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Abstract—Although many pricing schemes in IaaS platform are already proposed with pay-as-you-go and subscription/spot
market policy to guarantee service level agreement, it is still inevitable to suffer from wasteful payment because of coarse-
grained pricing scheme. In this paper, we investigate an optimized fine-grained and fair pricing scheme. Two tough issues are
addressed: (1) the profits of resource providers and customers often contradict mutually; (2) VM-maintenance overhead like
startup cost is often too huge to be neglected. Not only can we derive an optimal price in the acceptable price range that satisfies
both customers and providers simultaneously, but we also find a best-fit billing cycle to maximize social welfare (i.e., the sum
of the cost reductions for all customers and the revenue gained by the provider). We carefully evaluate the proposed optimized
fine-grained pricing scheme with two large-scale real-world production traces (one from Grid Workload Archive and the other
from Google data center). We compare the new scheme to classic coarse-grained hourly pricing scheme in experiments and
find that customers and providers can both benefit from our new approach. The maximum social welfare can be increased up to
72.98% and 48.15% with respect to DAS-2 trace and Google trace respectively.
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1 INTRODUCTION

C LOUD computing is taking the computing world
by storm, as indicated in a report by Forrester

Research [1]: the global cloud market is expected to
reach $241 billion in 2020, compared to $40.7 billion
in 2010, a six-fold increase. Infrastructure-as-a-Service
(IaaS) has become a very powerful paradigm to pro-
vision elastic compute resources. With an explosive
growth of virtualization technology in recent years,
more and more scientists are migrating their applica-
tions to the IaaS environment [2], [3]. Deelman et al.
[4], for example, confirmed the feasibility of running
astronomy application on Amazon EC2 [2]. Marathe
et al. [5] made a comparative study of running high
performance computing (HPC) applications on the
cluster and cloud.

In general, there are two serious issues in deploy-
ing and provisioning virtual machine (VM) instances
over IaaS environment, refined resource allocation [6]
and precise pricing for resource renting [7]. Refined
resource allocation is usually implemented by deploy-
ing VM instances and customizing their resources
on demand, which impacts the performance of VMs
to complete customers’ workload. Precise pricing is
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also known as Pay-as-you-go, which involves multi-
ple types of resources like CPU, memory, and I/O
devices [8]. Pricing is a critical component of the
cloud computing because it directly affects providers’
revenue and customers’ budget [9].

How to design an appropriate pricing scheme
which can make both providers and customers satis-
fied is becoming a major concern in IaaS environment.
In Amazon EC2, for example, the smallest pricing
time unit of an on-demand instance is one hour
[2]. Such a coarse-grained hourly pricing is likely to
be economically inefficient for short-job users. For
instance, users have to pay for full hour cost even
their jobs just consumed the resources with a small
portion (such as 15 minutes) of the one-hour period.

Such a phenomenon is called partial usage waste,
which appears very often as cloud jobs are quite short
in general [10]. Based on the recent characterization of
Cloud environment versus Grid systems [10], cloud
jobs are usually much shorter (such as dozens of min-
utes) than Grid jobs (such as dozens of hours or days).
This will induce serious partial usage waste issue. As
illustrated in Fig. 1, the current hourly pricing scheme
probably induce idle charged resources especially for
short jobs, while the fine-grained pricing scheme not
only makes users pay less but also makes provider
gain more due to the optimization of unit price for
the same service time and more users served.

Some highly skilled users aggregate their jobs into a
long job [11] or unite with other users under a broker-
age service [12], [13] to utilize the whole instance hour.
But it either requires professional knowledge which
is probably a little bit too hard for ordinary users, or
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Fig. 1: Users suffer from long partial usage waste in the coarse-
grained pricing scheme, which can be largely reduced in the
optimized fine-grained pricing scheme. Furthermore, the provider
can gain more profit due to the higher unit price and serve more
users in the optimized fine-grained pricing.

trusts other brokers whose credibilities can hardly be
guaranteed.

Nowadays, once customers terminated the in-
stances, some IaaS providers naturally take it for
granted that they can get to reuse the resources imme-
diately even if customers still charge the whole time
period [2], [11]. It might be potential illegal because
a seller cannot sell a single item (here the resource
instance) to two customers, which is a violation in e-
conomics [14]. And also this is unfair to the customers.

A few other IaaS providers are trying to solve the
partial usage waste issue by offering optional fine-
grained pricing schemes. For example, CloudSigma
[8] offers a Burst Pricing scheme that changes ev-
ery five minutes upon busy-status. Google Compute
Engine (GCE) [3] offers a 10-minutes based pricing
scheme, in which all machine types are charged a
minimum of 10 minutes. However, none of them
identify and analyze the partial usage waste issue.
This paper is the first attempt to quantitatively op-
timize a fine-grained pricing scheme and investigate
the optimization of the tradeoff between fine-grained
pricing scheme and various overheads.

We highlight the main challenges and contributions
of this paper as follows.

(1) Does the partial usage waste problem really exist
in cloud environment and is it a significant problem?

• Contribution 1: In the pay-as-you-go cloud pric-
ing, short-job users have to pay more than what
they actually use, and incur numerous idle in-
stance time for the provider. We first raise the
partial usage waste issue [11], and then prove
its significance by analyzing it with real-world
production traces.

(2) How to optimize the tradeoff between adopting
the refined pricing scheme and controlling the impact
of extra overheads with decreasing length of billing
cycles?

• Contribution 2: A VM instance’s maintenance
cost like boot-up, shut-down, and dynamic tun-
ing resource amounts, is often a relatively large
constant, which means that shorter tasks will
be more sensitive to the VM-maintenance cost.

We propose a novel optimized fine-grained fair
pricing scheme by taking into account the VM-
maintenance overhead, and find a best-fit billing
cycle to reach the maximized social welfare (i.e.,
the sum of the cost reductions for all customers
and the revenue gained by the provider).

(3) How to coordinate the benefits of customers
(or users) and providers by simply refining the time
granularity such that both sides feel satisfied?

• Contribution 3: Intuitively, the profits of both
sides contradict to each other, such that win-
win status is hard to guarantee. We derive an
optimal price point which can satisfy both users
and providers with maximized total utility. Our
scheme also proves that refined fine-grained pric-
ing is not bad news for service providers, because
they can keep or even increase their revenue with
our scheme.

