
Run-time extensibility and librarization of
simulation software

Jed Brown
Argonne National Laboratory

University of Colorado Boulder
jedbrown@mcs.anl.gov

Matthew G. Knepley
University of Chicago

knepley@ci.uchicago.edu

Barry F. Smith
Argonne National Laboratory

bsmith@mcs.anl.gov

Abstract—Build-time configuration and environment assump-
tions are hampering progress and usability in scientific software.
That which would be utterly unacceptable in nonscientific soft-
ware somehow passes for the norm in scientific packages. The
community needs reusable software packages that are easy use
and flexible enough to accommodate next-generation simulation
and analysis demands.

Keywords: software library, extensible software, object-
oriented, software composability, simulation

I’d like you to use my new web browser, Firetran! It
renders HTML 10% faster than Firefox, but only if there is no
JavaScript. You can recompile if you want JavaScript, but our
performance tests don’t show that configuration. The character
encoding is compiled in, for efficiency. It has a great plugin
community—developers add code directly to the web browser
core, guarded by a #ifdef. Some developers change things
and distribute their own mutually incompatible versions of
Firetran. Naturally, users of those packages submit bug reports
to me, but I haven’t been able to reproduce with my version.
Proxy configuration is compiled in so you don’t have to worry
about run-time configuration dialogs, just edit a makefile and
recompile. To keep you secure, the https version of Firetran
cannot use http, and vice versa. Although Firetran is open
source, our development is done in private; if you submit a bug
report or a patch, you’ll likely hear “We fixed that in the private
repository last year; we’ll release when the paper comes out. If
you have to view that website, fill out the attached form and
fax us a signed copy.” Firetran has a parental filter feature:
you can list a maximum of 16 websites in a source file, in
which case Firetran will refuse to visit any site not on the
list. Firetran can be compiled only with last year’s version of
the ACME Fortran77 compiler. The build system consists of
csh, perl, m4, and BSD make. There is no URL entry box in
Firetran; to visit a page, you edit a configuration file and run
the program. A grad student wrote a Tcl script with a text entry
box to automate editing the configuration file and rerunning
the Firetran executable. The script is hard to understand, but
many in the community believe the way forward is to enhance
the script to detect whether the website needs https or http,
JavaScript or not, etc., and recompile Firetran on the spot.

Needless to say, Firetran struggles with market share. Yet
choices in Firetran represent the status quo in many scien-
tific software packages—often vehemently defended. If it is
laughably unacceptable in nonscientific software, why is it

tolerated in scientific software? Are scientists suffering from
Stockholm Syndrome? Is scientific software so fundamentally
different? How could scientific software benefit from adopting
the techniques we take for granted in nonscientific software?
Let’s look at some of the directions that scientific simulation
software is heading toward.

I. TRENDS IN SIMULATION-BASED SCIENCE AND
ENGINEERING

Modern computational science and engineering is increas-
ingly defined by multiphysics, multiscale simulation [1] while
raising the level of abstraction to risk-aware design and
decision problems. This evolution unavoidably involves deeper
software stacks and the cooperation of distributed teams from
multiple disciplines. Meanwhile, each application area contin-
ues to innovate and can be characterized as much by the forms
of extensibility (e.g., boundary conditions, geometry, subgrid
closures, analysis techniques, data sources, and inherent un-
certainty/bias) as by the underlying equations. It is no longer
the case that the original author can foresee all use cases for
their software. We argue that many common approaches to
configuration and extensibility create artificial bottlenecks that
impede science goals, and that the only sustainable approach
is to defer these to run-time. Doing this effectively will
push applications to minimize the assumptions made about
their environment, resulting in more library-like applications
better suited to coupling with other models and to performing
advanced analysis.

