
Language Features for Scalable Distributed-Memory
Dataflow Computing

Justin M. Wozniak,∗† Michael Wilde,∗† Ian T. Foster∗†‡
∗Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
†Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

‡Dept. of Computer Science, University of Chicago, Chicago, IL, USA

Abstract—Dataflow languages offer a natural means to express
concurrency but are not a natural representation of the archi-
tectural features of high-performance, distributed-memory com-
puters. When used as the outermost language in a hierarchical
programming model, dataflow is very effective at expressing the
overall flow of a computation. In this work, we present strategies
and techniques used by the Swift dataflow language to obtain
good performance on extremely large computing systems. We
also present multiple unique language features that offer practical
utility and performance enhancements.

I. INTRODUCTION

Many applications are hierarchical- they consist of core
performance-sensitive libraries, application-specific compo-
nents, and high-level patterns such as statistics collection,
parameter sweeps, or MapReduce-like structures. Many pro-
grammers attempt to solve problems at each different level
with the same tool. In parallel and distributed computing, the
outermost patterns are often expressed with a custom master-
worker task distributor and blackboard system. The algorithms
used may be elegantly expressed in dataflow format.

Swift/T [9] allows programmers to seamlessly and safely
mix application logic with asynchronous task parallelism,
using high-level data structures such as associative arrays and
avoiding low-level concerns such as memory management. It
offers familiar control flow statements, mathematical func-
tions, and rich libraries for writing high-level “glue code”
applications composing serial or parallel foreign functions
written in languages such as C and Fortran, including calls
to MPI libraries [10]. Swift applications executing tasks on
CPUs, GPUs, or other devices can scale from multi-core
workstations to high-performance computing (HPC) systems
with hundreds of thousands of cores [5].

Even such seemingly trivial applications can require signifi-
cant language expressiveness. A high-level language is perhaps
the most intuitive and powerful way to express this kind
of application logic. Ultimately, what many users want is a
scripting language that lets them quickly develop scripts that
compose high performance functions implemented in a native
language. For sequential execution, dynamic languages such
as shell scripts, Perl, or Python address this need. However,
this paradigm breaks down when parallel computation is
desired. With current sequential scripting languages, the logic
must be rewritten and restructured to fit in a paradigm such
as message passing, threading, or MapReduce. In contrast,

Swift/T natively supports parallel and distributed execution
while retaining the intuitive nature of sequential scripting,
in which program logic is expressed directly with loops and
conditionals.

Ahead-of-time compiler optimization and intelligent engi-
neering of runtime systems are essential for this high-level
programming model to be viable for applications that demand
high performance. The goal of the Swift/T project is to develop
an advanced compiler [2] and efficient runtime system [8] to
implement the Swift language on extreme-scale, distributed-
memory machines such as the Cray XE, IBM Blue Gene/Q,
large clusters, and emerging systems in the exascale design
space. In practice, this means translating the user-provided
Swift program into an portable MPI program compatible with
Linux-based and exotic HPC environments.

This work describes the Swift/T implementation and empha-
sizes its generalizable contributions to the dataflow computing
community. In Section II, we provide background on the devel-
opment of Swift. In Section III, we describe the Swift language
as a dataflow language. In Section IV, we describe the MPI-
based runtime libraries that implement Swift semantics. In
Section V, we describe features unique to Swift/T of general
interest to dataflow computing. In Section VI, we propose
interesting dataflow programming features that may emerge in
the Swift language. In Section VII, we summarize the paper
and offer concluding remarks.