(4) What are the experimental results like when per-
forming our optimized fine-grained pricing scheme
using real-world production trace, as compared to the
existing coarse-grained hourly pricing scheme?

• Contribution 4: We evaluate our new pricing
scheme using a 1-month Google trace [15], [16]
and a 22-months production DAS-2 trace [17]
downloaded from Grid Workload Archive (GWA)
[18]. Experimental results indicate that under our
optimized fine-grained pricing scheme, for the
DAS-2 (Google), the social welfare can be in-
creased up to 72.98% (48.15%).

For the remainder of the paper, we use the terms
IaaS platform, IaaS cloud, and cloud environment
interchangeably, and we also use the terms customer,
consumer, and user interchangeably. In Section 2, we
analyze the partial usage waste issue and describe our
optimized fine-grained pricing model by taking into
account the VM-maintenance overhead, as compared
to the conventional cloud pricing scheme. We discuss
in Section 3 our main algorithms in coordinating the
profit from both sides and coping with the tradeoff
between optimizing fine-grained pricing scheme and
minimizing overheads. We carefully evaluate our so-
lution and present the performance evaluation results
in Section 4. In Section 5, we discuss some issues and
future work. We discuss the related work in Section
6, and finally, conclude the paper in Section 7.

2 RESOURCE PRICING SCHEME

In this section, we first briefly review the existing clas-
sic IaaS cloud pricing schemes, and then analyze the
partial usage waste issue, and finally formulate our
optimized fine-grained pricing model by taking VM-
maintenance overhead into consideration. Our main
objective is to satisfy both customers and providers,
and reach maximum social welfare meanwhile.
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2.1 Classic Cloud Pricing Schemes
In recent times, the pricing schemes broadly adopted
in IaaS cloud market [2], [8], [19], [20], [21] can
be categorized into three types: pay-as-you-go offer,
subscription option and spot market. Under the pay-
as-you-go scheme, users pay a fixed rate for cloud
resource consumption per billing cycle (e.g., an hour)
with no commitment. On-Demand Instances are often
used to run short-jobs or handle periodic traffic spikes
[2].

In the subscription scheme, users need to pay an
upfront fee to reserve resources for a certain period of
time (e.g., a month) and in turn receive a significant
price discount. The billing cycles in the subscription
scheme are relatively long compared to the pay-as-
you-go scheme, and can be one day, one month, or
even several years [22], [19], [20], [21]. Therefore,
it is suitable for long-running jobs (like scientific
computing [4]). A special example in this scheme is
Amazon Reserved Instances [22], instances during the
reserved period are charged hourly, but they are still
not suitable for short-jobs due to the high upfront fee.

For the spot scheme [23], users simply bid on spare
instances and run them whenever their bid prices ex-
ceed the current Spot Price. Spot Instances are suitable
for time-flexible, interruption-tolerant tasks (like web-
crawling or Monte Carlo applications) [23], because
they can significantly lower the computing costs due
to the extremely low Spot Price. But the drawback of
Spot Instance is the instances can be terminated by
the provider any time. Therefore, it is meaningless to
exploit fine-grained billing cycle as the tasks are time-
insensitive, even though the cost of a spot instance is
also calculated based on one hour time unit.

Our paper focuses on the pay-as-you-go offer,
which is especially suitable for short-running cloud
jobs because of finer pricing granularity.

2.2 Analysis of Partial Usage Waste
VMs in pay-as-you-go pricing, for the example of
on-demand instances in EC2, are recommended for
applications with short term, spiky, or unpredictable
workloads that cannot be interrupted (i.e., short-jobs)
[2]. These VM instances are always charged hourly,
yet short-job users have to pay for full hour cost even
their jobs just consumed the resources with a small
portion of the one-hour period. This phenomenon is
called partial usage waste.

In order to quantify the partial usage waste issue,
we introduce the instance time utilization metric, which
means the consumed time percentage in user’s pur-
chased instance hours. However, workload traces in
public clouds are often confidential: no IaaS cloud has
released its usage trace so far. For this reason, we use
a 1-month Google cluster-trace [15], [16] and a 22-
months production DAS-2 trace [17] in our analysis.
Although Google cluster is not a public IaaS cloud,

its usage traces can reflect the demands of Google
engineers and services, which can represent demands
of public cloud users to some degree. While the DAS-
2 is a wide-area grid datacenter, its usage traces are
slightly different from the cloud services. But the
traces are still generated from real-life production
system, which can represent the demands of potential
cloud users in future.

Specially, in order to increase the representativeness
of these data traces, we rule out the extremely short
jobs (e.g., less than 1 minutes) because those very
short jobs could be failed jobs that are corrected and
resubmitted. After ruling out the outliers, we evaluate
the instance time utilization for every user in two traces
and plot the results in Fig. 2. As indicated in Fig. 2, in
the hourly pricing, majority of users in both traces get
low (< 20%) instance time utilizations, which implies
a serious phenomenon of partial usage waste.

Though the workload traces in public clouds are
confidential, the partial usage waste issue can be no-
ticed in many research [24], [11], [12] in the literature
of cloud computing. Juve et al. [24] ran workflow
experiments on Amazons EC2 and noticed that the
cost assuming per-hour charges is greater than the
cost assuming per-second charges. Kouki et al. [11]
used a strategy with an instance waiting for the end
of an instance-hour to terminate can be useful if there
is an increasing workload. The cost saving of as much
as 30% can be achieved by using RightCapacity. Wang
et al. [12] used the brokerage to exploit the partial
usage and brought a cost saving of close to 15%.

Such partial usage waste not only makes users pay
more than what they actually use, but also leads to
skewness of the expected revenue from the perspec-
tive of providers (to be discussed in details later).

2.3 Formulation of Fine-Grained Pricing Scheme

In this paper, we propose a novel optimized fine-
grained pricing scheme to solve the above issues. The
objective of our work is two-fold, with regard to the
classic coarse-grained pricing scheme and inevitable
VM-maintenance overhead. On one hand, we aim to
derive an acceptable pricing range for both customers
and providers, and also derive an optimal price that
satisfies both sides with maximized total utility. On
the other hand, we hope to find a best-fit billing cycle
to maximize the social welfare related to both sides.

