
FusionFS: Towards Supporting Data-Intensive
Scientific Applications on Extreme-Scale
High-Performance Computing Systems

Dongfang Zhao?⇧, Zhao Zhang†, Xiaobing Zhou‡, Tonglin Li?,
Dries Kimpe⇧, Phil Carns⇧, Robert Ross⇧, and Ioan Raicu?⇧

?Illinois Institute of Technology †University of California, Berkeley ‡Hortonworks Inc.
⇧Argonne National Laboratory

dzhao8@iit.edu, zhaozhang@eecs.berkeley.edu, xzhou@hortonworks.com, tli33@hawk.iit.edu,
{dkimpe, carns, rross}@mcs.anl.gov, iraicu@cs.iit.edu

Abstract—State-of-the-art yet decades old architecture of high
performance computing (HPC) systems has its compute and
storage resources separated. It has shown limits for today’s data-
intensive scientific applications, because every I/O needs to be
transferred via the network between the compute and storage
cliques. This paper proposes a distributed storage layer local
to the compute nodes, which is responsible for most of the
I/O operations and saves extreme amount of data movement
between compute and storage resources. We have designed
and implemented a system prototype of such architecture –the
FusionFS distributed file system– to support metadata-intensive
and write-intensive operations, both of which are critical to the
I/O performance of scientific applications. FusionFS has been
deployed and evaluated on up to 16K compute nodes in an
IBM Blue Gene/P supercomputer, showing more than an order
of magnitude performance improvement over other popular file
systems such as GPFS, PVFS, and HDFS.

I. INTRODUCTION

The conventional architecture of high-performance com-
puting (HPC) systems separates the compute and storage
resources into two cliques (i.e. compute nodes and storage
nodes), both of which are interconnected by a shared network
infrastructure. This architecture is mainly a result from the
nature of many legacy large-scale scientific applications that
are compute intensive, where it is often assumed that the
storage I/O capabilities are lightly utilized for the initial
data input, some periodic checkpoints, and the final output.
However, in the era of Big Data, scientific applications are
becoming more and more data-intensive, requiring a greater
degree of support from the storage subsystem [1]. Our pre-
vious simulation work [2] demonstrates that the current HPC
storage architecture would not scale to the emerging exascale
computing systems (1018 ops/s).

While recent studies [3, 4] addressed the I/O bottleneck in
the conventional architecture of HPC systems, this paper is
orthogonal to them by proposing a new storage architecture
to co-locate the storage and compute resources. The ideas
in this paper are built upon prior work [5] presented at the
2012 Supercomputing conference as a poster. In particular,

we envision a distributed storage system on compute nodes
for applications to manipulate their intermediate results and
checkpoints, rather than transferring data over the network.
While co-location of storage and computation has been widely
leveraged in data centers (e.g. Hadoop clusters), such architec-
ture never exists in HPC systems even though it has attracted
much research interest recently, e.g. the DEEP-ER [6] project
funded by the European Union. This work demonstrates how
to architect and engineer such a system, and reports how much,
quantitatively, it could improve the I/O performance of real-
world scientific applications.

The proposed architecture of co-locating compute and stor-
age could raise concerns about jitters on compute nodes,
since applications’ computation and I/O share resources like
CPU and network. We argue that the I/O-related cost can
be offloaded onto dedicated infrastructures that are decoupled
from the application’s acquired resources, as justified in [7].
In fact, this resource-isolation strategy has been applied in
production systems: the IBM Blue Gene/Q supercomputer
(Mira [8]) assigns one core of the chip (17 cores in total)
for the local operating system and the other 16 cores for
applications.

Distributed storage has been extensively studied in data
centers (e.g. the popular distributed file system HDFS [9]);
yet there exists little literature for building a distributed storage
system particularly for HPC systems whose design principles
are much different from data centers. HPC nodes are highly
customized and tightly coupled with high throughput and
low latency network (e.g. InfiniBand), while data centers
typically have commodity servers and inexpensive networks
(e.g. Ethernet). So storage systems designed for data centers
are not optimized for the HPC machines, as we will discuss in
more detail where HDFS shows poor performance on a typical
HPC machine (Figure 11). In particular, we observe that the
following challenges are unique to a distributed file system on
HPC compute nodes, related to both metadata-intensive and
write-intensive workloads.

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

jbullock

First, the storage system on HPC compute nodes needs to
support intensive metadata operations. Many scientific appli-
cations create a large number of small- to medium-sized files,
as Welch and Noer [10] reported that 25% – 90% of all the
600 million files from 65 Panasas [11] installations are 64KB
or smaller. So the I/O performance is highly throttled by the
metadata rate, besides the data itself. Data centers, however,
are not optimized for this type of workload. If we recall that
HDFS [9] splits a large file into a series of default 64MB
chunks (128MB recommended in most cases) for parallel
processing, a small- or medium-sized file can benefit little
from this data parallelism. Moreover, the centralized metadata
server in HDFS is apparently not designed to handle intensive
metadata operations.

Second, file writes should be optimized for a distributed file
system on HPC compute nodes. The fault tolerance of most
today’s large-scale HPC systems is achieved through some
form of checkpointing. In essence, the system periodically
flushes memory to external persistent storage, and occasionally
loads the data back to memory to roll back to the most recent
correct checkpoint up on a failure. So file writes typically
outnumber file reads in terms of both frequency and size
in HPC systems, and improving the write performance will
significantly reduce the overall I/O cost. The fault tolerance of
data centers, however, is not achieved through checkpointing
its memory states, but the re-computation of affected data
chunks that are replicated on multiple nodes.

