti et al. (2013).

We show that this platooning problem is NP-hard, even for simple cases when all trucks start at the same point and time,
and it is therefore infeasible to solve anything but small instances exactly, unless P ¼ NP. To find solutions for small
instances of the platooning problem, we formulate it as an integer linear program (ILP), which can be solved by using existing
ILP solvers. We present and compare two heuristics and a local improvement algorithm for solving common instances of the
platooning problem. We show that the heuristics by themselves often produce decent, but not excellent, solutions. These
solutions can be greatly improved by using the local improvement algorithm, resulting in solutions close to the optimum
in many cases.

In addition to the general case of the platooning problem, we specifically address the case where every HDV starts at the
same node. We solve very large instances of the same-start platooning problem on actual road networks, often yielding sig-
nificant savings over every truck taking its shortest path to its destination. Instances of such a problem arise in a variety of
real-world situations, for example, a distribution center where many HDVs leave simultaneously for various destinations, or
at major junctions throughout a road network. Fuel optimal routes utilizing platoons can be calculated for trucks approach-
ing an intersection in the road network, as in the paradigm presented in Larson et al. (2013, 2015), or for trucks stopping at
common locations such as weigh stations, fuel stations, or customs checkpoints. One can view HDVs approaching a common
destination as the inverse of the same-start platooning problem and can therefore solve this case by similar measures. For
these reasons, the same-start platooning problem receives special attention throughout this paper. We note that our meth-
ods can solve the same-start platooning problem more efficiently than the general problem.

Fig. 1. Three heavy-duty vehicles platooning to collectively reduce fuel consumption.
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We emphasize that we can find solutions to large-scale, real-world instances of the platooning problem. We consistently
produce fuel-optimal solutions for instances of the platooning problem on the German Autobahn road systemwith hundreds
of HDVs. We are unaware of any other platooning formulation that can find optimal solutions for any nontrivial instance of
the vehicle platooning problem for more than 5 vehicles.

The structure of the paper is as follows. In Section 2, we create a mathematical framework for the platooning problem and
use this framework to prove a number of theorems regarding optimal platoon routings. Readers that are not interested in the
proofs of the following sections can skim through or skip large parts of this section. In Section 3 the computational complex-
ities of different versions of the problem are considered. After establishing that the problem is NP-complete, a conversion of
the platooning problem into an ILP is considered in Section 4. Because of the established computational complexity, we
attempt to solve the problem heuristically in Section 5. In Section 6 we provide comparisons of the performance of the dif-
ferent solvers presented in the article. Section 7 concludes the paper.

2. Background

This section contains a number of definitions that create a framework for the modeling of trucks traveling between dif-
ferent locations in a road network. We want to minimize the total fuel consumption, using the fact that a truck traveling
behind another truck in a platoon uses only a fraction g of its normal rate.

We model an arbitrary road network using a finite, connected, directed graph G ¼ ðV ; EÞ; each road in the network is
denoted by an edge e 2 E, and intersections of the network are represented by vertices u 2 V . Each edge e has a non-
negative integer length wðeÞ associated with it. Similar to the claims of Ahuja et al. (1993), we consider only integer lengths
for edges in E. Furthermore, we assume that for each edge ði; jÞ 2 E the edge ðj; iÞ 2 E. In the graphG, trucks are allowed to travel
at a set of different speeds, H, which are represented as positive integers. The cost of traversing an edge e alone, or leading a
platoon, with a certain speed v is given by cðe; vÞ ¼ wðeÞ � f ðvÞ > 0, where f ðvÞ > 0 is the fuel cost per unit distance. The cal-
culation of f ðvÞ should take into consideration known properties of a section of road, for example, its grade (slope). Note that a
single road does not necessarily correspond to a single edge; long edges can be (and are) subdivided by adding vertices.

2.1. Definitions

We now define many of the terms and variables used throughout the paper. For ease of reference, Tables A.1 and A.2 in
Appendix A contain the most important definitions and notations.

Definition 1. An edge traversal T is an ordered tuple

T ¼ ðe; t;vÞ 2 E� Z� H

describing the traversal of an edge e beginning at time t, traveling at a speed v.

Note 1. For an edge traversal T ¼ ðe; t;vÞ and the fuel cost function c, it is sometimes convenient to write cðTÞ instead of
cðe;vÞ since the fuel cost of an edge traversal is time independent, as explained earlier.

Definition 2. A truck path P starting at u 2 V and ending at u0 2 V is a sequence of edge traversals

P ¼ ðei; ti;v iÞf gki¼1;

where eif gki¼1 � E is a path in the graph G starting at u and ending at u0; v if gki¼1 � H is a sequence of speeds, and tif gki¼1 � Z is
an increasing sequence of times satisfying t1 P 0 and

tiþ1 P ti þwðeiÞ
v i

:

The start time is defined as t1, and the finish time is defined as tk þ wðekÞ
vk

.

Note 2. If for some i in the truck path P,

Dti ¼ tiþ1 � ti þwðeiÞ
v i

> 0;

this corresponds to a truck waiting at a certain node during a waiting time of Dti.

Definition 3. A truck mission is an ordered tuple

M ¼ ðs;d; sÞ 2 V � V � Zþ;

where s– d, representing the starting point s, the destination d, and the deadline s of a truck.
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Definition 4. Given a list of truck missions

ðs1; d1; s1Þ; . . . ; ðsN;dN; sNÞ½ �; sn 2 V ; dn 2 V ; sn 2 Zþ;

and a set of allowed speeds H, a platoon routing S is a list of truck paths

S ¼ P1; . . . ; PN½ �;
where path Pn starts at sn, ends at dn, and has a finish time earlier than sn.

For a platoon routing S, we define NSðTÞ as the number of different truck paths in S containing the edge traversal T. NSðTÞ is
called the platoon size of T or the number of trucks in a platoon on T.

Definition 5. The fuel cost of a platoon routing S is

CðSÞ ¼
X

T:NSðTÞ>0

cðTÞ � 1þ gðNSðTÞ � 1Þð Þ;

where g is a platooning cost factor 0 < g < 1.
For a fixed input, a platoon routing S is said to be optimal if no other platoon routing yields a smaller fuel cost.

Note 3. The fuel cost for any nontrivial platoon in S (i.e., including an edge traversal T with platoon size greater than 1) will
be less than the sum of the costs for the individual trucks within the platoon. A truck traveling behind another truck in a
platoon has a fuel cost of only cðTÞ � g, owing to a reduction in air resistance. Therefore NSðTÞ � 1 trucks receive the reduced
fuel cost while the leading truck consumes the full amount.

Definition 6. The platooning problem consists of finding the optimal platoon routing for a finite list of truck missions on a
graph G. If G is a planar graph, the problem is called the planar platooning problem.

The unlimited platooning problem is a special case of the platooning problem where the deadlines sn ¼ 1 for n ¼ 1; . . . ;N,
and H ¼ vf g.