II. BACKGROUND

The Swift language emerged from concerted efforts at the
University of Chicago and elsewhere to produce a workflow
language for grid computing, most recently resulting in an
exascale-ready programming language. Early efforts (c. 2000)
produced the Java Commodity Grid Kit (CoG) [7], which
provided abstractions for remote execution. CoG included an
optional Java-based directed-acyclic-graph (DAG) API. CoG
then produced an XML-based programming language called
GridAnt (c. 2002) [6], which had similarities to Apache Ant.
A major revision of the GridAnt work resulted in Karajan
(c. 2006) [1], which had both XML-based and functional
syntaxes. Concurrently, the Virtual Data Language (VDL)
projects (c. 2003) [4] produced pure "virtual data" tools for
data-dependent processing on remote resources. The combined
effort, VDL2 (c. 2006), produced a high-level dataflow lan-
guage with C/Java syntax likenesses that translated into a

Karajan program. VDL2 was renamed to Swift (Scientific
WorkFlow Tool) [11]. An exascale-funded project ExM (c.
2010) was launched to produce a version of Swift capable of
running on exascale resources. Thus Swift was renamed to
Swift/K (for Karajan) and the new system was named Swift/T
(for the new Turbine runtime).

III. OVERVIEW OF THE SWIFT LANGUAGE

Superficially, Swift appears to be a simple, sequential lan-
guage. It includes typical variable types. It includes familiar
control constructs and typical arithmetic operators and builtin
functions. It also includes leaf functions, which call into user
code in the subordinate level of the programming hierarchy
(commonly C or Fortran functions, or executables). However,
as a dataflow language, all variables are futures and execution
is based on data availability, not an instruction pointer.

1 int a, b, c, d;
2 a = A(input());
3 b = B(a);
4 c = C(a);
5 d = D(b,c);
6 output(d);

inputs

outputs

CCBB
work
queue

processors

Fig. 1: Simple diamond dataflow pattern.

This is clearly a simple dataflow “diamond” pattern, in
which B() and C() are eligible to run concurrently, as shown
in Figure 1. If B() and C() are leaf functions, in the Swift
model, each is submitted to a work queue that load balances
and distributes the function as a task for remote execution.

Additional concurrency may be produced through the use
of the foreach statement:

1 int S[] = [0:9];
2 foreach i in S {
3 int a, b, c, d;
4 a = A(input());
5 b = B(a);
6 c = C(a);
7 d = D(b,c);
8 output(d);
9 }

Example 1: Swift ‘foreach’ statement

In this fragment, the [m:n] syntax specifies a literal array
of integers. For each entry i, a block is created, in which
variables are dynamically created and dataflow processing
begins.

Blocks themselves may be the subject of dataflow. In the
wait statement, the block is specified as the object of dataflow
evaluation, as shown in Figure 2.

1 int a, b, c, d;
2 a = A(input());
3 wait (a) {
4 b = B(F());
5 }
6 c = C(a);
7 d = D(b,c);
8 output(d);

CCBB

a

b c

FF
waitwait

Fig. 2: Dataflow pattern with wait on externality.

We stress that wait is not required for dataflow computing-
it is useful for certain “dirty hacks” that enable dependency
on miscellaneous native computer features, such as the clock,
changing external data sources, etc. It is also illustrative for
more complex Swift constructs.

The if statement is essentially a wait plus a condition
evaluation:

1 int a, b, c, d;
2 a = A(input());
3 boolean k = (a > 0);
4 if (k) { b = B(); }
5 else { b = 0; }
6 c = C(a);
7 d = D(b,c);
8 output(d);

Example 2: Swift ‘if’ statement

The two blocks that assign to b are equivalent to wait(k)
blocks but are selected based on the value of the boolean
condition, k.

The combination of Swift conditional blocks and iteration
enables the novel Swift/T for construct:

1 int d;
2 for (int i = 0; G(i,d); i = i+1) {
3 int a, b, c;
4 a = A(i);
5 b = B(a);
6 c = C(a);
7 d = D(b,c);
8 output(d);
9 }

Example 3: Swift ‘for’ statement

In this C-like construct, there is one key difference: the
third statement in the for header (i=i+1) is split into left-
hand and right-hand sides, which refer to variables (i) in
different blocks (more than one such statement may be written,
separated by commas). Thus, a data dependency from one
iteration to the next is created. Across iterations, concurrent
evaluation is possible depending on how dependencies are
structured. The condition statement (G(i,d) is a conditional
dependency for the next block. Thus, in the case shown, the
next block depends on the value of d in the previous block,
creating a strictly linear sequence of blocks, and limiting
concurrency to within the block.