We have designed and implemented the FusionFS dis-
tributed file system to overcome the aforementioned chal-
lenges. FusionFS disperses its metadata to all the available
compute nodes to achieve the maximal concurrency of meta-
data operations. Every client of FusionFS optimizes write op-
erations with local writes (whenever possible), which reduces
network traffic and makes the aggregate I/O throughput highly
scalable. We expect FusionFS to coexist with the remote
parallel file system (e.g. GPFS [12]) rather than to replace the
latter, because the compute nodes of current HPC systems are
tightly coupled and are not viable to provide on-board storage
as large as the remote parallel file systems.

FusionFS has been deployed on up to 16K compute nodes
of an IBM Blue Gene/P supercomputer (Intrepid [13]), and
heavily accessed by a variety of benchmarks and applications.
We observed more than an order of magnitude improvement
to the I/O performance when comparing FusionFS to other
popular file systems such as GPFS [12], PVFS [14], and
HDFS [9], surpassing 2.5TB/s aggregate I/O throughput on
16K nodes. In addition, FusionFS has been serving as the
infrastructure or test bed of a few related projects such as
virtual-chunk-based file compression [15, 16].

In summary, this paper makes the following contributions:
• Propose an unprecedented storage architecture for

extreme-scale HPC systems to address the I/O bottleneck
of modern data-intensive scientific applications

• Design and implement the FusionFS distributed file sys-
tem to support metadata-intensive and write-intensive file
operations

• Evaluate FusionFS with benchmarks and applications at
extreme scales, and demonstrate its superiority over state-
of-the-art solutions

II. DESIGN OVERVIEW

As shown in Figure 1, FusionFS is a user-level file system
that runs on the compute resource infrastructure, and enables
every compute node to actively participate in both the metadata
and data movement. The client (or application) is able to ac-
cess the global namespace of the file system with a distributed
metadata service. Metadata and data are completely decoupled:
the metadata on a particular compute node does not necessarily
describe the data residing on the same compute node. The
decoupling of metadata and data allows different strategies to
be applied to metadata and data management, respectively.

Figure 1. FusionFS deployment in a typical HPC system

FusionFS supports both the POSIX interface and a user
library. The POSIX interface is implemented with the FUSE
framework [17], so that legacy applications can run directly
on FusionFS without modifications. Just like other user-level
file systems (e.g. PVFS [14]), FusionFS can be deployed as
a mount point in a UNIX-like system. The mount point is a
virtual root directory to the clients when using FusionFS.

Users need to specify three arguments when deploying
FusionFS as a POSIX-compliant mount point on a compute
node: the scratch directory where to store the metadata and
data, the mount point of the remote parallel file system
(e.g. Lustrue [18], GPFS [12], PVFS [14]), and the mount
point of FusionFS where applications manipulate files. The
remote parallel file system needs to be integral to the global
namespace because it is necessary to accommodate large files
that cannot fit in FusionFS.

FUSE has been criticized for its performance overhead. In
native UNIX-like file systems (e.g. Ext4) there are only two
context switches between the user space and the kernel. In
contrast, for a FUSE-based file system, context needs to be
switched four times: two switches between the caller and VFS;
and another two between the FUSE user library (libfuse) and
the FUSE kernel module (/dev/fuse). A detailed comparison

between FUSE-enabled and native file systems was reported
in [19], showing that a Java implementation of a FUSE-
based file system introduces about 60% overhead compared
to the native file system. However, in the context of C/C++
implementation with multithreading on memory-level storage,
which is a typical setup in HPC systems, the overhead is much
lower. In prior work [20], we reported that FUSE could deliver
as high as 578MB/s throughput, 85% of the raw bandwidth.

To avoid the performance overhead from FUSE, FusionFS
also provides a user library for applications to directly interact
with their files. These APIs look similar to POSIX, for
example ffs_open(), ffs_close(), ffs_read(), and ffs_write(). The
downside of this approach is the lack of POSIX support,
indicating that the application might not be portable to other
file systems, and often needs some modifications and recom-
pilation.

III. METADATA MANAGEMENT

A. Namespace

Clients have a coherent view of all the files in FusionFS
no matter if the file is stored in the local node or a remote
node. This global namespace is maintained by a distributed
hash table (DHT [21]), which disperses partial metadata on
each compute node, and has served as the infrastructure for a
few other systems such as data provenance [22, 23] and key-
value stores [24]. As shown in Figure 2, in this example Node
1 and Node 2 only physically store two subgraphs (the top
left and top right portion of the figure) of the entire metadata
graph. The client could interact with the DHT to inquire any
file on any node, as shown in the bottom portion of the figure.
Because the global namespace is just a logical view for clients,
and it does not physically exist in any data structure, the global
namespace does not need to be aggregated or flushed when
changes occur to the subgraph on local compute nodes. The
changes to the local metadata storage will be exposed to the
global namespace when the client queries the DHT.

Figure 2. Metadata in the local nodes and the global namespace

B. Data Structures
FusionFS has different data structures for managing regular

files and directories. For a regular file, the field addr stores
the node where this file resides. For a directory, there is a field
filelist to record all the entries under this directory. This filelist
field is particularly useful for providing an in-memory speed
for directory read, e.g. “ls /mnt/fusionfs”. Nevertheless, both
regular files and directories share some common fields, such
as timestamps and permissions, which are commonly found in
traditional i-nodes.