A. Compile-Time Configuration

Many applications, especially those written in Fortran 1,
perform configuration in the build system. This approach is
motivated by a variety of concerns about efficiency (often ill-
founded or fixable by adjusting interface granularity), lim-
itations of software tools (e.g., algorithmic differentiation),
poor language support, perceived implementation complexity,
and short-term value assessment. Once a package chooses
compile-time configuration, the build system becomes a public
application programming interface (API), used by scripts that
perform higher-level analysis. Ad hoc public APIs inhibit

1A language that after more than 50 years, has finally started to provide
mechanisms for encapsulation in its latest standards (using ISO C bindings)
and natively in TS 29113 (scheduled for inclusion in Fortran2015).



software evolution by imposing an unintentionally high cost
on change as well as dilution of effort to meet short-term
deliverables.

In applications relying on build-time code generation,
pragma-based specialization/optimization, or those written in
C++ with heavy use of templates, the possible combinations
must be enumerated at compile-time. Although templates are
not exclusive (you can compile several variants in the same
application), it is common to see a combinatorial explosion of
variants as well as directly exposing the templates in public
interfaces. Since all combinations cannot be compiled into
one application, the effect is that any analysis or testing
that explores a large or unpredictable part of the space
of combinations must include recompilation. Attempting to
push the size limits leads to error-prone workarounds like
-mcmodel=large (a compiler option that affects link-
ing/compatibility), using processes spanning more than one
NUMA node (degrading memory locality), and inability to run
on low-memory architectures that might otherwise be well-
suited to the application.

Compute nodes often do not have access to compilers, mak-
ing all build-system and compile-time decisions inaccessible
to online analysis. A given application may be unable to
run in both configurations on different nodes or on different
MPI communicators. This limits analysis capability, requires
frequent recompilation, and increases the likelihood of user
error resulting from accidentally using the wrong compiled
version. The length of batch queues exacerbates the issue,
sometimes requiring days between compiling an application
and actually running it. Every compatibility that must be
maintained by hand is another opportunity for mistakes, some
of which the user may not realize prior to publication.

Some applications create sophisticated scripts for maintain-
ing consistency through the compilation and batch submission
process. These scripts must be ported to each architecture, and
they increase the complexity of debugging the application and
of reproducing problems encountered on certain architectures.

Integration tests often need to be submitted to batch systems.
If different integration tests need dependencies to be compiled
differently, those different versions need to be built in advance
and kept straight through the test submission and run. When
many configurations are needed, the multiple required compi-
lations have a tendency to take a long time and/or burn through
disk quota.

B. Advanced Analysis

As models mature in each application area, emphasis shifts
from qualitative and subjective interpretation of model output
to quantitative analysis of accuracy, reliability, and the influ-
ence of parameters on quantities of interest. Correspondingly,
today’s models are increasingly used not just as forward
models but as the target of advanced analysis techniques
such as stochastic optimization, risk-aware decisions, and
stability analysis. The forward model must then expose an
interface for each form of modification that the analysis levels
can explore. An interface requiring build-time modification

shifts an unacceptable level of complexity to the analysis
software and is algorithmically constraining—limiting paral-
lelism, introducing artificial bottlenecks, and preventing some
algorithms.

In lieu of tractable deterministic techniques for calibration
of empirical phenomenological models, an enormous amount
of expert time must be spent tuning parameters. In fields such
as climate, earthquakes, and molecular dynamics, this calibra-
tion is notoriously sensitive to numerical methods, temporal
and/or spatial resolution, and other models used in simula-
tion. And yet when faced with this extreme uncertainty and
volatility, these parameters are often hard-coded in the source,
thwarting reasonable attempts to automate the calibration or
comparison of models.

