Chapter 13

MPI-IO

Wei-keng Liao

Northwestern University

Rajeev Thakur

Argonne National Laboratory

13.1 Introductioncooiiiiiiiii 157
13.1.1 MPI-IO Backgroundcooiiiiiiiiiiiiiiiiint 158

13.1.2 Parallel I/O in Practicecccooviiiiiiiiiniiiiii. 158

13.2 Using MPT for Simple I/O ..o 159
13.2.1 Three Ways of File Accesscoooiiiiiiiiiiiiiin.. 160

13.2.2 Blocking and Nonblocking I/Oooo.... 161

13.3 File Access with User Intentcciiiiiiiiiia... 161
13.3.1 Independent I/Oiiiiiiiiiiiii i 162

13.3.2 MPI File VIeWoouiii e 163

13.3.3 Collective I/O ..oooiiii 165

13.4 MPI-IO Hints .oooonii e 167
13.5 Conclusionsoouiuiii i e 167
Bibliographyo 167

13.1 Introduction

MPI-IO is a standard, portable interface for parallel file I/O that was de-
fined as part the MPI-2 (Message Passing Interface) Standard in 1997. It can
be used either directly by application programmers or by writers of high-level
libraries as an interface for portable, high-performance I/O in parallel pro-
grams. It has many features specifically designed to efficiently support the I/O
needs of parallel scientific applications. MPI-10 is an interface that sits above
a parallel file system and below an application or a high-level I/O library, as
illustrated in Figure 13.1. Hence it is often referred to as “middleware” for
parallel I/0.

MPI-IO is intended as an interface for multiple processes of a parallel
(MPI) program that is writing or reading parts of a single common file. For
this purpose, an implementation of MPI-IO is typically layered on top of a
parallel file system that supports the notion of a single, common file shared

157

158 High Performance Parallel 1/0

Application

High-level I/O Library

Parallel File System

| |
| |
| vo Middieware (MPLI0) |
| |
| |

1/0 Hardware

FIGURE 13.1: MPI-IO in the I/O software stack..

by multiple processes. Of course, MPI-IO can also be trivially used for the
case where each process reads or writes a separate file.

13.1.1 MPI-1I0 Background

MPI-IO originated in an effort that began in 1994 at IBM Watson Re-
search Center to investigate the impact of the then new MPI message-passing
standard on parallel I/O. A group at IBM wrote an initial paper [7] that ex-
plored the analogy between MPI message passing and 1/0. Roughly speaking,
one can consider writing to file as sending a message, and reading from a file
as receiving a message. This paper was the starting point of MPI-10 in that it
was the first attempt to exploit this analogy by applying the (then relatively
new) MPI concepts for message passing to the realm of parallel I/0O.

The idea of using message-passing concepts in an I/O library appeared
successful, and the effort was expanded into a collaboration with parallel I/O
researchers from NASA Ames Research Center. The resulting specification
appeared in an IBM technical report [1]. At this point a large email discussion
group was formed, with participation from a wide variety of institutions. This
group, calling itself the MPI-IO Committee, pushed the idea further in a series
of proposals, culminating in the version 0.5 release of the MPI Standard [13].

During this time, the MPI Forum had resumed meeting to address a num-
ber of topics that had been deliberately left out of the original MPI Standard,
including parallel I/O. The MPI-IO Committee eventually merged with the
MPI Forum, and, from the summer of 1996, the MPI-1IO design activities took
place in the context of the MPI Forum meetings. The MPI Forum used the lat-
est version of the existing MPI-IO specification (v 0.5) [13] as a starting point
for the I/O chapter in MPI-2. The I/O chapter evolved over many meetings
of the Forum and was released in its final form along with the rest of MPI-2
in July 1997 [6]. MPI-IO now refers to this I/O chapter in the MPI Standard.