To make matters more concrete, Figure 3 shows the dis-
tributed hash table according to the example metadata shown
in Figure 2. Here, the DHT is only a logical view of the
aggregation of multiple partial metadata on local nodes (in this
case, Node 1 and Node 2). Five entries (three directories, two
regular files) are stored in the DHT, with their file names as
keys. The value is a list of properties delimited by semicolons.
For example, the first and second portions of the values are
permission flag and file size, respectively. The third portion for
a directory value is a list of its entries delimited by commas,
while for regular files it is just the physical location of the
file, e.g. the IP address of the node on which the file is stored.
Upon a client request, this value structure is serialized by
Google Protocol Buffers [25] before sending over the network
to the metadata server, which is just another compute node.
Similarly, when the metadata blob is received by a node, we
deserialize the blob back into the C structure with Google
Protocol Buffers.

Figure 3. The global namespace abstracted by key-value pairs in a DHT

The metadata and data on a local node are completely de-
coupled: a regular file’s location is independent of its metadata
location. This flexibility allows us to apply different strategies
to metadata and data management, respectively. Moreover, the
separation between metadata and data has the potential to plug
in alternative components to metadata or data management,
making the system more modular.

From Figure 2, we know the index.html metadata is stored
on Node 2, and the cv.pdf metadata is on Node 1. However, it
is perfectly fine for index.html to reside on Node 1, and for
cv.pdf to reside on Node 2, as shown in Figure 3. Besides the
conventional metadata information for regular files, there is a

special flag in the value indicating if this file is being written.
Specifically, any client who requests to write a file needs to set
this flag before opening the file, and will not reset it until the
file is closed. The atomic compare-swap operation supported
by DHT [21] guarantees the file consistency for concurrent
writes.

Another challenge on the metadata implementation is on
the large-directory performance issues. In particular, when a
large number of clients write many small files on the same
directory concurrently, the value of this directory in the key-
value pair gets incredibly long and responds extremely slowly.
The reason is that a client needs to update the entire old
long string with the new one, even though the majority of
the old string is unchanged. To fix that, we implement an
atomic append operation that asynchronously appends the
incremental change to the value. This approach is similar to
Google File System [26], where files are immutable and can
only be appended. This gives us excellent concurrent metadata
modification in large directories, at the expense of potentially
slower directory metadata read operations.

C. Network Protocols

We encapsulate several network protocols in an abstraction
layer. Users can specify which protocol to be applied in
their deployments. Currently, we support three protocols: TCP,
UDP, and MPI. Since we expect a high network concurrency
on metadata servers, epoll [27] is used instead of multithread-
ing. The side effect of epoll is that the received message
packets are not kept in the same order as on the sender. To
address this, a header [message_id, packet_id] is added to
the message at the sender, and the message is restored by
sorting the packet_id for each message at the recipient. This
is efficiently done by a sorted map with message_id as the
key, mapping to a sorted set of the message’s packets.

D. Persistence

The whole point of the proposed distributed metadata ar-
chitecture is to improve performance. Thus, any metadata
manipulation from clients should occur in memory, plus some
network transfer if needed. On the other hand, persistence is
required for metadata just in case of any memory errors or
system restarts.

The persistence of metadata is achieved by periodically
flushing the in-memory metadata onto the local persistent
storage. In some sense, it is similar to the incremental
checkpointing mechanism. This asynchronous flushing helps
to sustain the high performance of the in-memory metadata
operations.

E. Consistency

Since each primary metadata copy has replicas, the next
questions is how make them consistent. Traditionally, there are
two semantics to keep replicas consistent: (1) strong consis-
tency – blocking until replicas are finished with updating; (2)
weak consistency – return immediately when the primary copy
is updated. The tradeoff between performance and consistency

is tricky, most likely depending on the workload characteris-
tics.

As for a system design without any a priori information
on the particular workload, we compromise with both sides:
assuming the replicas are ordered by some criteria (e.g. last
modification time), the first replica is strong consistent to
the primary copy, and the other replicas are updated asyn-
chronously. By doing this, the metadata are strong consistent
(in the average case) while the overhead is kept relatively low.

IV. FILE MANIPULATION

A. Network Transfer

For file transfer, neither UDP nor TCP is ideal for FusionFS
on HPC compute nodes. UDP is a highly efficient protocol,
but lacks reliability support. TCP, on the other hand, supports
reliable transfer of packets, but adds significant overhead.

We have developed our own data transfer service Fusion
Data Transfer (FDT) on top of UDP-based Data Transfer
(UDT) [28]. UDT is a reliable UDP-based application level
data transport protocol for distributed data-intensive applica-
tions. UDT adds its own reliability and congestion control on
top of UDP that offers a higher speed than TCP.

B. File Open

Figure 4 shows the protocol when opening a file in Fu-
sionFS. Due to limited space, we assume the requested file
is also on Node-j. Note that it is not necessarily Node-j who
stores both the requested file and its metadata, as we explained
in Section III-B that the metadata and data are decoupled on
compute nodes.