There are three key terms in our fine-grained pric-
ing scheme: resource bundle, time granularity and unit
price. The resource bundle serves as a kind of container
to execute task workloads based on user demands.
The time granularity is defined as the minimum length
in pricing the rented resources. The unit price specifies
how much the user needs to pay per time granularity
for the resource consumption. We give an example to
illustrate the above terms. In Amazon EC2’s pay-as-
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Fig. 2: Statistics of users’ instance time utilization in the hourly pricing. The users are spilt into three groups (i.e., Low Utilization
group, Medium Utilization group and High Utilization group) based on different levels of instance time utilization. Users’ instance time
utilization in Low group, Medium group, High group is [0, 20%), [20%, 80%), [80%, 100%] respectively. For example, 79.8% (42.4%) of
users in DAS-2 (Google) get low (i.e., < 20%) instance time utilization.

you-go option, users need to pay $0.0441 per hour for
a small on-demand VM instance (Unix/Linux usage).
In this example, the VM instance which bundles CPU,
RAM, data storage and bandwidth together is the
resource bundle. The time granularity is one hour and
the unit price is equal to $0.044. As another example,
in CloudSigma [8], the resource bundle is not an
instance but just some type of resource like CPU or
RAM. CloudSigma does not bundle them together but
allows customers to finely tune the combination of
resources on demand exactly. Our work focuses on the
time granularity and the unit price, aiming to imple-
ment an optimized fine-grained pricing scheme with
regard to VM-maintenance overhead like VM boot-up
cost. For simplicity reasons, the cloud resource bundle
mentioned in our paper is referred to as VM instance
similar to EC2 on-demand instance.

Time granularity (i.e., length of billing cycle, denoted
as K in our model) is the major concern. The length
of billing cycle is often relatively long under existing
schemes. For example, in a pay-as-you-go scheme, the
billing cycle is usually set to one hour, for the purpose
of easing the management because such a coarse-
grained pricing scheme with long-length billing cy-
cle could neglect the impact of the VM-maintenance
overhead to a certain extent. However, such an hourly
pricing scheme suffers from serious partial usage
waste, which can be resolved intuitively using an
optimized fine-grained pricing scheme, where the key
challenge is that VM-maintenance overhead will be
fairly prominent with decreasing length of the billing
cycle.

Unit price is another key term in our pricing model,
and it is determined by the time unit (such as an hour)
and the pricing unit with respect to the time unit (such
as hourly pricing). The pricing unit is denoted by P ($

1We use the price released on Amazon website [2] before 9th
April, 2014.

per hour)in the hourly pricing. Suppose the billing cy-
cle is K-minutes in our optimized fine-grained pricing
scheme, the unit price is denoted as PK . Intuitively,
the original payment under the hourly pricing scheme
during a period of K-minutes can be computed as
P (K−To)
60−To

. In practice, however, the valid productive
period of a VM instance is shorter than its real life-
cycle because of inevitable VM-maintenance overhead
like VM boot-up cost and VM resource amount tuning
cost. Especially, provider’s gain should be guaranteed
with no less profit than that in the coarse-grained
pricing scheme for the same service time. Hence,
PK in our optimized fine-grained pricing scheme is
supposed to be no less than the original payment.
That is, PK can be represented as Formula (1), where
χ indicates an increment price (≥ 0).

PK =
P (K − To)

60− To
+ χ. (1)

This increment price χ can be used to not only cov-
er providers’ loss due to VM-maintenance overhead
described below (details in Section 3.2) but also gain
more profit for providers (details in Section 3.3).

The last concern is the VM-maintenance overhead
like VM boot-up cost, task startup cost or operation
time on VM resource allocation. In general, for a
particular VM instance, these overheads are usually
constants determined by the VM memory size [25],
[26], [27]. We denote the VM-maintenance overhead
by To (evaluated by minutes), including VM bootup
cost, resource allocation cost, and so on. Without loss
of generality, we suppose To is too large to be ne-
glected in fine-grained pricing scheme. For simplicity
reasons, the overhead we assume is a constant, which
conforms to reality for the given jobs. Because of the
characterization of Google traces [28], the overhead is
always related to the memory size, and the memory
sizes of majority jobs are stable. Mao et al. [26]’s char-
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acterization shows that booting up a new VM instance
always suffers from To ≈ 96.9 seconds regardless of
the length of billing cycle.

We summarize the key notations in Table 1.

TABLE 1: Summary of Key Notations

Notation Description
U number of users
N number of jobs belonging to a particular user u
K time granularity (i.e., length of billing cycle)
PK unit price in our optimized fine-grained pricing scheme

when the billing cycle is K-minutes
P unit price in hourly pricing ($ per hour), i.e., P=P60

χ an increment price whose value (≥ 0) in PK

To VM-maintenance overhead including
VM boot-up cost, resource allocation cost, and so on

MaxPu,K maximum user-accepted price
MaxPu,K minimum provider-accepted price
CSu,K cost saving for the user
RIu,K revenue increment for the provider
WK social welfare gained in the fine-grained pricing
Lu(i) length of ith job of User u
γu(K) a user u’s total instance time utilization

3 OPTIMIZED FINE-GRAINED PRICING AL-
GORITHM

In this section, we optimize the fine-grained pricing
scheme by proposing three algorithms with regarding
to VM-maintenance overheads: computing maximum
user-accepted price (denoted MaxPu,K , where u and
K indicate user and billing cycle length respectively),
computing minimum provider-accepted price (denot-
ed MinPu,K), and maximizing the social welfare. With
these three algorithms, one can easily find a win-win
state satisfying both users and providers as long as
the final price is set in the acceptable pricing range
[MinPu,K , MaxPu,K]. Then, we will prove that the
optimal price point is MinPu,K+MaxPu,K

2 , which can
maximize the overall satisfaction degree regarding
both sides. Finally, we will find a best-fit billing cycle
to maximize the social welfare.

3.1 Compute Maximum User-accepted Price

Suppose a cloud provider has U different users U ,
{1, 2, · · ·, U }. Each user payment will be investigated
individually in our model. For a particular user u
who has N jobs, we use Lu(i) to denote the length
of the user’s ith job running on some cloud instances.
Specially, if two conjoint jobs (i.e., user’s ith and i+1th

job) submit in the same billing cycle, they are deemed
as one job.