IV. OVERVIEW OF THE SWIFT RUNTIME: TURBINE

STC

Data Flow
Expressions

External
Functions

Swift
Script

Data
Definitions

Turbine
Code

Turbine
Execution

Interpreter

mpiexec

Turbine
libraries

ADLB

Memory
Management

Task / Data
Dependency

Library
Access User

Libraries

Semantic
Analysis

Flattening &
Optimization

Code
Generation

Fig. 3: Schematic of STC usage.

The Swift-Turbine Compiler (STC) is an optimizing com-
piler. The compiler interprets Swift syntax as an abstract
syntax tree (AST). Based on user controls, it performs multiple
optimization passes. It emits code in a representation compat-
ible with our runtime, Turbine. This representation is a Tcl

script, thus, STC internally generates a Tcl AST and writes
that to the generated file.

Worker 4Worker 4

Worker 0Worker 0 Worker 1Worker 1

Worker 8Worker 8

Worker 12Worker 12

Worker 16Worker 16

Worker 5Worker 5

Worker 9Worker 9

Worker 13Worker 13

Worker 17Worker 17

Worker 3Worker 3

Worker 7Worker 7

Worker 11Worker 11

Worker 15Worker 15

Server 19Server 19

Worker 2Worker 2

Worker 6Worker 6

Worker 10Worker 10

Worker 14Worker 14

Server 18Server 18

Node 0 Node 1 Node 2 Node 3

Fig. 4: Schematic of Turbine architecture.

The Turbine runtime is shown in Figure 4. Designed for
massively multi-node systems, each node runs multiple Tur-
bine processes that are launched using the system-specific MPI
job scheduler (scripts are provided for PBS, SLURM, etc.).
Each process runs the STC-generated script. All communica-
tion is performed over the MPI-based Asynchronous Dynamic
Load Balancer (ADLB) library. In accordance with this model,
each process is dispatched into one of two execution modes
based on rank number - worker or server.

A. Implementation

The original ADLB served as a scalable, lightweight library
that offered two key RPCs- Put() and Get() on tasks.
Tasks, each represented as a byte buffer (or message), are
distributed for execution on workers and shared among servers
based on memory limits. ADLB tasks have rich features,
including priorities and location targeting. The ADLB library
implements the work queue described previously.

For the Turbine effort, ADLB was significantly enhanced.
Server work-sharing is now based on a Scioto-like [3] work
stealing mechanism. Many additional RPCs were added to
allow servers to manage data in addition to tasks, including
data operations Create(), Subscribe(), Store(), and
Retrieve(), which must be used in that order. Data cre-
ation allocates the memory location on a server in accordance
with a simple hashing scheme. Data subscription results in
a notification when data is stored, and data may be retrieved
by any process. Thus, this creates a full-featured, write-once
global data store with notifications.

B. Swift semantics

Our goal for Turbine was to create a convenient compiler
target for STC. . Thus, all ADLB operations (implemented in
C) are exposed as Tcl statements, making up the instruction
set for Turbine code. Some higher-level operations (such as
Swift builtin functions) are implemented as Tcl functions.
For performance reasons, as much functionality as possible is
implemented at the C level, behind SWIG-generated bindings.

A typical Swift dataflow expression may be translated to
Turbine code in a straightforward manner with the use of the
Turbine rule statement:
rule (v0, v1, ...) continuation options...

The rule establishes data dependendencies on v0, v1, When
these are resolved, the continuation is released to the work

queue for processing. Options may be used to control details
of how the continuation is executed.