The decision version of the platooning problem consists of deciding whether, given a list of truck missions on a graph G and
an integer K, it is possible to find a platoon routing with cost less than or equal to K.

Note 4. Given a platoon routing S for an instance of the platooning problem, the fuel cost calculation can be performed in
polynomial time. Consequently, the decision version of the platooning problem is NP-complete if and only if the platooning
problem is NP-hard.

From here on, this article will be concernedmainly with the unlimited platooning problem. Even though sn ¼ 1; 8n, each
valid platoon routing must end in the respective destination point dn. This prevents HDVs from stalling indefinitely at a node
to avoid consuming fuel.

2.2. Basic results

We can now use these definitions to prove properties about solutions to the platooning problem.

Definition 7. A cycle in a truck path P is a nonempty contiguous subpath of P, namely, a subsequence of P, where the first and
last vertex are the same.

Theorem 2.1. In an optimal platoon routing for the platooning problem, no truck path will contain a cycle; in other words, no HDV
will return to a node that it already visited.

Proof. Suppose there is an optimal platoon routing S in which a truck path P contains a cycle O starting and ending at u 2 V .
We create a new platoon routing S0 by letting the HDV in question wait at u instead of traversing the cycle, thereby removing
O from P. Since edge traversals are removed in S0,

NS0 ðTÞ < NSðTÞ
for each T 2 O.

In a platoon routing S,

CðSÞ ¼
X

T:NSðTÞ>0

cðTÞ � g � NSðTÞ þ cðTÞð1� gÞ >
X

T:NS0 ðTÞ>0

cðTÞ � g � N0
SðTÞ þ cðTÞð1� gÞ ¼ CðS0Þ;
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since cðTÞ � g > 0. CðS0Þ < CðSÞ contradicts the optimality of S and therefore no truck returns to an earlier visited node in an
optimal platoon routing. h

Definition 8. The fuel cost of a truck path P ¼ Tif g, is defined as

cðPÞ ¼
X
Ti2P

cðTiÞ:

Theorem 2.2. There exists an optimal platoon routing for the unlimited platooning problem in which no two trucks split and then
merge again. More rigorously, there exists an optimal platoon routing such that for any pair of its truck paths P1 and P2 the fol-
lowing holds: If two subpaths Q1 � P1 and Q2 � P2 start in u 2 V and end in v 2 V and have intersecting waiting times at both u
and v, then Q1 ¼ Q2.

Proof. Let S be an optimal platoon routing with fuel cost CðSÞ in which there are two paths P1 and P2 containing subpaths
Q1 � P1 and Q2 � P2 both starting at a node u 2 V and ending at v 2 V . Without loss of generality we may assume that
CðQ1Þ 6 CðQ2Þ. Let S0 be the platoon routing S where P2 has Q2 replaced by Q1. Note that this is still a valid platoon routing
since Q1 and Q2 have intersecting waiting times.

If an edge traversal in Q2 has platoon size greater than one, then the reduction in total fuel cost for removing that
edge traversal is cðTÞ � g. Consequently, by removing Q2 from P2, the total fuel cost is reduced by at least CðQ2Þ � g. By
inserting Q1 into P2 n Q2, we introduce an extra fuel cost of CðQ1Þ � g since Q1 is already a subpath of P1. Hence, the
fuel cost of S0 is

CðS0Þ ¼ CðSÞ � g � CðQ2Þ þ g � CðQ1Þ ¼ CðSÞ þ gðCðQ1Þ � CðQ2ÞÞ 6 CðSÞ;
since CðQ1Þ 6 CðQ2Þ. Since CðSÞ was an optimal platoon routing, CðSÞ 6 CðS0Þ, and hence CðSÞ ¼ CðS0Þ. This implies that for
every optimal platoon routing, where a pair of trucks splits at a node u and then merges again at a node v, there is an optimal
platoon routing where they share the same truck path from u to v. h

3. NP-completeness

Theorem 3.1 states the computational difficulty of the general platooning problem. The proof is a reduction from set cov-
ering, which Karp (1972) shows is NP-complete, to the unlimited platooning problem. This reduction shows that the pla-
tooning problem on general graphs is hard even when deadlines are ignored. However, one can reasonably assume that
most road networks correspond to planar graphs. It is hence useful to obtain results on the difficulty of the planar platooning
problem as well. Theorem 3.2 shows that the planar platooning problem is NP-complete as well.

3.1. Reduction to the unlimited platooning problem

Theorem 3.1. The decision version of the platooning problem is NP-complete.

Proof. Given a finite set A ¼ f1;2; . . . ;Ng, a collection of subsets B � PðAÞ, and an integer K, an instance ðA;B;KÞ of the set
covering problem consists of determining whether it is possible to find a subcollection M � B; jMj 6 K , such that each ele-
ment of A is an element in at least one of the sets of M.

ðA;B;KÞ can be reduced to an instance of the platooning problem by creating a graph G0 ¼ ðV ; EÞ in the following way.
First, create a starting node s, the nodes m1;m2; . . . ;mjBj and the nodes r1; r2; . . . ; rN . The node mi here represents a subset
ti 2 M, and the node rn represents the element n 2 A. Create edges from s to each of the nodesm1;m2; . . . ;mjBj, with weight 1.
Call these edges left edges. Finally create an edge frommi to rn, with weight 1þ 1

g, if and only if subset ti contains the element
n. Call these edges right edges. Fig. 2 illustrates the setup.

To create a platooning problem, we let H ¼ vf g such that f ðvÞ ¼ 1, and we introduce truck missions

Mi ¼ ðs; ri;1Þ
for i ¼ 1; . . . ;N.

A truck can save at most 1� g in fuel cost by platooning on a left edge. Since 1þ 1
g

� �
� g > 1 > 1� g, it follows that the

cost of a right-edge traversal, even when platooning, is greater than the maximal platooning savings on a left-edge traversal.
Thus, in an optimal platoon routing all truck paths will contain as few right-edge traversals as possible. Hence, every truck
path will contain only one left-edge traversal and only one right-edge traversal.

We now show that there is a solution to the set covering problem, using at most K subsets if and only if there is a platoon
routing on the graph G0, with a total cost of at most K þ ðN � KÞð1� gÞ þ N 1þ 1

g

� �
. Suppose A can be covered with a subset
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M � T , where jMj ¼ k 6 K. Then there is a platoon routing containing k different left-edge traversals, each reaching from s to
one of the mi 2 M. The cost of the platooning routing is

ðcost for left-edge leadersÞ þ ðcost for left-edge followersÞ þ ðcost for right-edges traversalsÞ

¼ kþ ðN � kÞgþ N 1þ 1
g

� �
6 K þ ðN � KÞgþ N 1þ 1

g

� �
;

since there are k platoons traveling a distance of 1 each (k platoon leaders with N � k platoon followers) and since each truck
path also contains a right-edge traversal with platoon size equal to one.