C. Model Coupling

A large fraction of successful scientific software has been
the result of a visionary scientist operating in a single domain.
Many important model configurations and analysis types were
predicted by that visionary, and the community has been
largely content to explore within that fuzzy scope. Each pack-
age has been king of its own environment and thus has often
made choices without concern for interoperability or impact
on other packages. But the gaping holes in our scientific
understanding and engineering capability lie increasingly in
the gaps not covered by any one of these mature packages.
Rarely do multiple models operate on identical spatial and
temporal scales with similar model and parameter uncertain-
ties. Thus, coupling often requires grappling with multiscale
phenomena and high-variance statistics, each an algorithmic
challenge in its own right. When components make excessive
assumptions about their environment, attempts to couple are
either written off or algorithmic quality falls by the wayside,
leading to nominally coupled simulations that are unreliable
at best and effectively nonconvergent in most cases. The most
powerful and pragmatic software approach we know of is
to formulate models as libraries with a clean hierarchy of
interfaces, allowing an external client to compose the key
capabilities into a coupled model without the higher-level
parts that would algorithmically constrain a coupled model.
This approach has repeatedly demonstrated its effectiveness
outside of scientific computing in areas traditionally dominated
by stand-alone applications, such as compilers (LLVM), web
browsers (KHTML/WebKit), and SQL databases (SQLite). Al-
though process isolation can be useful for reasons of security
(e.g., qmail, postfix), reliability (tabs in a web browser), and
distribution (e.g., remote databases), it is easier to add isolation
upon library interfaces than to add composition/embedding
atop process separation, especially in HPC environments for
which oversubscription is usually catastrophic.

D. Provenance and Usability

Reproducibility and provenance are perpetual challenges of
computational science that become more acute as the software
stack becomes deeper and more models of greater complexity
are coupled. How can we capture the state of all configuration



knobs so that a computational experiment can be reproduced?
Compare the complexity of a single configuration file to be
read at run-time with that of a heterogeneous configuration
consisting of multiple build systems, files passed from earlier
stages of computation, and run-time configuration. Provenance
is simplified by using each package without modification,
compiled in a standard way, and controlled entirely via run-
time options. This implies that any libraries used (transitively)
by the application must be responsible libraries that adhere to
the principles discussed here and in [2]. For both maintenance
and provenance reasons, custom components needed for a
given computational experiment are better placed in version-
controlled plugins rather than by modifying upstream sources.
If a coherent top-level specification is to be supported in a
system with build-time or source-level choices, those config-
uration options must be plumbed through all the intermediate
levels, often resulting in another layer of “workflow” scripts
and bloated, brittle high-level interfaces.

E. “Big” Data

Workflows that involve multiple executables usually pass
information through the file system. It takes about one hour
to read or write the contents of volatile memory to global
storage on today’s top machines, assuming peak I/O bandwidth
is reached. The largest allocations are on the order of tens
of millions of core hours (e.g., INCITE), meaning that the
entire annual compute budget can be burned in a few reads
and writes. Global storage as an algorithmic mechanism is
dead: where out-of-core algorithms have been used in the past,
today’s scientists can simply run on more cores, up to the
entire machine; but if the entire machine does not have enough
storage, the allocation simply does not have the budget to run
an out-of-core algorithm.

If a different application or different version of an applica-
tion must be used for the next stage in the simulation/analysis
pipeline, data must be dumped to the file system. In situ anal-
ysis provides an excellent opportunity to increase efficiency
by reducing dependence on the file system, but is viable only
if the more varied analysis workflow can be performed in the
same application. Interfaces for exchanging data in-memory
between different software components could be the same as
those used to describe data sets for parallel IO.

Some of today’s simulations support a large and diverse
community that analyzes the output. Transitioning to in situ
analysis will require dynamic and extensive analysis interfaces
to support varied analysis demands. Unlike most parts of
mature simulation software, the analysis code often changes
with each question a scientist asks and thus is highly volatile
and does not benefit from the same amount of testing.

F. Nested Dependencies

Some library dependencies are indirect (transitive), via some
intermediate interface that the application actually intends to
depend on. One of the most important software engineering
principles is that of encapsulation, allowing clients to depend

only on interfaces that it uses directly, rather than imple-
mentation concerns. There is no encapsulation if a transitive
dependency must be reconfigured for each use case, and
combining uses into one application may cause conflicts.
The build system for any “library” that requires use-specific
configuration effectively becomes a public API that top-level
components must interact with even when the library is only
used indirectly.

A single library can be used by multiple components in
the same executable. This may be rare when a library is first
being developed, but it is common among popular and versatile
libraries. If a library has mutually incompatible configurations,
the entire executable can use only one version unless the
library developer has taken great care (often impractical, es-
pecially when linking statically—an unfortunate necessity on
many HPC architectures). Even in the best case, needing to use
multiple versions complicates the installation and debugging
process, invariably leading to degraded user experience and
increased support workload for library maintainers.