A typical Swift expression is translated into Turbine code
(shown as Tcl-like pseudocode) in the following way:

1 int a;
2 a = 3;
3 int b;
4 b = increment(a);
5
6
7
8
9

10
Swift code

1 create integer a
2 store a 3
3 create integer b
4 rule (a) increment(b,a)
5
6 proc increment(b,a) {
7 retrieve a
8 a = a+1
9 store b a

10 }

Turbine code
Fig. 5: Elementary dataflow expression in Turbine

As shown, the data-dependent block representing the imple-
mentation of increment is expressed as a Tcl proc. This
implements the rule continuation on any worker process, by
retrieving its state from the data store and storing its results,
possibly releasing continuations elsewhere. Other blocks, such
as those produced by wait, etc., may be translated in a similar
manner, with appropriate data management.

C. A data-dependent master-worker system

At the lowest level (above MPI), the data-dependent task is
presented to ADLB with the new ADLB_Dput() RPC, which
allows a task submission to ADLB that is dependent on data
availability. Thus, our system could support other frameworks
that 1) use ADLB, 2) generate ADLB programs in the C
language, or 3) translate to Swift. Our ADLB-level extensions
offer a scalable, generic master-worker system with rich data
features in addition to traditional task distribution.

V. LANGUAGE FEATURES

In this section, we describe multiple novel features available
in Swift/T for dataflow processing.
• Prioritized evaluation ordering: The priority annotation
may be affixed to a Swift leaf function to modify the task
priority in the ADLB work queue. Thus, the code:

1 int p = compute_priority();
2 output = @priority=p f(x);

Example 4: Task priorities

allows the user function compute_priority() to set the
priority of the task resulting from f(x). This is an effective
way for the user to control concurrency, by specifying high-
priority tasks that satisfy many data dependencies early in
execution. Another use is to run longer-running tasks as higher
priority, allowing shorter tasks to fill in gaps at the end of a
run, limiting the long-tail effect of an irregular run.
• Task locations for data locality: The location annotation
may be affixed to a Swift leaf function to modify the task
location setting in the ADLB. This targets a task to a certain
rank. Swift/T provides builtin functions to translate hostnames
to ranks, allowing the user to use data locations in an external
storage system to drive execution. Thus the code:

1 foreach i in [0:9] {
2 string filename = "/fs/file-"+i;
3 string host = find_file(filename);
4 location L = host2rank(host);
5 @location=L compute(filename);
6 }

Example 5: Task locations

could be used to perform data location-aware scheduling,
enabling data-intensive computing with Swift (provided a
storage system that makes data locations available).
• Updateable variables: As described above, Swift execution
occurs after the task has proceeded through the work queue.
Thus, program state could have changed, invalidating work or
changing requirements for work in the queue. Swift update-
ables allow Swift blocks to change the value of a variable.
Thus, the receiving task must be capable of using the previous
or updated value of the variable. In this example:

1 updateable int error = 0;
2 int c = f();
3 if (c < 0) { error := 1 };
4 output(@priority=LOW g(error));

Example 6: Updateable variables

task g() may or may not run concurrently with f(). If it does
run later, it may have access to the latest value of error,
allowing it to exit early or make other behavioral changes
based on the latest value of error.

VI. PROPOSED LANGUAGE FEATURES

In this section, we propose new dataflow language features
related to those described previously that may be implemented
in Swift in the near future.
• Compiler-managed data locality: The Swift @location
syntax provides low-level control to the programmer regarding
task/data locality. We intend to partially automate this by
annotating Swift data definitions with the @heavy annotation,
enabling the compiler to generate appropriate @location
directives. This would allow the user to influence the locality
of data-intensive execution without the book-keeping required
for manual data management.
• Flexible task location targeting: The ADLB API currently
only allows two possibilities for task location: a specific MPI
rank, or anywhere. This is not a good match for modern
computer systems with complex data access costs. We propose
to extend ADLB with soft targets, which will allow soft
requirements for execution location, and expose these to the
Swift programmer as we do with other annotations.
• Optional data dependencies: Updateables are a useful
way to manage computation patterns that do not quite fit the
dataflow model, yet push the limits of acceptable variations to
dataflow processing. We propose a soft dependency feature that
would allow work to be released to the work queue before soft
dependencies are resolved. If the dependencies are resolved
before task execution begins, the task would receive the user-
stored value, otherwise a default value would be received:

1 int a = 10;
2 int d;
3 d = f(a);
4 output(@priority=LOW g(a, @soft d));

Example 7: Soft data dependencies

As shown in this snippet, the execution of g() may or may
not receive the value of d set by f(), allowing maximal
concurrency at the cost of determinism.

VII. SUMMARY

In this work, we have described Swift from dataflow princi-
ples. We presented a brief history of the development of Swift
from a convergence of distributed computing and dataflow
computing concepts. We described how Swift uses dataflow to
represent concurrent computation, including some of its syn-
tactic structures for more complex dataflow and concurrency
semantics. We also described how Swift may be translated
into a representation compatible with our scalable dataflow-
oriented runtime, Turbine. We then described some Swift-
specific features to enhance dataflow computing in practice,
including priority, locality, and non-deterministic extensions to
dataflow computing. We intend that this will motivate future
work in the dataflow community for solving extreme scale,
high performance computing challenges with the elegance of
scripted dataflow programs.

ACKNOWLEDGMENTS

This research is supported by the U.S. DOE Office of
Science under contract DE-AC02-06CH11357 and NSF award
ACI 1148443. Computing resources were provided in part
by NIH through the Computation Institute and the Biological
Sciences Division of the University of Chicago and Argonne
National Laboratory, under grant S10 RR029030-01, and by
NSF award ACI 1238993 and the state of Illinois through the
Blue Waters sustained-petascale computing project.

REFERENCES

[1] Karajan manual. http://wiki.cogkit.org/index.php/Karajan.
[2] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster. Compiler

techniques for massively scalable implicit task parallelism. In Proc. SC,
2014.

[3] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sa-
dayappan. Scioto: A framework for global-view task parallelism. Int’l
Conf. on Parallel Processing, pages 586–593, 2008.

[4] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A
new model and architecture for data-intensive collaboration. 2003.

[5] S. J. Krieder, J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz,
B. Grimmer, I. T. Foster, and I. Raicu. Design and evaluation of the
GeMTC framework for GPU-enabled many task computing. In Proc.
HPDC, 2014.

[6] G. von Laszewski, B. Alunkal, K. Amin, S. Hampton, and S. Nijsure.
GridAnt: Client-side workflow management with Ant. July 2002.

[7] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity
Grid Kit. Concurrency and Computation: Practice and Experience,
13(8-9), 2001.

[8] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz,
M. Wilde, and I. T. Foster. Turbine: A distributed-memory dataflow
engine for high performance many-task applications. 28(3):337–366,
2013. Fundamenta Informaticae 128(3).

[9] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster. Swift/T: Large-scale application composition via distributed-
memory data flow processing. In Proc. CCGrid ’13.

[10] J. M. Wozniak, T. Peterka, T. G. Armstrong, J. Dinan, E. Lusk, M. Wilde,
and I. Foster. Dataflow coordination of data-parallel tasks via MPI 3.0.
In Proc. EuroMPI ’13.

[11] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde. Swift: Fast, reliable, loosely
coupled parallel computation. In Proc. Congress on Services, 2007.

(The following paragraph will be removed from the final
version.)

This manuscript was created by UChicago Argonne, LLC, Op-
erator of Argonne National Laboratory (“Argonne”). Argonne,
a U.S. Department of Energy Office of Science laboratory,
is operated under Contract DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by
or on behalf of the Government.