It remains to show that if there is an optimal solution to the platoon routing problem on G0 with cost less than or equal to
K þ ðN � KÞgþ N 1þ 1

g

� �
, then there is a set covering of size less than or equal to K. We show the contrapositive. Assume that

the smallest set covering of ðA;B;KÞ is a subsetM � B, where jMj ¼ k > K. In an optimal platoon routing on G0 the truck paths
must contain at least k left edges in order for every truck mission to be completed. This is true since each HDV must reach its
destination and in order to do that the platoon routing must contain enough middle nodes such that every destination node
is ‘‘covered.” This results in a cost of at least

kþ ðN � kÞgþ N 1þ 1
g

� �
> K þ ðN � KÞgþ N 1þ 1

g

� �
;

since N P k > K and 0 < g < 1.
We conclude that there is a platoon routing on G0 with cost less than or equal to K þ ðN � KÞð1� gÞ þ N 1þ 1

g

� �
if and only

if there is a set covering M � B of P with jMj 6 K. Consequently, the decision version of the platooning problem with a single
starting node is NP-complete. h

Note 5. As a direct consequence of the NP-completeness of the decision version of the unlimited platooning problem, the
platooning problem and its unlimited version are both NP-hard.

3.2. Reduction to the planar platooning problem

Having shown that the platooning problem on general graphs is NP-complete, we now show that the decision version of
the platooning problem on planar graphs is also NP-complete.

Theorem 3.2. The decision version of the planar platooning problem is NP-complete.

Proof. The theorem follows from a reduction from the decision version of the rectilinear Steiner arborescence problem
(RSAP), which is NP-complete. A rectilinear Steiner arborescence (RSA) is a directed tree with nodes on integer coordinates
and with arcs from ði; jÞ to ðiþ 1; jÞ and ði; jþ 1Þ for all ði; jÞ 2 Z2. RSAP consists of finding an RSA (1) with total edge length less
than or equal to a given integer, (2) rooted at the origin, and (3) having nodes in a given set of points in Z2

þ, the first quadrant

of Z2. For more information about the RSAP, see Rao et al. (1992).
Let ðR;KÞ be an instance of RSAP, where R is a set of points p1; . . . ; pNf g in Z2

þ and an integer K. ðR;KÞ can be reduced to an
instance of the decision version of the planar platooning problem by creating a graph GR ¼ ðVR; ERÞ with the vertex set

VR ¼ ðx; yÞ 2 Z2 j ðx; �Þ 2 R ^ ð�; yÞ 2 R
� � [ ð0;0Þf g;

Fig. 2. Graph G0 created from an instance of the set covering problem. Each node mi represents a subset in B, and each node rn represents an element in A.
The white node represents a starting node and dark gray nodes represents destination nodes.
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and the edge set

ER ¼ ði; jÞ 2 VR � VR j ðxi ¼ xj _ yi ¼ yjÞ ^ ði and j are neighborsÞ� �
;

where two nodes i and j are neighbors if there is no other node on the line segment connecting i and j. This means that for
each pair of nodes an edge will be drawn between them if they share the same x- or y-coordinate and there is no other node
between them.

The edge weight will equal the Euclidean distance between the nodes. The graph GR is called a Hanan grid; and the
search for an RSA may, according to Hanan, without loss of generality be restricted to this grid (Hanan, 1966, Theorem 4).
An example of a Hanan grid can be seen in Fig. 3. Introduce N truck missions. For each truck n let the starting point be
s ¼ ð0;0Þ and the destination dn ¼ pn. The set of allowed speeds will be H ¼ 1f g. Without loss of generality, we may
assume that the fuel cost per unit distance f ð1Þ ¼ 1. For each truck n, a deadline sn ¼ xn þ yn is introduced. These
deadlines imply that in every platoon routing, each truck path from s to dn must be a shortest path from s to dn with
length kdnk1 in the graph GR. By construction of the platooning problem instance, all edge traversals must go from left to
right or from the bottom up.

We will now show that there exists a rectilinear Steiner tree with edge length less than or equal to K if and only if there is
a platoon routing for the created platooning problem instance on GR with total fuel cost less than or equal to gDþ ð1� gÞ � K ,
where

D ¼
XN
n¼1

kdnk1:

Note that the total edge length of the RSA is the sum of the lengths of the edges in the RSA, while D is the sum of the
distances from the start to every destination.

First, assume there is an RSA with total edge length equal to k 6 K. For a given RSA there is a corresponding platoon
routing S; since the RSA defines a tree, there is only one possible route for each HDV starting at the origin to reach its
destination. The total path length (the length of the union of all paths) in the platoon routing S corresponding to this RSA will
then be k, and on each of the edge traversals in the platoon routing only one platoon (consisting of one or more HDVs) will
drive. Since the total length of all edge traversals still will be D, the total fuel cost will equal

CðSÞ ¼ ðcost for trucks driving firstÞ þ ðcost for trucks driving behindÞ ¼ kþ g � ðD� kÞ ¼ gDþ ð1� gÞ � k
6 gDþ ð1� gÞ � K:

To prove the equivalence, we need to show that if there is an optimal platoon routing to the created platooning
problem instance with cost less than or equal to gDþ ð1� gÞ � K , then there is an RSA with total edge length less than
or equal to K. To this end, we show the contrapositive by supposing that there is no RSA with total edge length less than
or equal to K. We further assume that the minimal edge length is k > K. Consider an optimal platoon routing S.
According to Theorem 2.2, we may assume S to be a platoon routing where no HDVs meet again after having split
up. Hence, the union of paths in S will be a tree, and it will in fact be an RSA since every truck path in S must be a
shortest path from the origin to a destination. The length of this RSA must hence be at least k, and the total fuel cost
of this platoon routing is given by

CðSÞ ¼ kþ g � ðD� kÞ ¼ gDþ ð1� gÞ � k;
which decreases with k. Hence, there cannot be a platoon routing with cost less than or equal to

gDþ ð1� gÞ � K:
This implies that the decision version of the planar platooning problem is NP-complete. h

Note 6. Since the decision version of the planar platooning problem is NP-complete, it follows directly that the planar pla-
tooning problem is NP-hard.

4. Integer linear programming formulation

In this section, we convert the unlimited platooning problem into an ILP. The need for integer variables in our formulation
arises because fractional vehicles cannot traverse an edge and because the fuel consumption of a platoon is a piecewise linear
function of the number of trucks forming the platoon. We first describe an integer linear programming formulation for the
unlimited platooning problem where all truck missions share the same starting node, a scenario that occurs throughout the
real world. We then form an ILP for the general unlimited platooning problem. In both formulations the fuel cost per unit
distance is assumed to be 1. This does not limit the validity of the solution since one can scale the final result by f ðvÞ to
obtain the correct fuel cost. We also propose an extension of the ILP formulation to the most general platooning problem
where finite deadlines and a nontrivial set of speeds are allowed.
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Let G ¼ ðV ; EÞ be a graph, and let ðs1; d1; s1Þ; . . . ; ðsN; dN; sNÞ½ � be a fixed list of truck missions. The different versions of the
platooning problem are equivalent to the following ILP problems; by solving them, an optimal platoon routing is easily
obtained.