13.1.2 Parallel I/O in Practice

There are three ways to do I/O from a parallel program perspective. In
the first method, each process accesses a separate file, which is also known as

MPI-I0 159

one-file-per-process I/O method. This method is easy to program and requires
no MPI communication. However, it results in a large number of files that are
hard to manage. Another drawback is that the same number of processes
must be used to read the files as the parallel program that created the files.
Otherwise, additional effort is required, such as determining the mapping of
files to processes and the logical data layout from files to memory (most likely
noncontiguous in file space). Due to these concerns, it is desirable to store
data in a canonical order in files such that the mapping is independent of
the number of processes. The second method of performing I/O addresses
this limitation, and it involves funneling all I/O through one process of the
program. All T/O requests are forwarded to that process and carried out there.
Obviously, this approach can result in poor performance for large jobs due to
communication congestion and limited memory space available in one process.

The third method, parallel I/O to a shared file, overcomes the limitations
of both approaches. In this method, all processes open a common file and read
or write different parts of the same file simultaneously. This approach main-
tains the logical view of a single file and can also result in high performance
given sufficient I/O hardware, a parallel file system, and an efficient MPI-IO
implementation. The following sections describe how MPI-IO can be used to
perform this form of parallel 1/O efficiently.

13.2 Using MPI for Simple 1/0

Based on the third method described in Section 13.1.2, high performance
parallel I/O can be achieved by enabling all processes to read or write to
different parts of a single shared file. Figure 13.2 shows a simple example of
such a program. Overall, this code is not much different from how one would
do it using regular POSIX I/O. It simply uses the MPI-IO equivalents of
POSIX open, 1seek, read, and close functions.

MPI File_open takes an MPI communicator as the first argument, which
represents the group of processes that will access the file. The second ar-
gument is the file name. MPI does not specify the format of the file name;
implementations are free to specify the format. For example, in some cases,
the user may need to prefix the file name with an implementation-specified
string (such as nfs:) to specify the type of file system on which the file is
located. In many cases, implementations may be able to determine the type
of file system automatically, without the prefix. The third argument indicates
the mode of access, in this case read only. The fourth argument provides users
with a way to pass “hints” to the file system that may improve performance.
In this simple example, the default set of hints are used (MPI_INFO_NULL);
Section 13.4 will describe how to pass hints. The file handle is returned as
the last argument. It is used in all future accesses to the file. MPI_File_open

160 High Performance Parallel 1/0

File

R P R e e 0 0 0 0 0 P

1. MPI_File fh;
2. MPI_Status status;

3. MPI_Comm_rank (MPI_COMM_WORLD, &rank);
4. MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

5. bufsize = FILESIZE / nprocs;
6. nints = bufsize / sizeof(int);

7. MPI_File_open{(MPI_COMM_WORLD, "/pfs/datafile™,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

8. MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);

9. MPI_File_read(fh, buf, nints, MPI_INT, &status);

10. MPI_File_close(&fh);

(b)

FIGURE 13.2: (a) A simple example in which each process of a parallel pro-
gram needs to access a separate portion of a common file. (b) Sample MPI-IO
code used to perform the I/O.

is a collective function: all processes in the communicator passed as the first
argument must call the function.

After the file is successfully opened, each process can independently access
and read its portion of data from the file. For this purpose, each process seeks
to the right offset in the file by calling MPI_File_seek. Then, each process
reads the amount of data it needs by calling MPI_File read. Each process
reads the number of integers, nints, into the buffer, buf, in its local mem-
ory. The status object is the same as in an MPI_Recv function; it can be
used to query the amount of data actually read. Finally, all processes call
MPI_File_close to close the file.

13.2.1 Three Ways of File Access

MPI supports three ways of specifying the location from which data is
accessed in a file. The first method is by using individual file pointers, as in
the above example. In this case, each process maintains its own file pointer,
independent of other processes. The file pointer can be moved to a specific
offset in the file by calling MPI_File_seek. The following call to MPI_File_read
or MPI File write will access data starting from the current location of the
individual file pointer. The file pointer will be incremented by the amount of
data read or written by the read/write call.

An alternate way is by using explicit offsets. No seek function is needed
in this case. Instead, the user calls the functions MPI_File_read_at or
MPI File write_at. These functions take the file offset as an argument. The
individual file pointer is not affected by reads or writes using these functions.

MPI-10 161

Using explicit offsets is also a thread-safe way of accessing the file, since there
are no separate seek and read/write functions.