When running a user’s jobs in cloud with the fine-
grained billing cycle = K-minutes, the unit price PK

is supposed to be higher than the original price value
calculated based on hourly pricing, as Formula (1)
shows.

In order to study the feasibility of our optimized
fine-grained pricing scheme, we need to compute the
total cost that can be accepted by users for all of their
jobs, instead of the single cost for a particular job. The

total cost for user u with billing cycle = K-minutes can
be written as Formula (2), where ⌈ Lu(i)

K−To
⌉ indicates the

number of billing cycles (a ceiling value) for the user’s
ith job in our optimized fine-grained pricing scheme.

Costu,K = PK

N∑
i=1

⌈ Lu(i)

K − To
⌉ (2)

Apparently, Costu,60 indicates the cost of user u
running all of his/her jobs in the classic coarse-
grained hourly pricing scheme. With the computation
of Costu,K , we can compute the maximum price
that can be accepted by users (denoted as MaxPu,K)
per billing cycle based on Formula (3) (when billing
cycle = K-minutes). When a user’s task just runs for
K minutes, the original payment under the coarse-
grained pricing scheme will force him/her to pay the
whole one-hour cost P . That is, our users will feel
worthy as long as their final payments under our
optimized fine-grained pricing scheme are no higher
than P .

MaxPu,K = Total Payment under Coarsegrained pricing scheme
# of cycles in the Finegrained pricing scheme

= P
∑N

i=1

⌈
Lu(i)
60−To

⌉/∑N
i=1

⌈
Lu(i)
K−To

⌉
(3)

The pseudo-code in computing the maximum
prices for user u with the fine-grained billing cycle
K-minutes is described in Alg. 1. The intuitive idea is
to compute the maximum prices that can be accepted
by the user u with respect to different fine-grained
billing cycles.

Algorithm 1 Computing maximum price that can be
accepted by users
Input: The length Lu(i) of User u’s all jobs.
Output: A vector which contains the maximum prices
MaxPu,K that can be accepted by the user.
1: Calculate Costu,60 for all of the user’s jobs with hourly pricing.
2: for all billing cycles K do
3: Calculate the total number of billing cycles for all of u’s jobs

based on the fine-grained pricing.
4: Calculate the value of MaxPu,K .
5: end for

In this algorithm, we first compute the original
payment that the user can stand based on classic pric-
ing scheme with coarse-grained rate. And then, we
compute the maximum prices which can be accepted
by the user for different lengths of billing cycles (line
3). The users will feel satisfied as long as their costs in
our new pricing scheme are less or equal to the costs
computed in the classic pricing scheme. Note that the
coarse-grained pricing scheme forces the minimum
billing cycle to be one hour (60 minutes), which means
that the finally settled cost Costu,K should be no
larger than Costu,60 in our optimized fine-grained
scheme. In the following text, we will derive the
minimum price that can be accepted by providers, and
finally derive an optimal price point.
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3.2 Compute Minimum Provider-accepted Price

The designed optimized fine-grained pricing scheme
should also satisfy providers, yet providers may suffer
higher overhead due to finer pricing rates. In the
classic coarse-grained pricing scheme, the provider
will suffer To to manage VM instance every one hour
service. In the optimized fine-grained pricing scheme,
the provider may suffer higher overhead due to more
frequent context switch among VM instances. We
use an example to highlight the difference between
the two pricing schemes in Fig. 3. Obviously, the
provider will suffer higher loss of payment in the
second pricing scheme with finer granularity due to
more frequent VM overheads appearing in the whole
service time.

Classic Coarse-grained Pricing Scheme

Fine-grained Pricing Scheme

overhead productive time

60 60 60

K K K K K K

Toverhead

Fig. 3: Service time analysis between two pricing schemes.

As follows, we will derive the minimum acceptable
price in the K-minutes billing cycle for the provider
based on the VM overhead To in comparison to the
classic coarse-grained pricing scheme. For the same
service period with length = Tservice, we use m and
n to denote the number of billing cycles in the classic
pricing scheme and that in our optimized fine-grained
pricing scheme respectively. In the example shown in
Fig. 3, m = 3 and n = 6. Then, it is easy to derive
Equation (4) based on Fig. 3.

Tservice = m · 60 = n ·K (4)

On the other hand, the minimum price accepted by
the provider is reached when the provider’s total
gains in the new pricing scheme is equal to the
payment earned in the classic pricing scheme, i.e.,
Equation (5), where P refers to the price in the classic
hourly pricing scheme.

m · P = n ·MinPK (5)

Based on Equation (4) and Equation (5), we can get
Formula (6).

MinPK =
K

60
· P (6)

Together with Formula (1), we can get Formula (7).

χoverhead = MinPK − P (K − To)

60− To
(7)

Obviously, χoverhead is the increment price to over-
come the overhead in our optimized fine-grained
pricing scheme. The pseudo-code of the algorithm in
computing the minimum provider-accepted prices for
different lengths of billing cycles is similar to Alg. 1.
What need to do is just replacing MaxPu,K by MinPK

and removing the computation of Costu,K .

3.3 Optimal Price in the Acceptable Range
In this part, we derive the optimal price value dur-
ing the range ([MinPu,K , MaxPu,K]) derived above,
which is accepted by both users and providers. Before
analysis, we need to define the satisfaction function
for both users and providers.

As shown in Fig. 4, we model the user/provider
satisfaction based on the utility theory in economics.
According to [14], the utility function is concave,
which shows how utility, a subjective measure of
satisfaction, depends on wealth. We use price to take
the place of wealth in the X-Axis because the wealth in
this paper is proportional to the price. Meanwhile, the
wealths of the user and the provider are symmetric
because the reduction of provider’s wealth will be
gained by the user in turn. Hence, the two utility
functions (belonging to user and provider respective-
ly) are both concave and symmetric with respect to
the middle point minPu,K+maxPu,K

2 .

0 MinP (MinP+MaxP)/2 MaxP Price Axis

User utility function

f(MinP+MaxP-x)

Provider utility function

f(x)
Utility

Umax

Fig. 4: Utility functions and optimal price point.