4.1. Unlimited platooning problem – shared starting node

We formulate the unlimited platooning problem where s1 ¼ � � � ¼ sN ¼ s for some node s 2 V and s1 ¼ � � � ¼ sN ¼ 1. The
variables used in this ILP formulation are contained in Table A.3 in Appendix A.

Definition 9. We define the same-start unlimited ILP problem as follows

minimize h ¼
X
ði;jÞ2E

wði; jÞ � gij; ð1Þ

subject to
X
j

xijn �
X
j

xjin ¼
1 if i ¼ s

�1 if i ¼ dn

0 otherwise

8><
>: 8i 2 V ; 1 6 n 6 N; ð2Þ

bij ¼ xij1 _ � � � _ xijN 8ði; jÞ 2 E; ð3Þ

gij ¼ bij þ g
XN
n¼1

xijn

" #
� bij

 !
8ði; jÞ 2 E; ð4Þ

xijn 2 f0;1g 8ði; jÞ 2 E; 1 6 n 6 N;

bij 2 f0;1g 8ði; jÞ 2 E;

gij 2 R 8ði; jÞ 2 E:

Note 7. The logical constraints in (3) are convertible into linear inequalities. This procedure is explained in Appendix B.1. It is
hence justified to call this problem defined an integer linear programming problem.

We seek to minimize the sum of the joint fuel consumption over each edge (which may be zero if no truck traverses the
edge). Constraint (2) ensures that each truck follows a path from the start to its destination. Constraint (3) implies that bij is
set if and only if a truck traverses the edge ði; jÞ. Constraint (4) corresponds to a calculation of the fuel consumption over this
edge.

Theorem 4.1. A cost c is the value of the optimal solution to the same-start ILP problem if and only if c is the cost of an optimal
platoon routing for the corresponding same-start unlimited platooning problem. Moreover, using the values of xijn from the
solution, a platoon routing with fuel cost c is retrievable in polynomial time.

Proof. A platoon routing for the unlimited platooning problem is feasible if for all n, truck path n is a path from s to dn. As a
consequence of Theorem 2.2 and the fact that all HDVs start on the same node, in an optimal platoon routing, all edge traver-
sals over a certain edge have the same time. Consequently, in the same-start ILP formulation we may ignore the times of the
edge traversals.

Fig. 3. Hanan grid created during reduction from RSA. White indicates starting node, and black indicates destinations.
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The variable xijn will be true if truck path n in the platoon routing contains an edge traversal over the edge ði; jÞ 2 E, and
false otherwise. According to Ahuja et al. (1993, p. 6), the constraint in (2) ensures that for a given HDV n, the edges
corresponding to the set variables xijn will construct a path from s to dn. The variable bij is a binary variable for each edge
ði; jÞ 2 E and is subject to the constraints in (3).

The constraints in (3) for bij are set so that bij is true if xijn is true for some n, that is, if some HDV traverses ði; jÞ, and false
otherwise. Note that the constraints in (3) do not restrict the possible values for the xij variables. All combinations of paths
from start to finish are allowed; hence, for every possible platoon routing for the same-start unlimited platoon problem,
there is a corresponding solution to the same-start ILP problem. For the same reason, every solution to the same-start ILP
problem has a corresponding platoon routing.

The variable gij corresponds to the fuel cost per unit distance for the set of trucks that traverses ði; jÞ in the platoon
routing. One can easily see that if no truck traverses ði; jÞ, then gij is 0; otherwise, gij is equal to the cost for a platoon leader
plus the cost for the trucks following. The objective function is calculated by summing over all edges and equals the total fuel
cost of the corresponding platoon routing.

When the objective function h has been optimized, one can easily obtain the truck paths to create a valid platoon routing.
For each truck n, construct a truck path by starting at s and traversing G by following edges corresponding to variables xijn set
to true. While doing so, one must keep track of the time taken tin to reach a certain node i. In each step, one appends to the
truck path the edge traversal ði; jÞ; tin;vð Þ. From each node there will only be one possible edge to traverse, which is
guaranteed by Theorem 2.1. Traversing is stopped when dn is reached. h

Note 8. With minor modifications (reversing the path retrieval and selecting different starting nodes and a shared destina-
tion node) the same-start unlimited ILP is applicable to unlimited platooning problem instances where all truck missions
share not the same starting node but. rather, the same destination.

4.2. Unlimited platooning problem – different starting nodes

In the next ILP formulation we assume that s1 ¼ � � � ¼ sN ¼ 1 but allow different starting nodes for the truck missions.
When converting this problem without constraints on the starting nodes, the calculation of the total fuel cost is more del-
icate. An optimal platoon routing may now contain edge traversals that differ only in time, which means that several HDVs
can traverse the same edge without platooning. The variables used in the ILP formulation of the unlimited platooning prob-
lem are also summarized in Table A.4 in Appendix A.

Definition 10. The unlimited ILP problem is as follows

minimize h ¼
X
ði;jÞ2E

wði; jÞ � gij; ð5Þ

subject to
X
j

xijn �
X
j

xjin ¼
1 if i ¼ sn

�1 if i ¼ dn

0 otherwise

8><
>: 8i 2 V ; 1 6 n 6 N; ð6Þ

tijn P tkin þwðk; iÞ� 	 _ : xijn ^ xkin
� 	 8i; j; k 2 V s:t ði; jÞ 2 E ^ ðk; iÞ 2 E; 1 6 n 6 N; ð7Þ

pijnm ¼ xijn ^ xijm ^ tijn ¼ tijm
� 	 8ði; jÞ 2 E; 1 6 m 6 n 6 N; ð8Þ

aijn ¼ xijn ^ : pijn1 _ � � � _ pijnðn�1Þ
� �

8ði; jÞ 2 E; 1 6 n 6 N; ð9Þ

gij ¼
XN
n¼1

aijn þ g � xijn � aijn
� 	� 	 8ði; jÞ 2 E; ð10Þ

tijn 6 N �
X
e2E

wðeÞ 8e 2 E; 1 6 n 6 N; ð11Þ

xijn 2 f0;1g 8ði; jÞ 2 E; 1 6 n 6 N;

tijn 2 Zþ 8ði; jÞ 2 E; 1 6 n 6 N;

pijnm 2 f0;1g 8ði; jÞ 2 E; 1 6 m 6 n 6 N;

aijn 2 f0;1g 8ði; jÞ 2 E; 1 6 n 6 N;

gij 2 R 8ði; jÞ 2 E:

Note 9. Once again, we note that it is possible to convert the logical constraints in the above ILP into linear inequalities as
explained in Appendix B.2. Hence, the problem is an integer linear programming problem, only formulated more
conveniently.
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In this model, we seek to minimize the same objective as in Definition 9. Constraint (6) corresponds to (2) except that it
allows for different starting points. Constraint (7) ensures the traversal times for consecutive edges in a truck path increases
with at least the edge weight. Constraint (8) calculates a binary variable pijnm deciding if trucks n andm traverses edge ði; jÞ at
the same time, implying that they are in a platoon. The decision variable aijn in (9) determines if truck n is a platoon leader of
ði; jÞ, using the convention that the truck with the lowest index in a platoon is always the leader. Constraint (10) calculates gij,
the joint fuel consumption over an edge ði; jÞ, taking into account the possibility of multiple platoons at different times. Con-
straint (11) limits the finish times to make the search space bounded.