Figure 4. The protocol of file open in FusionFS

In step 1, the application on Node-i issues a POSIX fopen()
call that is caught by the implementation in the FUSE user-
level interface (i.e. libfuse) for file open. Steps 2 – 5 retrieve
the file location from the metadata service that is implemented
by a distributed hash table [21]. The location information
might be stored in another machine Node-j, so this procedure
could involve a round trip of messages between Node-i and
Node-j. Then Node-i needs to ping Node-j to fetch the file
in steps 6 – 7. Step 8 triggers the system call to open the

transferred file and finally step 9 returns the file handle to the
application.

C. File Write

Before writing to a file, the process checks if the file is being
accessed by another process, as discussed in Section III-B. If
so, an error number is returned to the caller. Otherwise the
process can do one of the following two things. If the file is
originally stored on a remote node, the file is transferred to the
local node in the fopen() procedure, after which the process
writes to the local copy. If the file to be written is right on the
local node, or it is a new file, then the process starts writing
the file just like a system call.

The aggregate write throughput is obviously optimal be-
cause file writes are associated with local I/O throughput and
avoids the following two types of cost: (1) the procedure to
determine to which node the data will be written, normally
accomplished by pinging the metadata nodes or some moni-
toring services, and (2) transferring the data to a remote node.
The downside of this file write strategy is the poor control on
the load balance of compute node storage. This issue could be
addressed by an asynchronous re-balance procedure running in
the background, or by a load-aware task scheduler that steals
tasks from the active nodes to the more idle ones.

When the process finishes writing to a file that is originally
stored in another node, FusionFS does not send the newly
modified file back to its original node. Instead, the metadata
of this file is updated. This saves the cost of transferring the
file data over the network.

D. File Read

Unlike file write, it is impossible to arbitrarily control
where the requested data reside for file read. The location
of the requested data is highly dependent on the I/O pattern.
However, we could determine which node the job is executed
on by the distributed workflow system, e.g. Swift [29]. That is,
when a job on node A needs to read some data on node B, we
reschedule the job on node B. The overhead of rescheduling
the job is typically smaller than transferring the data over
the network, especially for data-intensive applications. In our
previous work [30], we detailed this approach, and justified it
with theoretical analysis and experiments on benchmarks and
real applications.

Indeed, remote readings are not always avoidable for some
I/O patterns, e.g. merge sort. In merge sort, the data need
to be joined together, and shifting the job cannot avoid the
aggregation. In such cases, we need to transfer the requested
data from the remote node to the requesting node. The
data movement across compute nodes within FusionFS is
conducted by the FDT service discussed in Section IV-A. FDT
service is deployed on each compute node, and keeps listening
to the incoming fetch and send requests.

E. File Close

Figure 5 shows the protocol when closing a file in FusionFS.
In steps 1 – 3 the application on Node-i closes and flushes the

file to the local disk. If this is a read-only operation before the
file is closed, then libfuse only needs to signal the caller (i.e.
the application) in step 10. If this file has been modified, then
its metadata needs to be updated in steps 4 – 7. Moreover, the
replicas of this file also need to be updated in steps 8 – 9.

Figure 5. The protocol of file close in FusionFS

Again, just like Figure 4, the replica is not necessarily stored
on the same node of its metadata (Node-j). Here we just show
its remote replica on Node-j just to save some space of this
paper.

V. EVALUATION

While we indeed compare FusionFS to some open-source
systems such as PVFS [14] (in Figure 7) and HDFS [9] (in
Figure 11), our top mission is to evaluate its performance
improvement over the production file system of today’s fastest
systems. If we look at today’s top 10 supercomputers [31], 4
systems are IBM Blue Gene/Q systems which run GPFS [12]
as the default file system. Therefore most large-scale experi-
ments conducted in this paper are carried out on Intrepid [13],
a 40K-node IBM Blue Gene/P supercomputer whose default
file system is also GPFS. Each Intrepid compute node has quad
core 850MHz PowerPC 450 processors and runs a light-weight
Linux ZeptoOS [32] with 2GB memory. A 7.6PB GPFS [12]
parallel file system is deployed on 128 storage nodes. When
FusionFS is evaluated as a POSIX-compliant file system, each
compute node gets access to a local storage mount point with
174MB/s throughput on par with today’s high-end hard drives.
It points to the ramdisk and is throttled by a single-threaded
FUSE layer. The network protocols for metadata management
and file manipulation are TCP and FDT, respectively.

All experiments are repeated at least five times until results
become stable (within 5% margin of error). The reported
numbers are the average of all runs. Caching effect is carefully
precluded by reading a file larger than the on-board memory
before the measurement.

A. Metadata Rate
We expect that the metadata performance of FusionFS

should be significantly higher than the remote GPFS on
Intrepid, because FusionFS manipulates metadata in a com-
pletely distributed manner on compute nodes while GPFS has
a limited number of clients on I/O nodes (every 64 compute
nodes share one I/O node in GPFS). To quantitatively study
the improvement, both FusionFS and GPFS create 10K empty
files from each client on its own directory on Intrepid. That is,
at 1024-nodes scale, we create 10M files over 1024 directories.
We could have let all clients write on the same directory, but
this workload would not take advantage of GPFS’ multiple
I/O nodes. That is, we want to optimize GPFS’ performance
when comparing it to FusionFS.