G. User Modifications

Fragmentation of software projects is notoriously expensive
and should be avoided when possible. Maintaining local
modifications with no plan for upstreaming is a recipe for
divergent design—technical debt that must be paid off in order
to combine the features developed in each fork. Fragmentation
is especially toxic for libraries that may be used by multiple
higher-level packages that are combined in the overall exper-
iment (see subsection I-F)

H. Packaging and Distribution

Software developers often underestimate the challenge of
installing their own packages. From the perspective of user
experience, it hardly matters if an installation failure was
caused by a user’s broken environment (a circumstance all-
too familiar to maintainers of popular packages). Upgrad-
ing an operating system can break existing installs of a
package if the underlying system libraries change. The most
reliable way to distribute packages that will always be in
sync with the operating system is to have them be packaged
by many common operating systems (Debian APT, RedHat
RPM, MacPorts, etc.). Configure-time options are the bane
of package distribution due to the need to name each variant
and to resolve conflicts between the variants. Packagers for
binary distributions (most convenient for users) are justifiably
paranoid about the binary interface and hence will be reluctant
to package software with fragmented configuration options.

II. IMPLEMENTATION AND RECOMMENDATIONS

To manage these workflow challenges, application devel-
opers will need to think more like library developers [2]:
controlling namespaces; avoiding global state; relinquishing
top-level control; controlling the scope of parallelism; localiz-
ing memory allocation; localizing complexity so that it does
not “bubble up” to the top level; and paying attention to
the completeness, generality, stability, and extensibility of all



public interfaces. Our suggestions are shaped by experience
developing and supporting (PETSc) [3], [4], as well as other
packages from low-level libraries to end-user applications.
Similar ideas for extensibility and run-time configuration have
been implemented in applications such as MOOSE [5] and
PyLith [6].

A. Resource Allocation

To localize configuration, allocation of resources such as
memory should be done locally, with reference counting
when appropriate. Contrary to urban legend, static memory
allocation offers no tangible performance advantage (so long
as dynamic allocations are amortized) and unavoidably ties the
workflow into the build system, while committing the sin of
needless global variables. Different malloc implementations
have varying performance, especially in multi-threaded sce-
narios. If necessary, fast implementations like TCMalloc [7]
can be recommended, but it is better to contain this complexity
in order to perform well with any malloc. This can involve
having memory pools or work arrays associated with algorithm
objects, so that malloc is not called in inner loops.

B. Plugins

Source-level dependencies on an implementation (e.g., di-
rect instantiation of a derived class or a template parameter)
rather than a generic interface cause choices from deep in the
stack to “bubble up” via brittle interfaces that plumb the user’s
configuration to the appropriate component. Plugins provide
a strong way to identify interfaces that can be extended by
users and distributed separately from the core package. For
example, every class in PETSc has a plugin architecture, from
base linear algebra components to preconditioners, nonlinear
solvers, and adaptive controllers for time integration. Any
of these components can be provided by a plugin and will
be indistinguishable from a native component of PETSc.
Plugins consist of a registration function that is called via
dlopen(), a creation function that is called when the plugin
is activated (e.g., instantiation of an object implemented in
the plugin), and any supporting functions that will be exposed
via methods of the object. Historically, Fortran’s type system
and inability to store function pointers have conspired against
plugin implementations, but the new standard provides the
necessary tools.

Plugins also provide a mechanism to invert dependencies
without creating dependency loops. For example, suppose
libB depends on libA, but we would like to provide an
optional implementation of an interface in libA that depends
on libB. We can’t put it in libA because this would
make a cyclic dependency, but it is unrelated to libB’s
public interface so doesn’t belong there either. We can create
libA-plugin that depends on both libA and libB, reg-
istering itself as a plugin of libA and calling into libB
in its implementation. Note that plugins can also be used
for optional interfaces to third-party libraries. It is best to
have plugin search paths from which plugins are loaded by
dlopen, so that they can be distributed independently from

the base system and no relinking is required. Shared libraries
should be versioned (e.g., -soname on most POSIX systems,
-current_version and -compatibility_version
on OSX) to make this distribution more reliable and to assist
the layers built on top. See [8] for more on shared library
versioning and controlling symbol visibility.