Theorem 4.2. A cost c is the optimal solution to the unlimited ILP problem if and only if c is the cost of an optimal platoon routing
to the corresponding unlimited platooning problem. Moreover, using the values of xijn and tijn from the solution, a platoon routing
with fuel cost c is retrievable in polynomial time.

Proof. As was the case in the formulation with a shared starting node, the variable xijn is set if HDV n traverses edge ði; jÞ in
the platoon routing. The constraints in (6) will ensure that, for each HDV n, the edges corresponding to the set xijn builds a
path from sn to dn. The variable tijn corresponds to the time when HDV n started traversing edge ði; jÞ. First we note that there
will always be an optimal routing such that all times satisfy the constraints in (11). Choosing a time equal to the value on the
right-hand side in (11) would correspond to, for example, an HDV waiting at a node while all other HDVs traverse the whole
graph one at a time. This is obviously a generous upper limit for the finish times of any actual platoon routing. The con-
straints in (7) force tijn to be greater than or equal to tkin þwðk; iÞ if there are edges both into node i; ðk; iÞ, and out from node
i; ði; jÞ, that are traversed by HDV n. This implies that the traversal times increase appropriately during a truck path. The xijn
and tijn variables are thus constrained to produce valid platoon routings. The remaining variables are only required to provide
the proper total fuel cost in the objective function.

Constraint (8) ensures that pijnm is true if and only if trucks n andm platoon over edge ði; jÞ, that is, both trucks traverse the
edge at the same time. In (9), aijn is set if xijn is set to true and no truck with lower index traverses edge ði; jÞ at time tijn. This
may be interpreted as truck n leading a platoon over ði; jÞ.

The definition of gij in (10), corresponding to the fuel cost per unit distance for the set of trucks that traverses ði; jÞ, is
appropriate because

aijn þ g � ðxijn � aijnÞ ¼
0 if truck n does not traverse ði; jÞ;
1 if truck n leads a platoon over ði; jÞ;
g if truck n is in the tail of a platoon over ði; jÞ;

8><
>:

which is exactly the cost per unit distance of the traversal for truck n. The variable gij hence evaluates to the sum of the costs
per unit distance of all edge traversals over ði; jÞ. The objective function sums over all edge traversals in the solution, and this
equals the total fuel cost of the corresponding platoon routing.

The retrieval of the truck paths forming an optimal platoon routing for the unlimited platooning problem is similar to the
procedure explained in the proof of Theorem 4.1. For each truck n, we construct a truck path by starting at sn and traversing G
by following edges corresponding to set variables xijn. In each step we append to the truck path the edge traversal
ði; jÞ; tijn;v
� 	

. Once again, guaranteed by Theorem 2.1, from each node there will only be one possible edge to traverse. We
stop when dn is reached. h

4.3. Extension

Having presented the ILP formulation for the unlimited platooning problem, it is straightforward, though tedious, to
extend the formulation to include problem instances of the most general platooning problem where truck missions have
finite deadlines and the set H contains more than one single speed. As we will show in Section 6, however, the limit for solv-
ing an unlimited ILP problem within a couple of minutes on a reasonable fast computer lies around 10 trucks. A more com-
plex formulation, such as a potential ILP for the general platooning problem, will likely result in even slower resolution
times. However, one should note that this is highly dependent on the values of the deadlines; with strict deadlines few pla-
tooning opportunities occur and should result in a near trivial and quick solution.

For the interested reader, we here outline such an extension. The formulation is similar to the unlimited ILP formulation.
To keep the formulation linear when introducing multiple allowed speeds, however, we introduce a set of binary variables
for each truck, each speed, and each edge. A natural addition is to include the variable mijnv , which is true if truck n traverses
edge ði; jÞ with speed v, and false otherwise. The constraint for deciding whether two trucks platoon, like the one in (8), now
needs to include a check to see that both trucks also use the same speed. Other than these extensions, the ILP formulation for
the general platooning problem does not differ excessively from the unlimited ILP.

5. Heuristics

While the formulations in the previous section are useful for solving small problems exactly, large-scale problems result
in computationally intractable ILPs. For example, an ILP generated by 10 trucks at different starting nodes on a graph of the
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German Autobahn takes over 20 min to solve, using the default Gurobi branch-and-bound ILP algorithm, on a desktop com-
puter with 8 2.6 GHz processors. Since we have shown the platooning problem to be NP-complete, one is forced to settle
with heuristic solvers in order to obtain platoon routings for large instances of the problem. In this section two different con-
structive heuristics and one improvement heuristic—a local search algorithm—are described. The constructive heuristics are
derived from a heuristic developed by Larson et al. (2013). Note that in their most simple form described below, these
heuristics are solvers for the unlimited platooning problem. For convenience, in this section, we use the word platoon for
describing both a single HDV and a group of HDVs.

5.1. Best Pair heuristic

We have developed an algorithm, henceforth the Best Pair heuristic, for the unlimited platooning problem, based on the
heuristic by Larson et al. (2013). Our algorithm iteratively chooses the current best pair of platoons to merge into, reducing
the number of truck mission by one. At each step, the goal is to find the optimal combination of both merging and splitting
point for a pair of platoons and replacing their earlier missions with one single mission with the merging point as start and
the splitting point as destination. Pseudocode for the algorithm is presented in Algorithm 1.

The ‘‘best pair of platoons to merge” is defined as the pair of platoons that save the most fuel by merging. The fuel savings
are calculated as the difference between letting the two platoons take their shortest paths by themselves (i.e., no platooning
between the two platoons even if their shortest paths overlap) and making them merge into a single platoon between a pair
of nodes in the graph. Notice that if the Best Pair heuristic is presented with a same-start platooning problem instance, it will
produce the same result as the heuristic by Larson et al. (2013).

The best merging and splitting node for a pair of HDVs is computed by iterating over all pairs of nodes in the graph and
finding the combination that produces the greatest fuel savings. A naive implementation of the Best Pair heuristic will have
the time complexity

OðN3 � jV j2Þ;
since the search for best pair of platoons and their merging and splitting points takes OðN2 � jV j2Þ. This operation of merging
two HDVs can ultimately be performed OðNÞ times. When N merges have been accomplished, the result is the entire fleet of
HDVs gathered in one platoon. After minor code optimizations a time complexity of

OðN2 logN � jV j2Þ
can be reached. This is achieved by storing (in a tree structure) the savings of all pairs of platoons found so far so that the
greatest savings can be found in OðlogNÞ time. When two platoons are merged, new savings, corresponding to the savings of
the new platoon combined with each of the other platoons, are inserted into the tree structure. This operation has time com-

plexity OðN logN � jV j2Þ and is carried out at most N times.

