
Chapter 15

Parallel-NetCDF

Rob Latham

Argonne National Laboratory

15.1 Motivation . 179
15.2 History and Background . 180
15.3 Design and Architecture . 181
15.4 Deployment and Usage . 182
15.5 Additional Features . 183
15.6 Conclusion . 184
15.7 Additional Resources . 185

Bibliography . 186

15.1 Motivation

Parallel-NetCDF (often abbreviated as simply “pNetCDF”), is a high-level
parallel I/O library providing a portable, self-describing file format for the
storage of multi-dimensional arrays of typed data. Parallel-NetCDF provides
an application-oriented interface on top of the more general, lower level MPI-
IO interface, while maintaining the standard netCDF file format.

Computational scientists, in addition to mastering their scientific domain,
also have the challenge of mastering the computer systems upon which their
simulations run. To help hide the hardware details of these machines, scien-
tists can use compilers, programming languages, and math kernel libraries. In
order to manage the tens of thousands of nodes and millions of processing ele-
ments, scientists can rely on communication middleware such as MPI. In much
the same way, scientists have at their disposal high-level I/O libraries. These
I/O libraries sit atop an I/O middleware (such as MPI-IO, discussed in Chap-
ter 13), packaging and presenting some of the complexity of the lower-level,
general purpose middleware into a format more appropriate for a scientific pro-
grammer. Figure 15.1 depicts this I/O software stack, and Parallel-NetCDF’s
role in it.

The “data problem” facing computational scientists consists of three main
challenges. First, the simulations of physical phenomena improve their fidelity
with each new generation of hardware. As the gap between what computer

179

Parallel-NetCDF 181

15.2 History and Background

In 2002, when Argonne National Laboratory and Northwestern University
started the Parallel-NetCDF project, the climate community had for nearly
a decade prior been using the serial netCDF package [6] from UCAR. Serial
netcdf provided climate scientists half of what they needed: the library and file
format had at its foundation the kinds of multi-dimensional arrays of typed
data that naturally fit with the kinds of simulations climate scientists carry
out.

The missing half of serial netCDF was how to access these datasets in
parallel. At the time, simulations faced two unappealing choices. Either they
could do “file-per-process” I/O, producing one netCDF file for each parallel
process, or they could send all data to a master process and have that process
do all I/O. An “N-to-N” I/O model, where N processes operate on N (or
more) files, quickly poses challenges to the underlying file system as it tries
to deal with thousands of files. Writing N-to-N is far simpler than reading N
files and re-assembling the simulation state. Sending a collection of N files to
a collaborator also poses challenges. A far better solution would be to just
operate on one file.

Sending all data to a master rank to manage one file poses two challenges.
First, the master process needs enough memory to hold data from the other
parallel processors. Second, the master process quickly becomes a critical re-
source, preventing all other processes from making progress. In an era where
thousand-way parallelism is routine, an approach that serializes access to one
processor may certainly be possible, but will result in unacceptable bottle-
necks.

At the time, the only other application-oriented I/O library was HDF5.
Like netCDF, HDF5 provided (and continues to provide) a data model and
API well-suited to multi-dimensional arrays of typed data. (See Chapter 16
for more information about HDF5.) The HDF5 API and model differs signifi-
cantly from netCDF’s API and file format. Those HDF5 differences allow for
many powerful features, but make some optimization more difficult. A par-
allel version of netCDF offered a chance to explore parallel I/O in a more
constrained context.

15.3 Design and Architecture

The Parallel-NetCDF design should look familiar to anyone familiar with
serial netCDF. Having existed a decade prior to Parallel-NetCDF, serial
netCDF had already established data files and codes. Nothing about the es-

Parallel-NetCDF 183

1 ret = ncmpi_create(MPI_COMM_WORLD , filename ,
2 NC_CLOBBER|NC_64BIT_OFFSET , MPI_INFO_NULL , &ncfile);
3 /* after create , file is atuomatically in define mode */
4 ncmpi_def_dim(ncfile , "d1", DATA_PER_PROC , &(dimarray [1]));
5 ncmpi_def_dim(ncfile , "d2", nprocs , &(dimarray [0]));
6 /* note how this call associates a name , a datatype , and a shape
7 to the variable */
8 ncmpi_def_var(ncfile , "v2d", NC_INT , ndims , dimarray , &varid1);
9

10 ncmpi_def_var(ncfile , "v2d", NC_INT , ndims , dimarray , &varid1);
11

12 ncmpi_enddef(ncfile);
13

14 ncmpi_put_vara_int_all(ncfile , varid1 , start , count , data);
15 ncmpi_close(ncfile);

FIGURE 15.3: A code fragment demonstrating the two modes of the Parallel-
NetCDF API. By requiring a separate declaration step, the data transfer step
can occur in parallel without additional coordination.

allowed Parallel-NetCDF to see rapid adoption in the climate community.
Science groups could introduce parallelism piecewise, but still use serial tools.
For example, the code writing history files in a climate simulation could be
updated written in parallel, but the tools to visualize that data could remain
serial for a bit longer.

With its long history of using netCDF-formatted files, naturally the climate
communities use Parallel-NetCDF. Parallel-NetCDF has also seen adoption in
weather, fluid dynamics [5], and astrophysics [3].