While distribution via shared libraries is convenient for
users and packagers, some important HPC execution environ-
ments do not support shared libraries. If such anti-productive
environments must be used, the plugin structure can be pre-
served, but the build system ultimately needs to be able to link
everything statically. For an application, this typically means
that plugin source trees are placed in a location that the build
system picks up, then code to call the registration function
is generated, and everything is linked together. For a library,
plugins either need to be compiled into a single static archive
or the user needs to explicitly link the plugins (in the correct
order). The linking interface is a public interface, so changing
it should not be taken lightly. The library can either distribute a
tool that determines which plugins are available and generates
a suitable link line or it can create a static archive containing
all plugins. Unfortunately, the pkg-config tool is lacking
in management of multiple configurations and optional de-
pendencies, so many libraries will need their own executable.
Wrapper compilers are exclusive (only one library can use a
wrapper compiler) and thus should be avoided.

C. Inversion of Control, Recursive Configuration, and the
Options Database

The primary purpose of software libraries is to contain
complexity. Public interfaces should be as simple as possible
(but no simpler), meaning that transitive complexity must not
be a mandatory part of the public interface. Furthermore,
extensible components are not known at compile-time (indeed,
they may not have been written yet) and thus would be
rendered useless if implementation complexity leaked into the
public interface. It should be possible to instantiate the same
plugin (unknown to client code) with different configurations
at different locations in the object graph, each with its own
configuration. Since the client does not know how to configure
the object, some inversion of control [9] is necessary. PETSc’s
approach is similar to “service locator” in [9], but several
variations should be considered by new projects. In PETSc,
multiple instances of objects are distinguished by a prefix in
the options database, allowing conflict-free run-time config-
uration. For example, a multiphysics solver may use a block
decomposition and geometric-algebraic multigrid with choices
and diagnostics for each block and at each level of one or more
multigrid solves, each instance of which we distinguish by
prefix. The basic principle is to choose good defaults and defer
precise configuration to the run-time interface. Some packages
take dynamic extensibility further by embedding a Turing-
complete programming language such as Lua, JavaScript, or
Scheme.

PETSc also acknowledges that some users take active
control over method configuration, adapting it in response to

http://mcs.anl.gov/petsc


physical regime or other factors. This active control is more
naturally implemented and debugged with an object-based run-
time interface; thus any run-time configuration exposed via
the options database is also exposed via the object-oriented
interface. The most challenging compromise in this scenario
occurs when an algorithm adaptively configures recursive
levels, but the client wants to actively configure portions.
Solutions include fine-grained interfaces for “forcing” (in the
lazy functional programming sense) certain parts of the setup
and callbacks to configure portions when reached. Neither is
completely satisfactory.

D. Object-Oriented Design

We turn now to some contentious issues in object-oriented
design, for which we are less than enamored with oft-repeated
recommendations.

1) Partial implementation: Some people believe that all
errors should be compile-time errors; thus, any incompatibility
must be visible to the compiler. Unfortunately, this approach
leads to extremely complicated and fragile type hierarchies.
For example, a Matrix is a linear transformation on finite-
dimensional vector spaces. Should a Matrix have com-
putable entries? Should the diagonal be extractable? Can the
transpose be applied? Are “Neumann” subproblems available
(matrices with certain properties whose sum equals the original
matrix)? While the entries of matrices can be computed in
principle, the space and time complexity may be so unaf-
fordable as to render that representation useless. Meanwhile,
other operations that are unaffordable for explicitly stored
matrices may be fast for matrices with special structure.
Different preconditioners (which may reside in plugins) may
require different functionality from the Matrix. Any type
system that can guarantee full implementation of a given
Matrix interface will end up conflating the desired generic
interface with implementation-specific semantics, especially
when the Matrix type is also extensible, leading to undesirable
dependencies and leakage of transitive complexity. Moreover,
the “not implemented” run-time error is likely to be more
understandable than a type mismatch error.