As shown in Figure 6, at 1024-nodes scale, FusionFS
delivers nearly two orders of magnitude higher metadata rate
over GPFS. FusionFS shows excellent scalability, with no sign
of slowdown up to 1024-nodes. The gap between GPFS and
FusionFS metadata performance would continue to grow, as
eight nodes are enough to saturate the metadata servers of
GPFS.

Figure 6. Metadata performance of FusionFS and GPFS on Intrepid (many
directories)

One might overlook FusionFS’ novel metadata design and
state that GPFS is slower than FusionFS simply because
GPFS has fewer metadata servers (128) and fewer I/O nodes
(1:64). First of all, that is the whole point why FusionFS
is designed like this: to maximize the metadata concurrency
without adding new resources to the system.

To really answer the question “what if a parallel file system
has the same number of metadata servers just like FusionFS?”,
we install PVFS [14] on Intrepid compute nodes with the 1-1-
1 mapping between clients, metadata servers, and data servers
just like FusionFS. We do not deploy GPFS on compute nodes
because it is a proprietary system, and PVFS is open-source.
The result is reported in Figure 7. Both FusionFS and PVFS
turn on the POSIX interface with FUSE. Each client creates
10K empty files on the same directory to push more pressure
on both systems’ metadata service. FusionFS outperforms
PVFS even for a single client, which justifies that the metadata
optimization for the big directory (i.e. update ! append) on
FusionFS is highly effective. Unsurprisingly, FusionFS again
shows linear scalability. On the other hand, PVFS is saturated

at 32 nodes, suggesting that more metadata servers in parallel
file systems do not necessarily improve the capability to handle
higher concurrency.

Figure 7. Metadata performance of FusionFS and PVFS on Intrepid (single
directory)

B. I/O Throughput

Similarly to the metadata, we expect a significant im-
provement to the I/O throughput from FusionFS. Figure 8
shows the aggregate write throughput of FusionFS and GPFS
on up to 1024-nodes of Intrepid. FusionFS shows almost
linear scalability across all scales. GPFS scales at a 64-nodes
step because every 64 compute nodes share one I/O node.
Nevertheless, GPFS is still orders of magnitude slower than
FusionFS at all scales.

Figure 8. Write throughput of FusionFS and GPFS on Intrepid

Figure 9 shows FusionFS’ scalability at extreme scales.
The experiment is carried out on Intrepid on up to 16K-
nodes each of which has a FusionFS mount point. FusionFS
throughput shows about linear scalability: doubling the number
of nodes yield doubled throughput. Specifically, we observe
stable 2.5TB/s throughput (peak 2.64TB/s) on 16K-nodes.

The main reason why FusionFS data write is faster is that
the compute node only writes to its local storage. This is not
true for data read though: it is possible that one node needs
to transfer some remote data to its local disk. Thus, we are

Figure 9. FusionFS scalability on Intrepid

interested in two extreme scenarios (i.e. all-local read and all-
remote read) that define the lower and upper bounds of read
throughput. We measure FusionFS for both cases on 256-nodes
of Intrepid, where each compute node reads a file of different
sizes from 1MB to 256MB. For the all-local case (e.g. where
a data-aware scheduler can schedule tasks close to the data),
all the files are read from the local nodes. For the all-remote
case (e.g. where the scheduler is unaware of the data locality),
every file is read from the next node in a round-robin fashion.
This I/O pattern is unlikely realistic in real-world applications,
but serves well as a workload for an all-remote request.

Figure 10 shows that FusionFS all-local read outperforms
GPFS by more than one order of magnitude, as we have seen
for data write. The all-remote read throughput of FusionFS is
also significantly higher than GPFS, even though not as con-
siderable as the all-local case. The reason why all-remote reads
still outperforms GPFS is, again, FusionFS’ main concept of
co-locating computation and data on the compute nodes: the
bi-section bandwidth across the compute nodes (e.g. 3D-Torus)
is higher than the interconnect between the compute nodes and
the storage nodes (e.g. Ethernet fat-tree).

Figure 10. Read throughput of FusionFS and GPFS on Intrepid

In practice, the read throughput is somewhere between
the two bounds, depending on the access pattern of the
application and whether there is a data-aware scheduler to

optimize the task placement. FusionFS exposes this much
needed data locality (via the metadata service) in order
for parallel programming systems (e.g. Swift [29]) and job
scheduling systems (e.g. Falkon [33]) to implement the data-
aware scheduling. Note that Falkon has already implemented
a data-aware scheduler for the “data diffusion” storage sys-
tem [33], a precursor to the FusionFS project that lacked
distributed metadata management, hierarchical directory-based
namespace, and POSIX support. One potential improvement
to FusionFS’ read throughput lies on better algorithms for
predicting the future I/O patterns; we plan to explore this
direction with incremental algorithms such as [34–36].

It might be argued that FusionFS outperforms GPFS mainly
because FusionFS is a distributed file system on compute
nodes, and the bandwidth is higher than the network between
the compute nodes and the storage nodes. First of all, that
is the whole point of FusionFS: taking advantage of the fast
interconnects across the compute nodes. Nevertheless, we want
to emphasize that FusionFS’ unique I/O strategy also plays
a critical role in reaching the high and scalable throughput,
as discussed in Section IV-C. So it would be a more fair
game to compare FusionFS to other distributed file systems in
the same hardware, architecture, and configuration. To show
such a comparison, we deploy FusionFS and HDFS [9] on
the Kodiak [37] cluster. We compare them on Kodiak because
Intrepid does not support Java (required by HDFS).