Algorithm 1. Pseudocode for Best Pair heuristic

An example run of the Best Pair heuristic can be seen in Fig. 4. White nodes represent starting nodes of platoons, and black
nodes represent destination nodes. Each letter in one of the figures represents a truck, and the edge length of all the edges in
the given graph is 1. The algorithm runs as follows. In the initial state the savings of the pairs of trucks (A,B), (A,C) and (B,C)
are compared. Trucks A and B are then chosen to merge at node 2 and split at node 7 since that produces savings of 2ð1� gÞ
fuel cost. Note that the algorithm could just as well have chosen pair (B,C) which also produces savings of 2ð1� gÞ fuel cost
by platooning from node 4 to node 7. In Fig. 4(b) platoon C and AB can platoon over the edge (3,7), and a new platoon, ABC,
seen in Fig. 4(c) is therefore created. Since no more platoons can be formed, the algorithm is now done.
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5.2. Hub heuristic

The idea of the heuristic presented in this section, the Hub heuristic, is to drive platoons through certain nodes called
hubs. By selecting such hubs we replace a general platooning problem with multiple subproblems that are easier to solve.
The heuristic works by partitioning the trucks and selecting a hub for each partition. To find a platoon routing for a problem
instance where each HDV must drive through a certain hub, we first solve the problem of driving the HDVs from their start-
ing nodes to the hub and then solve the problem of driving the HDVs from the hub to their destinations. Both problems can
be solved with a same-start solver such as the heuristic described by Larson et al. (2013). The pseudocode for the Hub heuris-
tic can be seen in Algorithm 2.

The partitioning of the trucks and the selection of hubs can be made in a multitude of ways. In our implementation of the
Hub heuristic, we attempt to merge platoons or trucks with the largest incentive to drive together. We do so by assigning a
rating to each edge in the graph for each truck. The rating measures how probable a truck is to drive over a given edge. We
can then compare such edge ratings to see whether a pair of trucks should form a platoon. This should generate good platoon
routings since two trucks that have a highly ranked edge in common are likely to save fuel by platooning over this edge. For
each platoon we create a vector of edge ratings (a real number for each edge representing the ‘‘incentive” for the platoon to
drive over that edge). To calculate how compatible two platoons are, we pointwise multiply their edge rating vectors and
take the sum over the resulting vector.

Algorithm 2. Pseudocode for Hub heuristic

Fig. 4. Example run of the Best Pair heuristic.
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We calculate each edge rating in constant time. Thus, finding the pair of platoons with the greatest joint edge rating vec-
tor can be done in OðN2 � jEjÞ time by finding the joint edge rating vector of each pair of platoons currently available. Such a
search is performed a maximum of N times in the Hub heuristic, because after N merges we end up with one single part in
the partition. The time complexity of a naive implementation of the Hub heuristic is

OðN3 � jEj þ N2 � jV jÞ:
The second term in the time complexity stems from having to solve the same-start problems that the Hub heuristic pro-
duces. Solving these subproblems using the Best Pair heuristic has time complexity OðN2 � jV jÞ.

Just as in the case of the Best Pair heuristic, we can improve the time complexity by storing the savings of each pair of
parts in a tree structure so that the largest savings can be retrieved in OðlognÞ time. This optimization produces a time com-
plexity of

OðN2 logN � jEj þ N2 � jV jÞ ¼ OðN2 logN � jEjÞ:

5.3. Local search

In addition to the two construction heuristics, we consider the following improvement heuristic. The improvement
heuristic is a local search algorithm that tries to enhance a given platoon routing S by updating a single truck path in S.
The goal of the local search algorithm is, given a platoon routing for a set of truck missions, to find the optimal truck path
for one of these truck missions given that every other truck path in the platoon routing remains fixed, except possibly for the
edge traversal times. The local search algorithm is a generalization of Dijkstra’s shortest path algorithm where a truck can
not only move alone over edges but also platoon over them where possible. Pseudocode for the local search algorithm can be
seen in Algorithm 3.

If all truck paths except for the one currently being improved are immutable during the local search, then there might
emerge platooning opportunities that we miss because the current truck does not reach the relevant edges in time. Since
we are interested in maximizing our improvement heuristic for the unlimited platooning problem, it is advisable to let all
other trucks wait extra time before each edge traversal. This approach will result in more platooning opportunities and
hence a better platoon routing.

The order in which we choose the truck paths to improve could be important when running the local search algorithm. In
our implementation, we iterate over the truck paths in lexicographic order and improve the truck path of one truck at a time,
until no single truck path can be improved anymore, that is, until a local optimum is reached.

The complexity of the local search algorithm is similar to that of a standard Dijkstra’s algorithm. The only difference is the
number of possible edge traversals; there can be N traversals in the local search algorithm for each traversal in the standard
algorithm. Therefore the complexity of running our local search algorithm to update a single truck path is

OðN � jEj logðN � jV jÞÞ:

Algorithm 3. Pseudocode for local search algorithm
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6. Performance

To compare our heuristics, we generated random truck missions on a graph (containing 647 nodes and 1390 edges)
representing Germany’s Autobahn network. To generate an instance of the same-start platooning problem, we
placed 10, 20, . . . , 200 trucks on a random node in the network and assigned each a random destination. This was repeated
20 times. A similar test case of problems was generated by allowing the starting node for each HDV to be randomly
generated. Since we want to compare our methods against the optimum and since the platooning problem with different
starting nodes is much more difficult to solve exactly, we were only able to compare our heuristics on examples involving
at most 10 HDVs. All computational results were generated with g ¼ 0:9. The choice of g is motivated by the conclusions
drawn in earlier literature. The factor g is set to a more modest value of 10% rather than the possible 21% obtained by
Bonnet and Fritz (2000).

We note that the Gurobi optimizer is able to solve instances of the same-start unlimited ILP with up to 200 HDVs in
only a few minutes. This capability greatly surpasses that of any other platooning formulation or framework. For example,
the only previous attempt at finding the exact solution for a platooning problem (that we are aware of) is that of Kammer
(2013). The formulation therein is only capable of solving instances of the same-start platooning problem for fewer than 5
vehicles.

To properly calculate the possible fuel savings from platooning, we define a trivial routing as a platoon routing in which
each truck path consists of a shortest path from its start to its destination with the earliest possible finish time. Because of
the definition of the total fuel cost of a platoon routing, trucks may platoon unintentionally as a consequence of their sharing
a simultaneous subpath in the trivial routing. We call this phenomenon natural platooning since no outside intervention is
needed. It is unclear whether natural platooning occurring during computer simulations would translate into real-world sce-
narios; two trucks traveling on the same arc at the same time may not necessarily platoon.

6.1. Results

We now present the results from running Gurobi on the exact ILP formulations and the heuristic solvers on problem
instances with a variable amount of trucks on the German road network. The results are presented by using box plots.