MPI-IO also supports a third way that involves using a shared file pointer.
The shared file pointer is a common file pointer shared by all processes in
the communicator passed to the file open function. This file pointer can be
moved by calling MPI File _seek_shared. The corresponding read/write func-
tions are MPI _File read shared and MPI File write_shared. This method
is useful for writing log files, for example. However, maintaining a shared file
pointer involves some overhead for the implementation. Hence, for perfor-
mance reasons, the use of these functions is generally discouraged.

13.2.2 Blocking and Nonblocking I/0

MPI-10 supports both blocking and nonblocking I/0 functions. The read-
/write functions mentioned above are all blocking functions, which block until
the specified operation is completed. Each of these functions also has non-
blocking variants: MPI File iread, MPI File iwrite, MPI File_ iread_ at,
MPI File_iwrite_at,MPI_File_iread_shared, and MPI_File_iwrite_shared.
They return an MPI_Request object immediately after the call, similar to
MPI nonblocking communication functions. The user must call MPI_Test,
MPI_Wait, or their variants to test or wait for completion of these operations.
The nonblocking I/O functions offer the potential for overlapping I/O and
computation or communication in the program.

13.3 File Access with User Intent

Besides the POSIX-equivalent basic I/O functions, MPI-IO contains ad-
ditional functions that can better convey the user’s I/O intent. In our ter-
minology, a user’s I/O intent refers to the user’s expectation on how the I/0O
operation should be carried out, and a user’s I/O requirement refers to the end
result. Consider an example that describes and distinguishes between a user’s
I/0O intent and requirement. Figure 13.3 shows a 5 x 8 two-dimensional integer
array that is partitioned among four processes in a block-block pattern. Each
of process ranks 0 and 1 is assigned a subarray of size 3 x 4. Each of process
ranks 2 and 3 is assigned a subarray of size 2 x 4. (The use of a small array and
small number of processes here is only for explanation purposes. In practice,
MPI-TO is used for large datasets and large system sizes.) The 2D array can
be considered as a representation of the problem domain to a parallel applica-
tion, and the subarrays represent the sub-domains distributed among the MPI
processes. It is assumed that the user’s intent is to write the entire 2D array
to a file in parallel and the data layout in the file follows the array’s canonical
order. Such I/O operations often occur during an application’s checkpoint.

162 High Performance Parallel 1/0

data partitioning of stato T T T T T T T
aZ2Dglobalarray | L] B |] A
I - N, - N
2
L L Qend
file offset view of ri aggregate access region
subarrays in the start end
file space o [[[T T [T T T 3
R R R PR PGB R
dis
PN A SN ; /
request aggregation phase
Two-phase 1/O
/O aggregators Fb F’2
[°) [[[[[[[[
Pos file domain e Py's file domain —
i file access phase i
Y
< file system >

FIGURE 13.3: A 5 x 8 2D array partitioned among 4 MPI processes in a
block-block pattern and its data layout in the file. The data layout in the file
follows the array’s canonical order. The bottom part describes the two-phase
I/O operation carried out in MPI collective I/O.

At each checkpoint, the intention considers writing the 2D array as a single
request. The outcome, and hence the user requirement, is that the 2D array
is saved in the file starting from the given file offset, denoted as disp, and
occupies a contiguous space of size equal to 5 x 8 = 40 integers. This section
continues to describe three ways of using MPI-IO functions to carry out such
I/0 operations and discuss how they differ in their way of expressing the user
intent.

13.3.1 Independent I/O

MPI-IO functions consist of two types: independent and collective. The
MPI-IO read/write functions discussed so far belong to the independent I/O
category, and their use is very similar to that of POSIX I/O functions. As for
collective I/O functions, their appearance and syntax look the same as the in-
dependent ones, except that the collective functions have a suffix, _all, added
to their names. The name “independent” implies the functions can be called
by a process independently from another process. There is no restriction on
the number of calls a process can make, and they need not match with calls
on other processes. Collective functions, on the other hand, require the partic-
ipation of all processes that collectively open the shared file. The participant
processes are identified by the MPI communicator passed to MPI_File_open.