2) Run-Time Implementation Changing: PETSc has found
it useful for major objects to be able to change implemen-
tations at run-time (e.g., from multigrid to a direct solve).
One object can have many dependencies/references and be
referenced by many other objects. If the implementation can
only be changed at object creation, the user ends up holding
factory objects (or the equivalent) for the sole purpose of
recreating “similar” objects. Someone has to be responsible
for keeping track of these factory objects and for rewiring the
dependencies when replacing an existing object. This turns out
to be messy and error-prone, so PETSc has chosen to absorb
the “factory” functionality into the object itself, allowing
reconfiguration of any sort at any time. This also removes the
need for special interfaces to pass a factory object around to
all components that should have a say in how the new object
will be configured.

3) Controlling the Binary Interface: Time spent recompil-
ing code is nothing but wasted productivity. Implementation
concerns such as private variables and new (virtual) methods
should never require recompilation of client code. PETSc
uses a delegator (aka. “pointer to implementation” [10] or
“bridge” [11]) pattern to keep such implementation concerns
out of the binary interface, thus minimizing recompilation and
enabling binary distribution of shared library [8] upgrades.
This is idiomatic in C where “objects” are usually imple-
mented via opaque pointers, but often under-utilized in C++
because it entails a bit more boilerplate than the native object
model that reveals the private contents of classes. Delegator
incurs an additional static function call, but tests with classic
virtual methods and delegator indicate that the main function
call overhead (several cycles) comes from the indirect call
(virtual function) rather than the static call to the delegator,
thus the incremental cost of using the delegator pattern is
usually less than 2 cycles. An ancillary benefit of the delegator
pattern is that there is a unique place to set a debugging
breakpoint for each function (rather than having to choose
the correct virtual function) and a common place for input
validation.

It is increasingly popular to expose libraries through more
dynamic environments such as Python or Julia. Since different
languages have different type systems, it is easier and more
reliable to develop language bindings with a simple type
system and stable binary interface. Naturally, static methods
and opaque pointers are simpler than struct definitions and
template-based systems.

E. Just-in-Time Compilation

With fine-grained composition such as occurs in material
models and Riemann solvers, as well as fusion of memory-
intensive operations, the number of possible compositions
grows combinatorially, but in any specific run, only a small
number is important. Precompiling and dispatching (via C++
templates or other inlining techniques) every combination
leads to large compile times, bloated executables, confusing
debugging, and compromises about which combinations will
be made available. While a dynamic interface is far more
maintainable, the performance overhead is unacceptable for
certain applications. When the interface granularity cannot be
increased to amortize the overhead of dynamicism, just-in-
time (JIT) compilation is an attractive approach to preserve
strong encapsulation and debuggability. We anticipate tech-
nologies such as LLVM and OpenCL becoming ubiquitous,
allowing judicious use of JIT for dynamic kernel fusion and
plugin-style packaging of fine-grained components without
sacrificing performance. This may involve tighter integration
with languages like Julia and the Numba package for Python,
or language extensions to support JIT within traditionally
compiled languages.

F. Upstreaming, Distribution, and Community Building

To provide attractive alternatives to forking, maintainers
must be diligent in creating a welcoming environment for



upstream contributions. The maintainers should nurture a com-
munity that can review contributions, advise about new devel-
opment approaches, and test new features, with recognition for
all forms of contribution. In a transparent community, paper
reviewers can easily determine who did the work to implement
a new feature; thus any attempt to “scoop” a result based on
new capability is easily spotted. We believe that scooping is
a purely social problem and that the secrecy inherent in any
technical solution bear a cost so expensive that it can rarely
be justified. Several major tech companies have famously
underestimated this cost when forking open source packages
such as the Linux kernel for internal use, later repaying the
technical debt to reintegrate with upstream. In science, it is
exceedingly difficult to obtain funding to pay off the technical
debt incurred by forking, leading to a wasteland of abandoned
forks. This is contrary to the interests of stakeholders ranging
from the program managers and taxpayers to other scientists
in the field.