It is obvious that if the provider’s utility function
is denoted by f(x), then the user’s utility function
can be denoted by f(MinP +MaxP −x). We use the
summation of the two utility values with respect to a
particular price x to denote the total utility (denoted
as F (x)), as shown in the following formula. Then,
the optimal price point is supposed to maximize the
total utility F (x) regarding the both participants (user
and provider).

F (x) = f(x) + f(minP +maxP − x) (8)

Theorem 1: For the acceptable range [MinP,MaxP],
the optimal price point x∗ for maximizing the total
utility (or satisfaction) is equal to MinP+MaxP

2 .
Proof: Since f(x) is concave, we have

∂2f(x)
∂x2 < 0. Similarly, we can easily derive that
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∂2f(MinP+MaxP−x)
∂x2 < 0. Then, ∂2F (x)

∂x2 < 0. That is,
the value of F (x) has a maximum point during the
range [MinP, MaxP], and F (x) reaches the maximum
value when ∂F (x)

∂x = 0.
Then, we can derive the optimal price point as

follows:
∂F (x)
∂x = ∂f(x)

∂x + ∂f(MinP+MaxP−x)
∂x

= ∂f(x)
∂x − ∂f(y)

∂y = 0, where y = MinP +MaxP − x

This leads to ∂f(x)
∂x = ∂f(y)

∂y , where
y=MinP+MaxP−x. Obviously, this equation holds
if and only if the price value x=MinP+MaxP

2 . That is,
x∗=MinP+MaxP

2 .
Similarly to Formula (7), with the optimal price

MinP+MaxP
2 , we can get Formula (9).

χoptimal =
MinPK +MaxPu,K

2
− P (K − To)

60− To
(9)

Obviously, χoptimal will be larger than χoverhead

when MaxPu,K is larger than MinPK . The value
χoptimal − χoverhead is the increment price to gain
more revenue with the same service time billed in
the optimized fine-grained pricing scheme for the
provider. Specially, it is possible that MinPK is greater
than MaxPu,K when the billing cycle is short and the
impact of VM-maintenance cannot be neglected, just
like the situation illustrated in Fig. 9(a).

3.4 Discussion of Social Welfare Maximization

Up to now, we have discussed how to derive an
optimal price in the acceptable range to satisfy both
users and providers with maximized total utility. We
will discuss the social welfare gained in our optimized
fine-grained pricing scheme.

Social welfare WK includes the cost saving CSu,K

for all users and revenue increment RIu,K for the
provider.

WK =
U∑

u=1

CSu,K +
U∑

u=1

RIu,K (10)

Specially, RIu,K>0 means that the provider can gain
more profit by the same service time billed in the fine-
grained pricing scheme than that in the old scheme.
As the billing cycle goes from 2 minutes to 60 minutes,
MaxPu,K and MinPK changes separately, and so
does the social welfare. There should exist a best-fit
billing cycle to obtain a maximum social welfare, we
denote it as BF , as illustrated in Alg. 2.

In this algorithm, we first compute the total cost
that the user costs in the hourly pricing scheme and
our optimized fine-grained pricing scheme for differ-
ent lengths of billing cycles. Users obtain cost saving
when the cost in classic hourly pricing scheme is
higher than the cost in our optimized pricing scheme
(line 4). The provider gains revenue increment when
the cost for the same service time billed in the fine-
grained pricing scheme is higher than that billed in

Algorithm 2 Maximize Social Welfare
Input: The maximum price MaxPu,K for the user u; The minimum
price MinPK for the provider.
Output: The maximum social welfare MaxW and the best-fit
billing cycles BF .
1: Calculate the total cost Costu,60 for all jobs in the hourly

pricing.
2: for all billing cycles K do
3: Calculate the total cost Costu,K for all jobs in our op-

timized fine-grained pricing scheme with optimal price
MinPK+MaxPu,K

2
.

4: CSu,K ←
Costu,60−Costu,K

Costu,60
. /* Cost saving for user u */

5: RIu,K ←
Costu,K/K−Costu,60/60

Costu,60/60
. /* Compute the revenue

increment for provider */
6: end for
7: for all users at billing cycle K do
8: Calculate the social welfare WK for all users and the

provider.
9: end for

10: Select the maximum social welfare MaxW = WKm, when the
billing cycle is Km.

11: BF ← Km.

the classic hourly pricing scheme (line 5). And then,
we calculate the social welfare over different lengths
of billing cycles (line 7-9), and find a best-fit billing
cycle point for social welfare maximization (line 8).

3.5 Algorithm Complexity
In Algorithm 1, for a given User u, calculating the
Costu,60 costs O(N), and calculating MaxPu,K for all
billing cycles K costs O(KN). For all users, calculat-
ing MaxPu,K is O(U) ∗ O(N + KN)). Thus the time
complexity of Algorithm 1 is O(UKN). In Algorithm
2, calculating for social welfare also costs O(KN) for a
given User u. Thus the time complexity of Algorithm
2 is also O(UKN).

4 PERFORMANCE EVALUATION

In this section, we conduct simulations driven by a
large volume of real-world traces to evaluate the fea-
sibility of our optimized fine-grained pricing scheme,
with an extensive range of scenarios.

4.1 Experimental Setting
We use a 1-month Google cluster trace [15], [16] and a
22-months production DAS-2 trace [17] in our exper-
iments. Google trace involves over 370,000 valid jobs
running across over 12,000 hosts from a Google data
center. There are about 4000 applications in total, such
as Mapreduce programs [29] and other data-mining
programs. Each job contains one or more tasks, and
there are totally 25 million tasks in the trace. The DAS-
2 trace contains 300+ users with over 1 million jobs.
The VM overhead is simulated based on Mao et al.’s
characterization over real cloud environment [26]: To

≈ 96.9 seconds.
We will present the experimental results about in-

stance time utilization, maximum user-accepted price,
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minimum provider-accepted price, and social welfare
maximization respectively. We compare the results
under our optimized fine-grained pricing scheme and
the classic coarse-grained one in the experiments. The
best-fit billing cycle is also investigated.

4.2 Evaluation of Instance Time Utilization

A user u’s total instance time utilization (denoted as
γu(K)) is determined by running all of his/her jobs
with an assigned billing cycle = K-minutes. The com-
putation of γu(K) is shown in Formula (11), where
⌈ Lu(i)
K−To

⌉ indicates the number of billing cycles (a ceil-
ing value) for the user’s ith job in our optimized fine-
grained pricing scheme.