For example, Figure 13.4(a) shows an MPI code fragment that uses
MPI File write_at, an independent I/O function, to write the 2D array in
parallel. In this case, the loop at line 2 runs N iterations where N is equal
to 3 for process ranks 0 and 1, and 2 for ranks 2 and 3. From this exam-

MPI-I0 163

1. offset = disp + (rank / 2) * 3 * 8 + (rank % 2) * 4
for (1=0; 1i<N; 1i++, offset+=8)
3. MPI_File_write_at (fh, offset, buf, 4, MPI_INT, &status);

Ny

(a) Write the 2D array using MPI independent I/O with explicit offsets.

] = {5, 8}; /* global array size */

] {N, 4}; /* 1local array size */

int starts([2]; /* starting file offsets */
starts[0] = (rank / 2) * (gsizes[0] / 2 + 1};

starts[1l] = (rank % 2) * (gsizes[l] / 2);
MPI_Type_create_subarray (2, gsizes, subsizes, starts,
MPI_ORDER_C, MPI_INT, &ftype);

int gsizes

2
int subsizes|[2

0 ~1 Oy U1 ds L DN

MPI_Type_commit (&ftype);

(b) Create an MPI derived data type that maps local subarray to global array.

1. MPI_File_set_view(fh, disp, MPI_INT, ftype, "native", info);
2. MPI_File_write(fh, buf, N*4, MPI_INT, &status);

(c) Write the 2D array using MPI independent I/O with file view.

1. MPI_File_set_view(fh, disp, MPI_INT, ftype, "native", info);
2. MPI_File_write_all(fh, buf, N*4, MPI_INT, &status);

(d) Write the 2D array using MPI collective I/0O.

FIGURE 13.4: MPI program fragments to write the 2D array in parallel as
illustrated in Figure 13.3.

ple, using independent functions allows MPI processes to make an unequal
number of calls. Each call to MPI_File write_at at line 3 is equivalent to a
call to POSIX lseek with the given file offset, followed by a write with the
same request amount. From an MPI-IO perspective, the program expresses
the following I/O intent. At first, the loop at line 2 asks the MPI-1O library to
handle the requests one after another, in that exact order. Secondly, the use of
independent functions tells MPI-IO that requests from one process can arrive
independently from other processes and expects MPI-IO to protect the data
consistency for each individual request. Obviously, the above interpretation
is not exactly the same as user’s intent, in which the order does not matter
and the consistency is for the whole 2D array. In order to prevent such mis-
understanding, MPI-IO provides a feature named file view to let users better
convey their I/O intent.

13.3.2 MPI File View

An MPI file view defines the portion of a file that is “visible” to a process. A
process can only read and write the data that is located in its file view. When
a file is first opened, the entire file is visible to the process. A process’s file view
can be changed with the function MPI_File_set_view. When using individual
file pointers, a process’s file view can be different from others. When using the
shared file pointer, all processes must define the same view. A file view can

164 High Performance Parallel 1/0

Py’ ileview "‘7‘ ‘ PO’T ftyp‘e dat‘a type extent ﬂ | ‘ ‘ ‘ ‘ ‘ ‘ ‘
ap- B B R PR B ARRBRR B AKRKPRKPARBRGHBEHR
P, fileview r‘i‘ P, ‘sttyp‘e dat‘a type extent ﬂ | ‘ | ‘ ‘ ‘ ‘ ‘
disp P R ARBRRARERBERRBRRKBERKRLRERKRRKERKBLRRBR
P, s fileview ’47 Pgsftype date type extent ﬂ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
disp AR R R R ARRR AR R
Py’ fleview "7 ‘ Pasftype date type extent ﬂ ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
disp R R R A B R B R GG

FIGURE 13.5: Individual process’s file views for the 2D array example in
Figure 13.3. The shaded area indicates the file portions visible to a process. A
file view is constructed by repeatedly applying the filetype’s extent, starting
from the displacement argument, disp.

consist of multiple noncontiguous regions in the file. When this happens, the
noncontiguous regions are logically stitched together into a contiguous region,
which is read or written as if the view is a contiguous byte stream.