In addition to community building [12], developers should
provide versatile extension points so that contributions can be
made without compromising existing functionality and without
degrading package maintainability. This should be thought of
as a technical prerequisite for maintainable extension rather
than private forking. Such extensions must be accompanied by
tests lest they break as interfaces evolve. It is far easier to write
tests for dynamic configuration sets than to add new build-
time configurations. Additionally, compilers and static analysis
tools can check combinations that are not actively used, but
conditional compilation is unchecked, invariably leading to
more frequent breakage by other developers (in the test suite
if covered, otherwise the breakage will be found by users and
other developers).

III. THINKING LIKE LIBRARY DEVELOPERS

Configuration and environment design decisions made by
today’s scientific libraries and applications are often dispro-
portionately harmful to usability, productivity, and capability.
In such cases, the most effective way to increase scientific or
engineering value is to design and refactor software using best
practices for extensible library development.

Acknowledgments

JB and BFS were supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research under Contract DE-AC02-06CH11357. MGK ac-
knowledges partial support from DOE Contract DE-AC02-
06CH11357 and NSF Grant OCI-1147680.

REFERENCES

[1] David E. Keyes, Lois Curfman McInnes, Carol Woodward, William
Gropp, Eric Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo,
Jeffrey Connors, Emil Constantinescu, Don Estep, Kate Evans, Charbel
Farhat, Ammar Hakim, Glenn Hammond, Glen Hansen, Judith Hill,
Tobin Isaac, Xiangmin Jiao, Kirk Jordan, Dinesh Kaushik, Efthimios
Kaxiras, Alice Koniges, Kihwan Lee, Aaron Lott, Qiming Lu, John
Magerlein, Reed Maxwell, Michael McCourt, Miriam Mehl, Roger
Pawlowski, Amanda Peters Randles, Daniel Reynolds, Beatrice Rivière,
Ulrich Rüde, Tim Scheibe, John Shadid, Brendan Sheehan, Mark

Shephard, Andrew Siegel, Barry Smith, Xianzhu Tang, Cian Wilson,
and Barbara Wohlmuth. Multiphysics simulations: Challenges and
opportunities. International Journal of High Performance Computing
Applications, 27(1):4–83, Feb 2013. Special issue.

[2] William D. Gropp. Exploiting existing software in libraries: Successes,
failures, and reasons why. In Proceedings of the SIAM Workshop on
Object Oriented Methods for Inter-operable Scientific and Engineering
Computing, pages 21–29. SIAM, 1999.

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014.

[4] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc developers manual. Technical
report, Argonne National Laboratory, 2011.

[5] David Andrs, Cody Permann, Andrew Slaughter, Richard Martineau,
Derek Gaston, John Peterson, and Jason Miller. Multiphysics Object-
Oriented Simulation Environment (MOOSE). http://mooseframework.
org.

[6] Brad Aagaard, Matthew G. Knepley, and Charles Williams. PyLith.
http://geodynamics.org/cig/software/pylith/, 2012.

[7] Sanjay Ghemawat and Paul Menage. TCMalloc: Thread-caching malloc,
2009. http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[8] Ulrich Drepper. How to write shared libraries, 2002–2011. http://www.
akkadia.org/drepper/dsohowto.pdf.

[9] Martin Fowler. Inversion of control containers and the dependency
injection pattern. http://martinfowler.com/articles/injection.html, 2004.

[10] Herb Sutter. Exceptional C++: 47 engineering puzzles, programming
problems, and solutions. Addison-Wesley Professional, 2000.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software. Pearson
Education, 1994.

[12] Matthew J. Turk. How to scale a code in the human dimension. arXiv
preprint arXiv:1301.7064, 2013.