Parallel-NetCDF saw tremendous interest from its earliest days. The Lead-
ership Computing Facilities at Argonne and Oak Ridge National Laborato-
ries have installed Parallel-NetCDF for the past three generations of systems.
Many other sites have installed Parallel-NetCDF, particularly if those sites
host computational scientists from the climate domain. If a user should hap-
pen to find Parallel-NetCDF not already installed on a system, its minimal
dependencies make building it straightforward.

15.5 Additional Features

Parallel-NetCDF’s similarity to serial netCDF provides its strongest selling
point. Maintaining that similarity means a new Parallel-NetCDF user need
not spend much time learning about the distinction between define mode and
data mode or how to view or analyze the generated file. However, Parallel-
NetCDF provides several features not available to serial netCDF.

The Flexible Interface to Parallel-NetCDF allows a developer to describe
arbitrary data in memory when writing to a multi-dimensional file. The various

184 High Performance Parallel I/O

1 /* post two non -blocking operations , writing data to
2 two variables (varid1 , varid2) in the \dataset {} */
3 ncmpi_iput_vara(ncfile , varid1 , &start , &count , &data , count ,
4 MPI_INT , &requests [0]);
5 ncmpi_iput_vara(ncfile , varid2 , &start , &count , &data , count ,
6 MPI_INT , &requests [1]);
7

8 /* here in ncmpi_wait_all the library will inspect all non - blocking
9 operations , combine them , and service the new larger request collectively */

10 ncmpi_wait_all(ncfile , 2, requests , statuses);
11 if (ret != NC_NOERR) handle_error(ret , __LINE__);

FIGURE 15.4: A code fragment demonstrating the use of the non-blocking
routines. The Parallel-NetCDF library will stitch these two requests into one
single more efficient MPI-IO operation.

data transfer methods in serial netCDF (the var, vars, vara, varm routines) all
take a contiguous memory buffer. Parallel-NetCDF’s Flexible Interface allows
the caller to specify the type and structure of memory with an MPI datatype.
Jianwe Li’s SC 2003 paper [4] goes into more detail.

Parallel-NetCDF also introduced non-blocking operations in its API. These
nonblocking operations were not interesting at first: they would call the non-
blocking MPI-IO routines, but most MPI-IO implementations provided little
if any non-blocking support. The non-blocking interface, however, provided a
good location to apply an operation-combining optimization.

Figure 15.4 lists a code fragment using this non-blocking interface. Parallel-
NetCDF’s non-blocking interface follows the same post-and-wait model used
in MPI.

Both the Flexible Interface and the non-blocking interface re-enforce a
common theme in high performance parallel I/O: providing as much informa-
tion as possible to the storage system. In Latham et al.’s case study [3], using
these extended features of Parallel-NetCDF improved checkpoint bandwidth
at scale by a factor of 3.

15.6 Conclusion

The I/O library has seen much research in the decade since Parallel-
NetCDF began. HDF5 continues development. ADIOS offers an alternative
approach to data management. The serial netCDF project has incorporated
parallel I/O features by implementing its API (with some extensions) on top
of the HDF5 library. Despite these innovations, Parallel-NetCDF still provides
a useful tool in the toolbox of parallel I/O libraries.

The first challenge a scientific application faces when managing data is
how to drive the large storage systems in parallel. The developers must first

Parallel-NetCDF 185

devise a parallel data decomposition strategy, no matter which library will be
used. Often, this decomposition strategy is the trickiest part. Once a strategy
is in place, the I/O library used is secondary, and can often be hidden by
an abstraction layer (climate codes, for example, use PIO [2] for just this
purpose). The glib answer to “Which I/O library should I use?” is “It doesn’t
matter, as long as you use something.”

Parallel-NetCDF still provides the standard for a low-overhead I/O library.
The classic netCDF file format imposes some restrictions, but these restric-
tions mean the file layout is known ahead of time. The library does not need
additional coordination among processes to know where to place data.

Other I/O libraries can borrow ideas proven in Parallel-NetCDF. When
serial netCDF introduced parallel I/O to its API, they could use Parallel-
NetCDF’s approach for incorporating parallel I/O parameters such as the MPI
communicator and how to express collective I/O. An upcoming release from
the HDF5 project will contain a “multi-dataset” family of routines following
the Parallel-NetCDF approach.

In the flourishing ecosystem of parallel I/O libraries, Parallel-NetCDF still
represents a compelling option for codes using regular arrays to describe their
data, or are willing to transform their data into such arrays. As scientific
data models increase in complexity, the relative simplicity of Parallel-NetCDF
might one day no longer be appropriate. As we in the I/O library community
develop successor libraries for more sophisticated application data models,
Parallel-NetCDF will remain the standard for a lightweight abstraction layer.

15.7 Additional Resources

More Parallel-NetCDF informaiton can be found at the following places:

www.mcs.anl.gov/parallel-netcdf The Parallel-NetCDF home page con-
tains an overview of the package, instructions for joining the mailing
list, tutorials, documentation, and bug tracker.

cucis.ece.northwestern.edu/projects/PnetCDF Northwestern Univer-
sity’s Parallel-NetCDF page contains additional material and documen-
tation.

Parallel-NetCDF requires only an MPI-IO implementation, and so is avail-
able on nearly every parallel computer. Users should consult local documen-
tation for details of any site-specific quirks.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
Please make sure you have the DOE acknowledgment at the end of your paper (before the References).
For acknowledgment information, please use:
This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357.

jbullock
Typewritten Text