γu(K) =

∑N
i=1 Lu(i)

K
∑N

i=1⌈
Lu(i)
K−To

⌉
. (11)

The instance time utilization is a subjective measure of
partial usage waste as discussed in Section 2.2. Appar-
ently, the lower instance time utilization a user gets,
the more seriously partial usage waste he/she suffers.
The overall instance time utilization with billing cycle
K in the whole system can be denoted by such a
vector γ(K) , (γ1(K), . . . , γU (K)).

We simulate the resource charging based on lengths
of jobs with different instances and various billing cy-
cles, and compute the instance time utilization based
on Formula (11).

Fig. 2 presents the statistical results about the in-
stance time utilizations in DAS-2 system and Google
data center in the hourly-rate pricing scheme (i.e.,
classic coarse-grained pricing scheme). In this situa-
tion, the billing cycle is always set to one hour (K =
60 minutes). We can clearly observe that the users can
be split into three groups based on different levels of
instance time utilization.

• Group 1 (Low Utilization): The utilization of the
users in this group is lower than 20%.

• Group 2 (Medium Utilization): The utilization of
the users in this group is between 20% and 80%.

• Group 3 (High Utilization): The utilization of the
users in this group is higher than 80%.

In principle, different groups of users will benefit
from our optimized fine-grained pricing scheme to
different extents: the lower utilization in the classic
pricing scheme, the higher social welfare earned in
our fine-grained pricing scheme.

In the following text, we intensively investigate the
optimized fine-grained pricing scheme. For simplicity,
we set the time resolution of billing cycle to one
minute, i.e., the smallest billing cycle in our experi-
ment is one minute. Our evaluations are carried out
for each group.

We present the instance time utilizations with d-
ifferent billing cycles in Fig. 5, in which all partial
usages are billed as full billing cycles. We draw the
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Fig. 5: The utilization curves with different billing cycles for three
groups.

instance time utilization curves for each group of
users (showing the average values of randomly se-
lected users in each group) in the figure. It is clearly
observed that the average instance time utilizations of
the three groups (low/medium/high-utilization) are
about 10%, 42%, 90% for DAS-2 and about 10%, 63%,
91% for Google trace in the hourly pricing. When the
billing cycle is set to 2 minute, the instance time uti-
lizations reach highest point for different groups, from
70-100% for both traces. This means a huge advantage
in using fine-grained pricing scheme compared to the
coarse-grained pricing scheme.

We observe that most of jobs gain a lot instance u-
tilization improvement in our optimized fine-grained
pricing scheme. In absolute terms, the optimized
fine-grained pricing scheme for low-utilization jobs
achieves the improvement by about 71%

10% ≈ 7 times for
both traces. This is due to the fact that the majority of
job lengths are fairly short (about several or dozens
of minutes). We present the cumulative distribution
function (CDF) of the job lengths for Google and DAS-
2 in Fig. 6. It is observed that over 70% of both traces’
jobs are shorter than 600 seconds even though we
have ruled out the extremely short jobs.
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Fig. 6: Distribution of job length in DAS-2 and Google.
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4.3 Evaluation of Social Welfare
To evaluate how much social welfare can be gained in
our optimized fine-grained pricing scheme, we need
to check two bound prices: The maximum price which
can be accepted by users (described in Section 3.1)
and the minimum price which can be accepted by the
provider (described in Section 3.2), then we can use
Alg. 2 to compute the social welfare achieved in our
optimized fine-grained pricing scheme.

4.3.1 Maximum User-accepted Price
We evaluate the maximum prices which can be accept-
ed by all users over different billing cycles as follows.
Prices are normalized with respect to hourly pricing.
As defined previously, the hourly price is denoted
as P , then the price for a K-minutes billing cycle
is PK . We normalize price for PK to be PK/(K−To)

P/(60−To)
.

When the billing cycle is 60 minutes (i.e., the same
as the hourly pricing), the normalized price (i.e., P )
is 1. We evaluate our optimized fine-grained pricing
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Fig. 7: The maximum user-accepted prices with different billing
cycles.

schemes for the three groups and plot the results
in Fig. 7. There are two findings observed through
the figure. First, as expected, we can see that the
prices for users from Group 3 are less than the ones
from Group 2 and far less than that from Group
1. The reason is that users in Group 1 have very
short jobs, and short jobs will cause large number of
partial usage wastes in hourly pricing. Second, the
price for shorter billing cycle is always higher because
shorter billing cycle leads to less partial usage waste.
However, some anomalous situations appear in Fig.
7 (e.g., the line segment from 25 to 30 in the middle
figure for Google). The reason for this unusual result
is that the users in Group 2 (Google) have very few
jobs and many jobs are close to the long billing cycle.
This may lead to less waste in a slightly longer billing
cycle.

4.3.2 Minimum Provider-accepted Price
From the provider’s perspective, we need to eval-
uate the minimum price which can be accepted

by provider in our optimized fine-grained pricing
scheme. We compute the minimum provider-accepted
using Formula 4, which is described in Section 3.2.
Similarly, we also normalize this minimum provider-
accepted price to the hourly price, and plot the results
in Fig. 8. From the figure we can see, as the billing
cycle goes from 2 minute to 60 minutes, the minimum
provider-accepted price drops sharply from 5.05 to
1. That is because the value of overhead time To in
Formula (12) will not change in different billing cycles.
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Fig. 8: The minimum provider-accepted price caused by overhead.

We represent the extra cost Vo due to VM overhead
by Formula (12). That is, Vo denotes the price value of
the VM overheads like VM startup cost in the hourly
price.

Vo =
To

60
P . (12)

If the billing cycle is very short, the impact of the
overhead Vo will be significant. In contrast, when the
billing cycle is very long (e.g., 50 minutes), the impact
of value Vo will be tiny. The normalized minimum
provider-accepted price will be 1 when the billing
cycle is 60 minutes (i.e., the hourly pricing).

4.3.3 Users Cost Saving
As described in Section 4.3, the social welfare includes
cost saving for users and revenue increment for the
provider. We now evaluate the cost saving for users
with the optimal price described in Section 3.3. We
plot the result in Fig. 9.