AUTHOR BIOS

Jed Brown

Jed grew up in Alaska, earning BS degrees in Mathematics
and Physics and an MS in Mathematics at the University of
Alaska Fairbanks, during which he was the principle author of
the Parallel Ice Sheet Model (PISM). In 2011, he completed
a Dr.Sc. at ETH Zrich, where he investigated computational
methods for ice sheet and glacier dynamics. He became an
active PETSc developer during this time, leading naturally to
a postdoc at Argonne National Lab. He is now an Assistant
Computational Mathematician at Argonne and holds a joint ap-
pointment at the University of Colorado Boulder. He received
the 2014 SIAG/SC Junior Scientist Prize and 2014 IEEE TCSC
Young Achievers Award. Brown is a member of SIAM, AGU,
SIGHPC, and CMG++.

Matthew G. Knepley

Matthew G. Knepley received his B.S. in Physics from Case
Western Reserve University in 1994, an M.S. in Computer
Science from the University of Minnesota in 1996, and a Ph.D.
in Computer Science from Purdue University in 2000. He
was a Research Scientist at Akamai Technologies in 2000 and
2001. Afterwards, he joined the Mathematics and Computer
Science department at Argonne National Laboratory (ANL),
where he was an Assistant Computational Mathematician, and
a Fellow in the Computation Institute at University of Chicago.
In 2009, he joined the Computation Institute as a Senior

http://mooseframework.org
http://mooseframework.org
http://geodynamics.org/cig/software/pylith/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.akkadia.org/drepper/dsohowto.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://martinfowler.com/articles/injection.html


Research Associate. His research focuses on scientific com-
putation, including fast methods, parallel computing, software
development, numerical analysis, and multicore architectures.
He is an author of the widely used PETSc library for scientific
computing from ANL, and is a principal designer of the PyLith
library for the solution of dynamic and quasi-static tectonic
deformation problems. He developed the PETSc scalable un-
structured mesh support based upon ideas from combinatorial
topology. He was a J. T. Oden Faculty Research Fellow at
the Institute for Computation Engineering and Sciences, UT
Austin, in 2008, and won the R&D 100 Award in 2009 as part
of the PETSc team.

Barry F. Smith

Barry Smith was born in Townsville, Australia, in 1964. He
received the B.S. degree in mathematics from Yale University
in 1986, and the Ph.D. degree in applied mathematics from the
Courant Institute of Mathematical Sciences (NYU) in 1990.
In 1990, he joined the Mathematics and Computer Science
Division at Argonne National Laboratory as the Wilkinson
Post-doctorial Fellow. From 1992 to 1994 he was a Compu-
tational and Applied Mathematics Post-doctorial fellow in the
Mathematics Department at the University of California, Los
Angeles. Since June 1994, he has been with the Mathematics
and Computer Science Division at Argonne National Labora-
tory where he was an Assistant Scientist, became a Compu-
tational Mathematician in 1995, and a Senior Computational
Mathematician in 2008. His current research interests include
numerical algorithms for linear algebra and partial differential
equations and software for high performance computing. He
is one of the developers of the Portable Extensible Toolkit for
Scientific computation (PETSc). Dr. Smith is a Fellow of the
Society of Industrial and Applied Mathematics (SIAM) and a
member of the Association for Computing Machinery (ACM).
He, along with his colleague Lois Curfman McInnes, was the
recipient of the 2011 Ernest Lawrence award for outstanding
contributions in research and development supporting the
Department of Energy and its missions.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (“Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevo-
cable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the
public, and perform publicly and display publicly,
by or on behalf of the Government.


	Trends in Simulation-Based Science and Engineering
	Compile-Time Configuration
	Advanced Analysis
	Model Coupling
	Provenance and Usability
	``Big'' Data
	Nested Dependencies
	User Modifications
	Packaging and Distribution

	Implementation and Recommendations
	Resource Allocation
	Plugins
	Inversion of Control, Recursive Configuration, and the Options Database
	Object-Oriented Design
	Partial implementation
	Run-Time Implementation Changing
	Controlling the Binary Interface

	Just-in-Time Compilation
	Upstreaming, Distribution, and Community Building

	Thinking Like Library Developers
	References