MPI datatypes, both basic and derived, are used to set file views. File views
are specified by a triplet: displacement, etype, and filetype. The displacement
is the number of bytes to be skipped from the beginning of the file. The etype
(elementary datatype) is the smallest unit for file access and positioning, which
can be an MPI basic or derived datatype. The file offset argument in all MPI-
IO functions is specified in terms of the number of etypes. The filetype is an
MPI basic or derived datatype that specifies the portions of the file that are
“visible” to a process. The filetype must be either the same as the etype or a
derived datatype constructed out of the etype. A process’s file view starts at
the displacement, followed by repeated copies of the filetype. When a call to
MPI_File_open returns, the default file view sets the displacement to 0 and
both etype and filetype to MPI_BYTE. The example programs shown in Figures
13.2 and 13.4(a) use the default file view.

The program fragment shown in Figure 13.4(b) constructs the derived
datatype, ftype, through a call to MPI_Type_create_subarray to describe
the file view for each of the four processes in the 2D array example. The argu-
ments gsizes and subsizes are the sizes of global array and local subarray,
respectively. The starting array offsets relative to the global array are set in
the argument starts. Once the newly created filetype, ftype, is committed,
it can be used in MPI_File_set_view to change a process’s file view. This
example uses disp for the file displacement, MPI_INT for etype, “native” for
data representation, and info for MPI-IO hints (Section 13.4).

Figure 13.5 illustrates the file views of the four processes in this example.
The file portions visible to individual processes are marked as shaded areas.
Note that the filetype extents specified by ftype across four processes all

MPI-I0 165

point to the same file location. The same filetype and its extent are applied
recursively to the file space, and all visible portions together comprise a pro-
cess’s file view. The program shown in Figure 13.4(c) sets file views and calls
an independent write function to write the 2D array in parallel. The write
amount is of size (N x 4) integers, equal to the entire subarray size in each
process. Note that the amount requested in an MPI-IO function call need not
be the same as the size of the filetype.

From this example, by defining a process’s file view, writing the entire
subarray can be accomplished by making just one MPI-IO function call. This
program fragment also tells a different user I/O intent from the one expressed
in Figure 13.4(a). MPI-IO interprets the user’s intent as to write the whole
subarray as a single request. The restriction of write order for the individual
subarray rows as intended by Figure 13.4(a) is eliminated. Instead of pro-
tecting data consistency for each individual row, the MPI-1O library enforces
the consistency for the entire subarray. Given such interpretation, an MPI-IO
implementation has more freedom to adopt certain optimizations to improve
performance. One of the well-known optimizations for such I/O requests is
called “data sieving” [12]. Since most of the modern file systems do not per-
form well for a large number of small, noncontiguous requests, data sieving
is an I/O strategy that makes large I/O requests to the file system and ex-
tracts, in memory, the data that is actually needed. Data sieving has been
incorporated into ROMIO, a very popular MPI-IO implementation developed
at Argonne National Laboratory [10]. When applied to the discussed example,
data sieving will first read a contiguous file segment that is large enough to
cover a process’s entire file view, the whole subarray, into a temporary buffer
and then copy the requested data to the user’s buffer. As a result, this read-
modify-write strategy reduces the number of I/O requests to the file system.
Significant performance improvement has been observed on noncontiguous
I/0 requests when data sieving is enabled.

13.3.3 Collective I/O

The MPI file view feature gets us one step closer to meet the user I/O in-
tent for this example, which is to write a global 2D array in parallel from four
processes as a single I/O operation. However, there are still four independent
I/0 requests, one from each process. Hence, the MPI-IO library must protect
the data integrity for the four requests individually. When data sieving is en-
abled, the entire file region involved in a single read-modify-write operation
must be protected from another. A common solution to provide such protec-
tion is to use an advisory file locking mechanism to guarantee the exclusive
access for a file region from concurrent access. In this example, the region
to be locked by process rank 0’s request overlaps with rank 1’s lock region.
Similarly, process rank 1’s lock region overlaps with the one requested by rank
2. As a result, only half of the four processes are actively writing their data
to the file system while the other half are waiting for their lock requests to

166 High Performance Parallel 1/0

be granted. Thus, the achievable performance is significantly limited by the
conflicted file locks.