Kodiak is a 1024-nodes cluster at Los Alamos National
Laboratory. Each Kodiak node has an AMD Opteron 252 CPU
(2.6GHz), 4GB RAM, and two 7200rpm 1TB hard drives. In
this experiment, each client of FusionFS and HDFS writes
1GB data to the file system. Both file systems set replica to 1
to achieve the highest possible performance, and turn off the
FUSE interface.

Figure 11 shows that the aggregate throughput of FusionFS
outperforms HDFS by about an order of magnitude. FusionFS
shows an excellent scalability, while HDFS starts to taper off
at 256 nodes, mainly due to the weak write locality as data
chunks (64MB) need to be scattered out to multiple remote
nodes.

Figure 11. Throughput of FusionFS and HDFS on Kodiak

It should be clear that FusionFS is not to compete with
HDFS, but to target the scientific applications on HPC ma-
chines that HDFS is not originally designed for or even

suitable for. So we have to restrict our design to fit for
the typical HPC machine specification: a massive number of
homogeneous and less-powerful cores with limited per-core
RAM. Therefore for a fair comparison, when compared to
FusionFS we had to deploy HDFS on the same hardware,
which may or may not be an ideal or optimized testbed for
HDFS.

C. Applications
We are interested in, quantitatively, how FusionFS helps

to reduce the I/O cost for real applications. This section
will evaluate four scientific applications on FusionFS all on
Intrepid. The performance is mainly compared to Intrepid’s
default storage, the GPFS [12] parallel file system.

For the first three applications, we replay the top three write-
intensive applications on Intrepid [13] in December 2011 [3]
on FusionFS: PlasmaPhysics, Turbulence, and AstroPhysics.
While the PlasmaPhysics makes significant use of unique
file(s) per node, the other two write to shared files. FusionFS
is a file-level distributed file system, so PlasmaPhysics is a
good example to benefit from FusionFS. However, FusionFS
does not provide good N-to-1 write support for Turbulence and
AstroPhysics. To make FusionFS’ results comparable to GPFS
for Turbulence and AstroPhysics, we modify both workloads
to write to unique files as the exclusive chunks of the share
file. Due to limited space, only the first five hours of these
applications running on GPFS are considered.

Figure 12 shows the real-time I/O throughput of these
workloads at 1024-nodes. On FusionFS, these workloads are
completed in 2.38, 4.97, and 3.08 hours, for PlasmaPhysics,
Turbulence, and AstroPhysics, respectively. Recall that all of
these workloads are completed in 5 hours in GPFS.

It is noteworthy that for both the PlasmaPhysics and Astro-
Physics applications, the peak I/O rates for GPFS top at around
2GB/s while for FusionFS they reach over 100GB/s. This
increase in I/O performance accelerates the applications 2.1X
times (PlasmaPhysics) and 1.6X times (AstroPhysics). The
reason why Turbulence does not benefit much from FusionFS
is that, there are not many consecutive I/O operations in this
application and GPFS is sufficient for such workload patterns:
the heavy interleaving of I/O and computation does not push
much I/O pressure to the storage system.

The fourth application, Basic Local Alignment Search Tool
(BLAST), is a popular bioinformatics application to bench-
mark parallel and distributed systems. BLAST searches one
or more nucleotide or protein sequences against a sequence
database and calculates the similarities. It has been imple-
mented with different parallelized frameworks, e.g. Parallel-
BLAST [38]. In ParallelBLAST, the entire database (4GB) is
split into smaller chunks on different nodes. Each node then
formats its chunk into an encoded slice, and searches protein
sequence against the slice. All the search results are merged
together into the final matching result.

We compared ParallelBLAST performance on FusionFS
and GPFS with our AME (Any-scale MTC Engine) frame-
work [39]. We carried out a weak scaling experiment of

ParallelBLAST with 4GB database on every 64-nodes, and
increased the database size proportionally to the number of
nodes. The application has three stages (formatdb, blastp, and
merge), which produces an overall data I/O of 541GB over
16192 files for every 64-nodes. In our experiment of 1024-
node scale, the total I/O is about 9TB applied to over 250,000
files.

As shown in Figure 13, there is a huge (more than one order
of magnitude) performance gap between FusionFS and GPFS
at all scales, except for the trivial 1-node case. FusionFS has
up to 32X speedup (at 512-nodes), and an average of 23X
improvement between 64-nodes and 1024-nodes. At 1-node
scale, the GPFS kernel module is more effective in accessing
an idle parallel file system. In FusionFS’ case, the 1-node scale
result involves the user-level FUSE module, which apparently
causes BLAST to run 1.4X slower on FusionFS. However,
beyond the corner-case of 1-node, FusionFS significantly out-
performs GPFS. In particular, on 1024-nodes BLAST requires
1,073 seconds to complete all three stages on FusionFS, and
it needs 32,440 seconds to complete the same workload on
GPFS.

Figure 13. BLAST execution time on Intrepid

VI. RELATED WORK

There have been many shared and parallel file systems, such
as the Network File System (NFS [40]), General Purpose File
System (GPFS [12]), Parallel Virtual File System (PVFS [14]),
Lustre[18], and Panasas[11]. These systems assume that stor-
age nodes are significantly fewer than the compute nodes,
and compute resources are agnostic of the data locality on
the underlying storage system, which results in an unbalanced
architecture for data-intensive workloads.