When calculating the fuel savings, we compare the total fuel cost for a platoon routing to the fuel cost of a trivial routing.
Figs. 5(a) and (b) show the maximum possible fuel savings, in percentage of the fuel cost of the trivial routing, for different
instances of the unlimited platooning problem. We here ignore natural platooning, and the trivial cost is merely calculated as
the sum of the lengths of the shortest paths from starts to destinations.

The percentages presented in Figs. 6�8 are computed as follows

Percentage of maximum savings ¼ ðcost of trivial routingÞ � ðcost of heuristic solutionÞ
ðcost of trivial routingÞ � ðoptimal costÞ ;

where the cost of the trivial routing accounts for natural platooning.
In Fig. 6(a) we present the performance of the Best Pair heuristic on the same-start unlimited platooning problem. Fig. 6

(b) presents the performance of the Best Pair heuristic on the same-start problem, but each solution is improved by the local
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Fig. 5. Percentage of the total fuel cost that can be reduced by platooning in the unlimited platooning problem instances with a variable number of trucks.
Natural platooning is ignored in the fuel cost of trivial routings.
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search heuristic. Figs. 7(a) and (b) show the performance of the Best Pair heuristic on the different starts unlimited platoon-
ing problem, where the latter include improvements from the local search heuristic. Figs. 8(a) and (b) are the equivalent
results for the Hub heuristic.

6.2. Discussion

From Figs. 5(a) and (b) we conclude that significant fuel savings can be achieved from platooning HDVs. The same-start
problem instances naturally present more platooning opportunities since more vehicles are present in the larger examples
and the trucks’ positions are more concentrated, resulting in greater possible fuel savings. Nevertheless, even in platooning
problem instances with as few as 10 trucks at different starting nodes, fuel savings of more than 1.5% can be achieved in the
majority of cases. We point out that the fuel savings in the different start version of the problem is highly dependent on the
starting points and destinations of the trucks; trucks may be placed in the graph in a pattern that provides very few platoon-
ing opportunities. Nevertheless, the results of our simulations justify the search for optimal platoon routings.

In Fig. 6(a) we can see how the Best Pair heuristic performs on relatively large problem instances. The heuristic performs
well for up to 200 HDVs, with a large amount of the test cases solved optimally. In some test cases, however, where the
heuristic completely fails to realize fuel savings when the improvement heuristic is not used. This supplements the results
of Larson et al. (2013) and shows that by including more truck missions we can prevent the Best Pair heuristic from finding
good platoon routings. After applying the improvement by a local search, we obtain near-optimal results in most cases.
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Fig. 6. Percentage of maximum fuel savings for the same-start unlimited platooning problem found by the Best Pair heuristic.
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As can be seen when comparing Fig. 7(a) with Fig. 7(b) and Fig. 8(a) with Fig. 8(b), the local search algorithm greatly
improves the results of both the Best Pair heuristic and the Hub heuristic. Since the local search is able to change only a sin-
gle truck path at a time, we suspect that the improvements to the platoon routings are only minor adjustments. The heuris-
tics combined with these minor adjustments do, however, generate the optimal platoon routings in a vast majority of the
problem instances. As for the routes of individual vehicles, the optimal and heuristic solutions all prescribe that the majority
of vehicles take their shortest path routes, though there is often (slight) adjustments to their speed to facilitate the formation
of platoons.

One may note the wide range in savings in Figs. 6(a) and 8(a). This is, in part, due to the Best Pair and Hub heuristics occa-
sionally making irreversible decisions early in the algorithm. For example, the heuristics may pair two vehicles that do not
platoon in the optimal solution. Once this decision has been made, the heuristic is often committed to a far-from-optimal
solution. However, the local search heuristic appears to remedy many of these problems.

The results concerning the heuristics are based on a comparison where the trivial fuel cost was calculated as the sum of all
shortest paths between the starting and destination nodes taking natural platooning into account. We believe that using this
as the trivial cost produces fairer benchmarks; in the real world, HDVs traveling on the same path will likely take advantage
of forming platoons voluntarily. Natural platooning should hence be taken into consideration when evaluating platoon
routings.
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Fig. 7. Percentage of maximum fuel savings for different starts unlimited platooning problem found by the Best Pair heuristic.
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Fig. 8. Percentage of maximum fuel savings for the different starts platooning problem found by the Hub heuristic.
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7. Conclusion

In this paper we minimized the total fuel consumption for HDVs traveling between nodes in a road network by introduc-
ing vehicle platooning. The problem of achieving optimal vehicle routings in this aspect was modeled as a graph routing
problem—the vehicle platooning problem—which we showed is NP-hard. The NP-hardness applies not only to the general
problem but also to special cases such as when all truck missions have the same starting node and no deadlines and to prob-
lem instances on planar graphs. To take advantage of already existing software, we formulated different versions of the pla-
tooning problem as integer linear programs.

We were able to solve problem instances of up to 200 trucks in a graph representing Germany, when applying the extra
constraint that all trucks start on the same node. Removing this constraint, problem instances of size up to 10 HDVs were
solved within minutes.

For real-world use, where problem instances of several hundreds or thousands of trucks on graphs much larger than the
one studied in this article may occur, one must settle with heuristic or approximate solvers. We proposed three heuristic
solvers and compared their results with the optimal solutions obtained by solving the integer linear programming problems.
The proposed heuristics perform well on the instances considered. Since these were small problem instances, however, it
remains to evaluate the heuristics’ performance on larger test cases.

When letting all HDVs start at the same node we found that an optimal platoon routing generated a fuel cost reduction
that quickly converged to 9–10%, which is as good as possible considering that platooning vehicles only use 90% of the fuel
used by vehicles traveling alone. Substantially smaller problem instances with different starting nodes were solved, though
fewer vehicles imply fewer platooning opportunities. Nevertheless, the savings from optimal vehicle platoon routings reveal
a significant motivation for continued studies of the platooning problem.
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Appendix A. Terminology and variables

See Tables A.1–A.4.

Appendix B. Conversion of logical constraints

For completeness, we now present the conversion of the logical constraints in Section 4 to linear inequalities.

B.1. Same-start unlimited ILP

Recall the logical constraints in (2).

bij ¼ xij1 _ � � � _ xijN 8ði; jÞ 2 E:

They are equivalent to a number of linear inequalities, namely, the following.XN
n¼1

xijn � N � bij 6 0 8ði; jÞ 2 E; ðB:1Þ

XN
n¼1

xijn P bij 8ði; jÞ 2 E: ðB:2Þ

Suppose xijn is set for some 1 6 n 6 N. Then, the constraint in (2) forces bij to be true, and bij must also be set in order to sat-
isfy the constraint (B.1). Now suppose xijn ¼ 0 for all i. Then, (2) enforces that bij will be false. The constraint in (B.2) also
enforces this.

Table A.1
Description of important concepts used in this article.