In Fig. 9, we only plot the result of Group 3 users
in DAS-2 and Group 1 users in Google. The other
group users have similar figures. Cost saving for the
user is the part where the maximum user-accepted
price is higher than the optimal price. For example,
in Fig. 9(b), the maximum user-accepted prices of the
users are always higher than the optimal price. But
for the users in Group 3 in Fig. 9(a), cost saving only
happens when the billing cycles are longer than 14
minutes. That is, when the billing cycle is shorter
than 14 minutes, there will be no cost saving in our
optimized fine-grained pricing scheme for Group 3.
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Fig. 9: The cost saving for the Group 3 users in DAS-2 and Group 1 users in Google.

4.3.4 Provider Revenue Increment
We evaluate the revenue increment with the optimal
price for the provider as described in Alg. 2 and plot
the result in Fig. 10. Compared to the hourly pricing,
the provider needs less service time to complete the
users’ workload in the fine-grained pricing due to
the reduction of partial usage waste. We define the
resource saturation ratio by dividing the service time
needed in the fine-grained pricing by the service
time needed in the hourly pricing. From Fig. 10,
we see that, in the fine-grained pricing, the provider
only needs to spend 36.78% (42.24%) of the service
time needed in the hourly pricing and gains 94.10%
(73.75%) of the revenue gained in the hourly pricing
for DAS-2 (Google). That is to say, the resource is
unsaturated in the fine-grained pricing due to the
reduction of partial usage waste.

The provider’s resource can serve more customers
in the fine-grained pricing. If more customers come
into the cloud and the provider’s resource is sat-
urated, the provider will gain more revenue than
that in hourly pricing due to the higher unit price
and more users served. As we observe, the revenue
gained by the provider will reach up to 255.85%
(174.60%) when the provider’s resource is saturated
(i.e., 100% of the service time needed in the hourly
pricing) for DAS-2 (Google). That is, the providers’
revenue can be guaranteed in our optimized fine-
grained pricing. Their revenue can be even increased
(to what extents depending on the saturation of the
resource), which can effectively motivate providers to
continually charge resources with our optimized fine-
grained pricing.

4.3.5 Social Welfare Maximization
We then evaluate the most significant contribution
of this paper, the best-fit billing cycle to gain social
welfare maximization. It seems that the shorter the
billing cycle is, the more social welfare gains. But the
evaluation results show that it is not so, as illustrat-
ed in Fig. 11. The maximum social welfare 72.98%
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provider will gain more revenue in our optimized fine-grained
pricing.
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Fig. 11: The social welfare with different billing cycles.

(48.15%) is reached when the billing cycle is 5 minutes
(9 minutes) for DAS-2 (Google), which is equivalent to
the best-fit billing cycle for DAS-2 (Google), but not
the other shorter billing cycles. That is because the
social welfare comes from the increasing utilization
in the new pricing scheme, while billing in shorter
cycle will incur higher overhead. It is worth noting
that the social welfare appears to be negative for
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Google users when the billing cycle is shorter than
3 minutes. That is to say, with those billing cycles,
Google users will get no social welfare in the new
pricing scheme, obviously, these billing cycles are not
suitable for Google users.

4.3.6 Fixed Fine-grained Billing Cycle
Up to now, we have evaluated the best-fit billing
cycle for social welfare maximization, but the best-fit
billing cycle is not suitable for all users, as mentioned
in Fig. 9(a), the best-fit billing cycle 5-minutes is
not suitable for Group 3 users in DAS-2. It seems
that the billing cycle needs to be dynamic. However,
many vendors and users like to be more stable and
predictable, which needs a fixed billing cycle. We
evaluate the feasibility of the fixed billing cycle in
this part. In Fig. 12, we plot the CDF of users who
can accept the billing cycles in the X-axis. For a given
Y-minutes billing cycle, if the cost saving CSu,K=Y of
User u is greater than 0, then we believe that User u
can accept the Y-minutes billing cycle. Because users
cannot accepted a new price to complete the same
workload with a higher cost.
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Fig. 12: Distribution of users which can accept the billing cycles in
fine-grained pricing scheme.

From Fig. 12, we see that, nearly 80% of users in
DAS-2 can accept 2-minutes as the billing cycle, but
only 40% of users in Google. Meanwhile nearly 80%
(90%) of users in Google can accept 5-minutes (10-
minutes) as the billing cycle.

We suggest that 5-minutes is a proper fixed billing
cycle for the IaaS provider for several reasons. First,
the social welfare at 5-minutes billing cycle is almost
the same as the maximization for both traces as illus-
trated in Fig. 9. Second, the 5-minutes billing cycle can
be accepted by most users in both traces as illustrated
in Fig. 12.

5 DISCUSSIONS

In this section, we will discuss several issues that have
not yet been investigated above.

5.1 Benefits for IaaS Market
Intuitively, the profits of both users and providers
contradict to each other, because the provider’s total
revenue may reduce as the existence of cost savings
for users in our optimized fine-grained pricing. There-
fore how do customers and providers benefit from our
optimized fine-grained pricing?

Benefits for Cloud Customers: Apparently, short-
job users will get cost saving in the fine-grained
pricing scheme due to the reduction of partial usage
waste.

Benefits for Service Providers: First, the revenue
increment presented in Section 4.3 means that the rev-
enue gained by the provider for the same service time
will increase in our optimized fine-grained pricing.
Second, when more and more customers rush into
the cloud [1], providers will gain more revenue due
to the higher unit price in the fine-grained pricing.
Third, in our simulation, we derive the optimal price
to satisfy both sides. In reality, providers can be more
flexible. For example, the provider can attract more
customers by leaving a portion of the revenue to
customers, or get more revenue by taking a portion
of the cost saving from customers. Finally, as GCE [3]
and many other IaaS providers [2], [8], [19] emerge,
the competition among them will be more and more
severe and cruel. Providers with fine-grained pricing
scheme, like GCE, can be more competitive to survive,
due to their attractive and precise pricing method to
customers.

Towards Perfect IaaS Market: The IaaS cloud mar-
ket is flourishing more and more, which has attracted
a large number of customers from different domains.
But the reality is that the marketplace today is an
oligopoly, not a perfect market [30] with a large number
of suppliers. The idea proposed in our paper can
encourage new services providers to come up with
and offer optimized fine-grained pricing scheme to
start competing with the existing dominant providers.
Conversely, the existing providers will need to con-
sider this prospect and be willing to start offering
competitive pricing to prevent competition growth.
They will probably loose out if they do not offer a
competitive pricing scheme. Therefore, our work has
a chance to improve the IaaS market.