A variety of distributed file systems have been developed
such as Google File System (GFS [26]), Hadoop File System
(HDFS [9]), Ceph [41], and Sector [42]. However, many of
these file systems are tightly coupled with execution frame-
works (e.g. MapReduce [43]), which means that scientific
applications not using these frameworks must be modified
to use these non-POSIX file systems. For those that offer a
POSIX interface, they are not designed for metadata-intensive

(a) PlasmaPhysics (b) Turbulence (c) AstroPhysics

Figure 12. Top three write-intensive applications on Intrepid

operations at extreme scales. The majority of these systems do
not expose the data locality information for general computa-
tional frameworks (e.g. batch schedulers, workflow systems)
to harness the data locality through data-aware scheduling. In
short, these distributed file systems are not designed specif-
ically for HPC and scientific computing workloads, and the
scales that HPC are anticipating in the coming years.

The idea of distributed metadata can be traced back to
xFS [44], even though a central manager is in need to locate a
particular file. Recently, FDS [45] was proposed as a blob store
on data centers. It maintains a lightweight metadata server and
offloads the metadata to available nodes in a distributed man-
ner. In contrast, FusionFS metadata is completely distributed
without any single-point-of-failure involved.

Co-location of compute and storage resources has attracted
a lot of research interests. For instance, Salus [46] proposes
to co-locate the storage to data nodes in data centers. Other
examples include Rhea [47], which prevents removing the data
used by the computation, and Nectar [48], which automatically
manages data and computation in data centers. While these
systems apply a general rule to deal with data I/O, FusionFS
is optimized for write-intensive workloads that are particularly
important for HPC systems.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a distributed storage layer on compute
nodes to tackle the HPC I/O bottleneck of scientific appli-
cations. We identify the challenges this unprecedented archi-
tecture brings, and build a distributed file system FusionFS
to tackle them. In particular, FusionFS is crafted to support
extremely intensive metadata operations and is optimized for
file writes. Extreme-scale evaluation on up to 16K nodes
demonstrates FusionFS’ superiority over other popular storage
systems for scientific applications. We plan to explore the
feasibility to integrate a memory-centric middleware (e.g.
Tachyon [49]) for cooperative caching [50].

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under awards OCI-1054974 (CAREER). This re-
search used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported

by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-06CH11357. This research was sup-
ported by the United States Department of Defense. This work
is also supported by the Department of Energy (DOE) Office
of Advanced Scientific Computer Research (ASCR) under
contract DE-AC02-06CH11357. This material is supported in
part by the National Science Foundation under awards CNS-
1042537 and CNS-1042543 (PRObE) [51]. http://www.nmc-
probe.org/

REFERENCES

[1] P. Freeman, D. Crawford, S. Kim, and J. Munoz, “Cyberinfras-
tructure for science and engineering: Promises and challenges,”
Proceedings of the IEEE, vol. 93, no. 3, 2005.

[2] D. Zhao, D. Zhang, K. Wang, and I. Raicu, “Exploring relia-
bility of exascale systems through simulations,” in Proceedings
of the 21st ACM/SCS High Performance Computing Symposium
(HPC), 2013.

[3] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross,
G. Grider, A. Crume, and C. Maltzahn, “On the role of burst
buffers in leadership-class storage systems,” in Proceedings of
the 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), 2012.

[4] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson,
and R. B. Ross, “On the duality of data-intensive file system
design: Reconciling HDFS and PVFS,” in Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2011.

[5] D. Zhao and I. Raicu, “Distributed file systems for exascale
computing,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’12), doc-
toral showcase, 2012.

[6] DEEP-ER, “http://www.hpc.cineca.it/projects/deep-er,” 2014.
[7] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf,

“Damaris: How to efficiently leverage multicore parallelism to
achieve scalable, jitter-free I/O,” in Proceedings of the 2012
IEEE International Conference on Cluster Computing, 2012.

[8] Mira, “https://www.alcf.anl.gov/user-guides/mira-cetus-vesta,”
2014.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies, 2010.

[10] B. Welch and G. Noer, “Optimizing a hybrid SSD/HDD HPC
storage system based on file size distributions,” in Mass Storage
Systems and Technologies, 2013 IEEE 29th Symposium on,
2013.

[11] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ac-
tivescale storage cluster: Delivering scalable high bandwidth

storage,” in Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, 2004.

[12] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system
for large computing clusters,” in Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST), 2002.

[13] Intrepid, “https://www.alcf.anl.gov/user-guides/intrepid-
challenger-surveyor,” 2014.

[14] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, “PVFS:
A parallel file system for linux clusters,” in Proceedings of the
4th Annual Linux Showcase and Conference, 2000.

[15] D. Zhao, J. Yin, K. Qiao, and I. Raicu, “Virtual chunks: On
supporting random accesses to scientific data in compressible
storage systems,” in Proceedings of the 2014 IEEE International
Conference on Big Data (IEEE BigData), 2014.

[16] D. Zhao, Y. Jian, and I. Raicu, “Improving the i/o throughput
for data-intensive scientiïňĄc applications with efïňĄcient com-
pression mechanisms,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC
’13), poster session, 2013.

[17] FUSE Project, “http://fuse.sourceforge.net,” 2014.
[18] P. Schwan, “Lustre: Building a file system for 1,000-node

clusters,” in Proceedings of the linux symposium, 2003.
[19] A. Rajgarhia and A. Gehani, “Performance and extension of

user space file systems,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, 2010.