To overcome such problems, MPI collective I/O functions can convey the
exact user intent in this example that considers the parallel write of the whole
global array as a single request. The program fragment using a collective write
function is shown in Figure 13.4(d). It appears almost the same as the indepen-
dent case, except the name of the write function. MPT collective I/O requires
the participation of all processes that open the shared file. This requirement
provides a collective I/O implementation an opportunity to exchange access
information and reorganize I/O requests among the processes. Several process-
collaboration strategies have been proposed, such as two-phase I/0 [2], disk
directed I/0 [4], and server-directed I/0O [8].

Two-phase 1/0O is a representative collaborative I/O technique that runs
in the user space [11]. It exchanges data among processes, so that the rear-
ranged requests can be processed by the underlying file system with the best
performance. Two-phase I/O conceptually consists of a request aggregation
phase (or referred as the communication phase) and a file access phase (or
simply the I/O phase). In the request aggregation phase, a subset of MPI
processes is picked as I/O aggregators that act as I/O proxies for the rest of
the processes. The aggregate file access region requested by all processes is
divided among the aggregators into non-overlapping sections, called file do-
mains. For collective writes, the non-aggregator processes send their requests
to the aggregators based on their file domains. In the file access phase, each
aggregator commits the aggregated requests to the file system. ROMIO adopts
the two-phase I/O strategy for implementing the collective MPI-IO functions.

The bottom part of Figure 13.3 depicts the two-phase I/O operation for
the 2D array example. Assuming Py and P5 are chosen as I/O aggregators, the
aggregate access region of the collective write operation is evenly divided into
two file domains, one for each aggregator. I/O data are redistributed from all
four processes to the two aggregators during the request aggregation phase.
Specifically, aggregator process rank 0 receives data from both rank 0 and 1,
while aggregator rank 2 receives data from rank 1, 2, and 3. In the file access
phase, each aggregator aggregates the received data into a single, contiguous
request and then makes a write call to the file system.

Recently, there were several optimizations that further improve the perfor-
mance of collective I/O. Various file domain partitioning methods have been
studied that can be adaptively determined based on the file locking policies
of the underlying file systems in order to minimize lock conflicts for collec-
tive I/O [5]. In Sehrish et al.’s work [9], a pipelined strategy was developed
to overlap the two phases in the two-phase I/O method. In this work, large
requests are divided into smaller ones, each of size equal to the file stripe size,
and redistributed to the I/O aggregators using MPI asynchronous communi-
cation in a pipeline fashion so that the asynchronous communication overlaps
with the file access phase. In Venkatesan et al.’s study [14], I/O aggrega-
tor placement methods are proposed to minimize the communication cost

MPI-I0 167

in the request aggregation phase. Based on the file views, it calculates the
non-aggregator to aggregator communication matrix, divides processes with
high-volume communication into groups, and maps the process groups to the
underlying network topology.

13.4 MPI-1IO Hints

MPI-IO hints are a mechanism for users to pass information, such as ac-
cess patterns, to the implementation so that it can help optimize file access.
This is done by setting an MPI_Info object and passing it to the functions
MPI File_open, MPI File set_view, or MPI _File_set_info. An MPI-IO im-
plementation may choose to ignore all hints, and the program would still be
functionally correct. Some of MPI predefined I/O hints are cb_buffer_size
(size of allowable buffer to be used by collective I/O), cbnodes (maximum
number of aggregators), striping factor (number of file system stripes),
and striping unit (file stripe size). An implementation may define addi-
tional hints to make use of file system specific features. Readers are referred
to the ROMIO user guide for the full list of available hints [10].

13.5 Conclusions

This chapter describes several important MPI-IO features to allow users
to describe the data access patterns and the intent of their applications. The
MPI-IO functions convey such information to the implementation so that
better I/O strategies can be used to achieve high performance for parallel
applications. MPI-IO has become a building block for several high-level 1/O
libraries, such as Parallel NetCDF (Chapter 15) and HDF5 (Chapter 16),
which are widely used in various scientific communities. There are other MPI-
10 features not covered in this chapter, including data consistency control,
portable data representation, and split collective I/O. For their detailed in-
formation and learning materials, readers are referred to the MPI-2 Standard
[6] and MPIT tutorial books, such as Using MPI-2 [3].

Government License:

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne").
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government.

Acknowledgment:

This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357.

jbullock
Typewritten Text

jbullock
Typewritten Text
Government License:
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
Acknowledgment:
This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