5.2 Other Potential Benefits of Fine-Grained Pric-
ing
The proposed fine-grained pricing scheme in this
paper is mainly suitable for short-running cloud jobs.
Actually, there are some benefits of fine-grained pric-
ing even for long-running jobs. For example, in the
coarse-grained pricing, customers have to be more
conservative, because they will lose much money
tearing down and up VMs all the time. But the fine-
grained pricing allows them to release VMs more
elastically after load lowers. As another example,
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suppose a service wants to segregate subsets of its
users into different VMs for some security purpose.
Maybe they will consider doing that in the context
of the more flexible pricing, but not in the context of
the coarse-grained one. Those will be discussed and
investigated in our future work.

6 RELATED WORK

Some work discussed how to take advantage of the
existing cloud pricing schemes to reduce running cost
[31], [32], [33], [11] in the perspective of the IaaS users.
Hong et al. [31], for example, designed a strategy
with on-demand instance to reduce the margin costs
and another strategy combining the on-demand and
reserved instance to reduce the true costs. Zhao et al.
[32] leveraged EC2 Spot Price Prediction to design a
resource renting strategy to reduce the cost of cloud
applications. Moreover, many work just wanted to
deconstruct and debunk the truth of Spot pricing
scheme, and leveraged it to reduce users’ cost [33].
Kouki et al. [11] had realized the existence of partial
usage waste, and learned to terminate an instance at
the end of an instance-hour. While our work not only
proves the significance of the partial usage waste, but
also utilizes it to gain more revenues by designing a
fine-grained pricing.

Some other work [12], [13], [34], [35] utilized a third
party (e.g., IaaS cloud broker) to connect customers
and providers of computing sources. For example,
Wang et al. [12] proposed a broker that aggregates
on-demand instances and reserved instances to serve
users, while users’ behavior resembles launching in-
stances on demand provided by the broker. Similarly,
Niu et al. [13] proposed a Semi-Elastic Cluster com-
puting model for organizations to reserve and resize a
virtual cloud-based cluster. SpotCloud [34] provided
the world’s first global market for cloud capacity, buy-
ing and selling unused computing capacity globally
is available. Song et al. [35] proposed a broker to bid
for Spot Instance with EC2 Spot Price Prediction and
used them to serve cloud users. Shanmuganathan et
al. [36] implemented the software prototype as part of
VMware’s management for tenants to flexibly multi-
plex their purchased capacity dynamically among its
VMs. All these work made decisions either from the
perspective of users or providers but not both, while
our approach satisfies both sides simultaneously in
fine-granularity.

Some existing work [37], [7], [38], [39] also tried to
compromise the profits of users and providers, yet
they did not consider the impact of VM overheads in
fine-grained pricing scheme. Di et al. [37] proposed a
win-win cloud scheduling method by leveraging the
second-first price policy, in order to reach a win-win
status with strategy proof. Ben-Yehuda et al. [7] pro-
posed a brief overview of a new cloud, which is called
as Resource-as-a-Service (RaaS) clouds. Sharma et al.

[38] proposed a financial economic model for pricing
cloud compute commodities. They discuss the results
for four different metrics to guarantee the quality of
service. Haas et al. [39] proposed a formal economic
model for a co-operative infrastructure for a socially
oriented platform and analyzed the feasibility and
scalability of the model. To the best of our knowledge,
we are the first to explore an optimized fine-grained
pricing scheme for IaaS cloud.

Dynamic pricing with respect to the market forces
[9], [40], [41] is a hot topic in the literature. Xu et al.
[9] designed an optimal dynamic pricing policy, with
the presence of stochastic demand and perishable
resources, so that the expected long-term revenue is
maximized. Ardagna et al. [40] modeled the service
provisioning problem as a generalized Nash game
and proposed two solution methods based on the
best-reply dynamics. CloudPack* [41] was proposed
to optimize the use of cloud resources to minimize
total costs while allocating clients’ workloads to reach
a game-theoretic fairness. These approaches are com-
plementary to our fine-grained pricing, which can be
studied with our approach in the future.

In summary, compared to the existing work, there
are many advantages in adopting our optimized fine-
grained pricing scheme: (1) our fine-grained pricing
scheme is fairly flexible to suit various types of ser-
vices and spiky demands raised by users, unlike the
coarse-grained hourly pricing scheme; (2) our fine-
grained pricing scheme can effectively reduce the
partial usage waste because the idle instance time
can be allocated to more customers especially in a
competitive situation; (3) Users will feel more satisfied
due to the more precise computation of the payment
cost, such that more users will join the cloud and
resource providers can also benefit in turn.

7 CONCLUSION AND FUTURE WORK

This paper takes the first step to identify and study
the partial usage waste issue in cloud computing by
analyzing its significance with real-world traces. We
propose an optimized fine-grained pricing to solve the
partial usage waste issue, with regard to the inevitable
VM-maintenance overhead, and find a best-fit billing
cycle to maximize the social welfare. By applying
the utility theory in economics, we derive an optimal
price (the middle point in the range) to satisfy both
customers and providers with maximized total utili-
ty. We evaluate our optimized pricing scheme using
two large-scale production traces (based on DAS-2
and Google), with comparison to the classic coarse-
grained hourly pricing scheme. Maximum social wel-
fare can be increased up to 72.98% and 48.15% with
respect to DAS-2 trace and Google trace respectively.

The following research issues are planned for the
future work. First, our approach mainly focuses on
the IaaS provider’s perspective but not the users’
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perspective. In the future, we will explore a dynamic
solution to cope with the changing demands of users
and providers.

Second, the design of pricing can be affected by
the market forces due to the competitiveness among
resource providers. Our approach has not considered
the influence on pricing caused by the market forces.
We plan to exploit the best-fit auction based policies to
suit the new fine-grained pricing scheme in the future.

Third, the partial usage waste problem can be al-
leviated by scheduling users’ jobs effectively. In the
future, we plan to investigate a pipeline solution for
the partial usage waste problem combined with users’
scheduling knowledge.
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