[20] D. Zhao and I. Raicu, “HyCache: A user-level caching middle-
ware for distributed file systems,” in Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum (IPDPSW), 2013.

[21] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajen-
dran, Z. Zhang, and I. Raicu, “ZHT: A light-weight reliable
persistent dynamic scalable zero-hop distributed hash table,” in
Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing (IPDPS), 2013.

[22] D. Zhao, C. Shou, T. Malik, and I. Raicu, “Distributed data
provenance for large-scale data-intensive computing,” in Cluster
Computing (CLUSTER), 2013 IEEE International Conference
on, 2013.

[23] C. Shou, D. Zhao, T. Malik, and I. Raicu, “Towards a
provenance-aware distributed filesystem,” in 5th Workshop on
the Theory and Practice of Provenance (TAPP), 2013.

[24] D. Zhao, K. Burlingame, C. Debains, P. Alvarez-Tabio, and
I. Raicu, “Towards high-performance and cost-effective dis-
tributed storage systems with information dispersal algorithms,”
in Cluster Computing, 2013 IEEE International Conference on,
2013.

[25] Protocol Buffers, “http://code.google.com/p/protobuf/,” 2014.
[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file

system,” in Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, 2003.

[27] epoll, “http://man7.org/linux/man-pages/man7/epoll.7.html,”
2014.

[28] Y. Gu and R. L. Grossman, “Supporting configurable congestion
control in data transport services,” in Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, 2005.

[29] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski,
V. Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast,
reliable, loosely coupled parallel computation,” in Proceedings
of the 2007 IEEE Congress on Services, 2007.

[30] I. Raicu, I. T. Foster, Y. Zhao, P. Little, C. M. Moretti,
A. Chaudhary, and D. Thain, “The quest for scalable support of
data-intensive workloads in distributed systems,” in Proceedings
of the 18th ACM International Symposium on High Performance
Distributed Computing (HPDC), 2009.

[31] Top500, “http://www.top500.org/list/2014/06/,” 2014.
[32] ZeptoOS, “http://www.mcs.anl.gov/zeptoos,” 2014.
[33] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,

“Falkon: a fast and light-weight task execution frame-
work,” in Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, 2007.

[34] D. Zhao and L. Yang, “Incremental isometric embedding of
high-dimensional data using connected neighborhood graphs,”
IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 31, no. 1,
Jan. 2009.

[35] R. Lohfert, J. Lu, and D. Zhao, “Solving sql constraints by
incremental translation to sat,” in 21st International Conference
on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, 2008.

[36] D. Zhao and L. Yang, “Incremental construction of neigh-
borhood graphs for nonlinear dimensionality reduction,” in
Proceedings of the 18th International Conference on Pattern
Recognition - Volume 03, 2006.

[37] Kodiak, “https://www.nmc-probe.org/wiki/kodiak:nodes,” 2014.
[38] D. R. Mathog, “Parallel BLAST on split databases,” Bioinfor-

matics, vol. 19(4), pp. 1865 – 1866, 2003.
[39] Z. Zhang, D. S. Katz, J. M. Wozniak, A. Espinosa, and I. T.

Foster, “Design and analysis of data management in scalable
parallel scripting,” in Proceedings of the 2012 ACM/IEEE
conference on Supercomputing, 2012.

[40] M. Eisler, R. Labiaga, and H. Stern, “Managing NFS and NIS,
2nd ed.” O’Reilly & Associates, Inc., 2001.

[41] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed
file system,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[42] Y. Gu, R. L. Grossman, A. Szalay, and A. Thakar, “Distributing
the Sloan Digital Sky Survey using UDT and Sector,” in
Proceedings of the Second IEEE International Conference on
e-Science and Grid Computing, 2006.

[43] J. Dean and S. Ghemawat, “MapReduce: Simplified data pro-
cessing on large clusters,” in Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation
(OSDI), 2004.

[44] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-
son, D. S. Roselli, and R. Y. Wang, “Serverless network file
systems,” in Proceedings of the fifteenth ACM symposium on
Operating systems principles (SOSP), 1995.

[45] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell,
and Y. Suzue, “Flat datacenter storage,” in Proceedings of the
10th USENIX conference on Operating Systems Design and
Implementation (OSDI), 2012.

[46] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam,
L. Alvisi, and M. Dahlin, “Robustness in the salus scalable
block store,” in Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation (NSDI), 2013.

[47] C. Gkantsidis, D. Vytiniotis, O. Hodson, D. Narayanan, F. Dinu,
and A. Rowstron, “Rhea: automatic filtering for unstructured
cloud storage,” in Proceedings of the 10th USENIX conference
on Networked Systems Design and Implementation, 2013.

[48] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang, “Nectar: automatic management of data and com-
putation in datacenters,” in Proceedings of the 9th USENIX
conference on Operating systems design and implementation
(OSDI), 2010.

[49] Tachyon, “http://tachyon-project.org/,” 2014.
[50] D. Zhao, K. Qiao, and I. Raicu, “Hycache+: Towards scalable

high-performance caching middleware for parallel file systems,”
in Proceedings of the 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2014.

[51] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd, “Probe:
A thousand-node experimental cluster for computer systems
research,” vol. 38, no. 3, June 2013.

jbullock

jbullock

jbullock
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