Name Description

Edge traversal A triple consisting of an edge, the starting time of the traversal, and the speed of the traversal
Truck path A path from start to destination for a truck, i.e. a list of edge traversals
Truck mission A triple containing start, destination, and deadline for a truck
Platoon routing A list of truck paths satisfying a set of truck missions
Platoon size The number of trucks in a platoon
Platooning problem Given a set of truck missions, find a platoon routing with the lowest fuel cost
Unlimited platooning problem Platooning problem without deadlines
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B.2. Different-starts unlimited ILP

We will now perform the conversion of logical to linear constraints for the unlimited ILP. Let

B ¼ 2 � N �
X
e2E

wðeÞ:

The logical constraints in (7)

tijn P tkin þwðk; iÞ� 	 _ : xijn ^ xkin
� 	 8i; j; k 2 V s:t ði; jÞ 2 E ^ ðk; iÞ 2 E; 1 6 n 6 N

are equivalent to the following linear inequalities.

tijn � tkin � B � xijn þ xkin
� 	

P wðk; iÞ � 2B 8i; j; k 2 V s:t ði; jÞ 2 E ^ ðk; iÞ 2 E; 1 6 n 6 N: ðB:3Þ
If ðxijn ^ xkinÞ is false, then (7) does not enforce any constraints on tijn or tkin. The same is true for (B.3) since the �2B on the
right-hand side ensures that the inequality is trivially satisfied, independently of the values of tijn and tkin. If ðxijn ^ xkinÞ is true,
then (7) constrains tijn and tkin to satisfy tijn P tkin þwði; jÞ. In (B.3) xijn þ xkin ¼ 2 implying that the inequality is reduced to
tijn P tkin þwði; jÞ. Hence the two formulations are equivalent.

The logical constraints in (8)

pijnm ¼ xijn ^ xijm ^ tijn ¼ tijm
� 	 8ði; jÞ 2 E; 1 6 m 6 n 6 N

are equivalent to the following linear inequalities,

Table A.2
Important symbols used in this article.

Symbol Description

G ¼ ðV ; EÞ Graph with vertex set V and edge set E
g Fuel reduction factor from platooning
f ðvÞ Fuel cost per unit distance at speed v
cðeÞ Fuel cost for traversing an edge e
NSðTÞ Platoon size for edge traversal T
M Truck mission M ¼ ½ðsi;di; siÞ�i
CðSÞ Fuel cost of platoon routing S
si Deadline for truck i to reach di
di Destination vertex for truck i
si Starting vertex for truck i
wðeÞ Edge weight of edge e
H Set of allowed speeds
S Platoon routing
T Edge traversal
P Truck path

Table A.3
Variables used in the ILP formulation of the unlimited platooning problem where all trucks share the same
starting node. Variables with indices ij are defined for each edge ði; jÞ 2 E, and variables with index n is defined
for each truck n.

Name Description Type

xijn Truck n traverses edge ði; jÞ Binary
bij A truck traverses edge ði; jÞ Binary
gij Fuel cost for trucks traversing ði; jÞ Real

Table A.4
Variables used in the ILP formulation of the unlimited platooning problem. Variables with indices ij are
defined for each edge ði; jÞ 2 E and indices n and m corresponds to trucks n and m.

Name Description Type

xijn Truck n traverses edge ði; jÞ Binary
tijn Time when truck n traverses edge ði; jÞ Bounded integer
pijnm Truck n and m traverse edge ði; jÞ at same time Binary
aijn Truck n has lowest index of all trucks traversing ði; jÞ at time tijn Binary
gij Joint fuel cost for trucks traversing ði; jÞ Real
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B � ð1� pijnmÞ þ ðtijn � tijmÞ P 0 8ði; jÞ 2 E; 1 6 m 6 n 6 N; ðB:4Þ
B � ð1� pijnmÞ þ ðtijm � tijnÞ P 0 8ði; jÞ 2 E; 1 6 m 6 n 6 N; ðB:5Þ
2 � pijnm � ðxijn þ xijmÞ 6 0 8ði; jÞ 2 E; 1 6 m 6 n 6 N; ðB:6Þ
pijnm P ðxijn þ xijmÞ þ ðtijn � tijmÞ � B � yijnm � 1 8ði; jÞ 2 E; 1 6 m 6 n 6 N; ðB:7Þ
pijnm P ðxijn þ xijmÞ þ ðtijm � tijnÞ � B � ð1� yijnmÞ � 1 8ði; jÞ 2 E; 1 6 m 6 n 6 N; ðB:8Þ

where yijnm is a helper variable deciding which of (B.7) and (B.8) should matter. If yijnm is true, then (B.7) becomes trivially
true and vice versa. Assume xijn ^ xijm is false. Then (8) asserts that pijnm is false. However, (B.6) ensures that pijnm can be true
only if both xijn and xijm are set, and if pijnm is false, then (B.4) and (B.5) are satisfied independently of tijn and tijm. Moreover,
(B.7) and (B.8) will be satisfied—one trivially and the other because ðtijn � tijmÞ 6 0Þ or ðtijm � tijnÞ 6 0.

Now let xijn ^ xijm be true. First assume that tijn – tijm. Eq. (8) constrains pijnm to be false. In one of (B.4) and (B.5) pijnm must
be false since either tijn � tijm < 0 or tijm � tijn < 0. Both inequalities will then be satisfied. Furthermore, once again (B.7) and
(B.8) will be satisfied—one trivially and the other because ðtijn � tijmÞ 6 0 or ðtijm � tijnÞ 6 0.

Assume that tijn ¼ tijm, (8) constrains pijnm to be true. All constraints (B.4)–(B.6) are satisfied independently of the value of
pijnm. However, since ðtijn � tijmÞ ¼ 0, one of the inequalities (B.7) or (B.8) (depending on yijnm) will become

pijnm P 1;

which forces pijnm to be true. The other will be trivially satisfied.
The logical constraints in (9)

aijn ¼ xijn ^ : pijn1 _ � � � _ pijnðn�1Þ
� �

8ði; jÞ 2 E; 1 6 n 6 N

are equivalent to the following linear inequalities.

aijn þ
Xn�1

k¼1

pijnk P xijn 8ði; jÞ 2 E; 1 6 n 6 N; ðB:9Þ

aijn 6 xijn 8ði; jÞ 2 E; 1 6 n 6 N; ðB:10Þ
aijn 6 1� pijnk 8ði; jÞ 2 E; 1 6 k < n 6 N: ðB:11Þ

Assume xijn is false. Then (9) sets aijn to false. The constraints in (B.9) will be trivially true. However, aijn will be false, since
this is enforced by (B.10) and (B.11). Assume xijn is true. If pijn1 _ � � � _ pijnðn�1Þ is false, then (9) constrains aijn to be true. The
same is true for (B.9) since it reduces to aijn P 1. If pijn1 _ � � � pijnðn�1Þ is true, then (9) ensures that aijn is false. The inequality in
(B.9) is satisfied regardless of the value of aijn.
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