
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Synchronization-Aware Scheduling for Virtual
Clusters in Cloud

Song Wu, Member, IEEE, Haibao Chen, Sheng Di, Member, IEEE,

Bingbing Zhou, Zhenjiang Xie, Hai Jin, Senior Member, IEEE, and Xuanhua Shi, Member, IEEE

Abstract—Due to high flexibility and cost-effectiveness, cloud computing is increasingly being explored as an alternative to local

clusters by academic and commercial users. Recent research already confirmed the feasibility of running tightly-coupled parallel

applications with virtual clusters. However, such types of applications suffer from significant performance degradation, especially as

the overcommitment is common in cloud. That is, the number of executable Virtual CPUs (VCPUs) is often larger than that of available

Physical CPUs (PCPUs) in the system. The performance degradation is mainly due to the fact that the current Virtual Machine Monitors

(VMMs) are unaware of the synchronization requirements of the VMs which are running parallel applications.

In this paper, There are two key contributions. (1) We propose an autonomous synchronization-aware VM scheduling (SVS) algorithm,

which can effectively mitigate the performance degradation of tightly-coupled parallel applications running atop them in overcommitted

situation. (2) We integrate the SVS algorithm into Xen VMM scheduler, and rigorously implement a prototype. We evaluate our design

on a real cluster environment with NPB benchmark and real-world trace. Experiments show that our solution attains better performance

for tightly-coupled parallel applications than the state-of-the-art approaches like Xen’s Credit scheduler, balance scheduling, and hybrid

scheduling.

Index Terms—Virtualization, Virtual cluster, Synchronization, Scheduling, Cloud computing.

✦

1 INTRODUCTION

Cloud computing has become a very compelling
paradigm in optimizing resource utilization based on
different user demands, especially due to virtualization
technology. Virtualized cloud datacenter is increasingly
being explored as an alternative to local clusters to run
tightly-coupled parallel applications [1, 2], because of
its flexibility and cost-effectiveness. However, the users
still face the performance degradation problem when
running such applications in cloud. This problem is
mainly due to the fact that the current Virtual Machine
Monitors (VMMs) are unaware of the synchronization
requirements of the VMs which are running parallel
applications.

Despite the existing research [3–6] on scheduling in
virtualized environment, many researchers mainly focus
on the single symmetric multiprocessing (SMP) VM that
runs multi-thread applications with synchronization re-
quirements. There is no existing research regarding the
scheduling on virtual clusters that hosts tightly-coupled
parallel applications. In fact, as the feasibility of running
tightly-coupled parallel applications in cloud has been
confirmed [7], more and more such applications are

• S. Wu, H. Chen, Z. Xie, H. Jin, and X. Shi are with the Services
Computing Technology and System Lab, Cluster and Grid Computing
Lab, School of Computer Sci. and Tech., Huazhong University of Science
and Technology, Wuhan 430074, China.
E-mail: wusong@hust.edu.cn.

• S. Di is with Argonne National Laboratory, USA and INRIA, Grenoble,
France.

• B. Zhou is with The University of Sydney, NSW 2006, Australia.

hosted by virtual clusters rather than single SMP VM,
leading to more complex scheduling scenarios.

Moreover, in order to maximize cloud resource uti-
lization, overcommitment (i.e., the number of executable
Virtual CPUs (VCPUs) is larger than that of available
Physical CPUs (PCPUs) in the system) is a fairly com-
mon phenomenon in cloud. For example, recent research
from VMware shows that the average VCPU-to-core
ratio is 4:1, based on the analysis of 17 real-world
datacenters [8]. A statistical report based on Google data
center [9, 10] shows that the requested resource amounts
are often greater than the total capacity of Google data
centers. Such overcommitted situation aggravates the
performance degradation problem of parallel applica-
tions running in cloud.

This paper targets how to efficiently schedule virtual
clusters hosting parallel applications in overcommitted
cloud environment. We introduce a synchronization-
aware approach for scheduling virtual clusters, which
can effectively mitigate the performance degradation of
tightly-coupled parallel applications running in over-
committed cloud environment.

The main contribution of this paper is two-fold:
• Based on experiments, we find that inter-VM com-

munication can serve as a signal to detect the
synchronization demands from the perspective of
virtual cluster. We propose a synchronization-aware
VM scheduling (SVS) algorithm based on such an
observation. SVS algorithm can help VMM sched-
ulers schedule suitable VMs on-line at runtime,
avoiding the significant performance degradation
of tightly-coupled parallel applications in virtual

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

clusters. Meanwhile, such a SVS algorithm suffers
little overhead, because the information demanded,
such as the statistics of received packets in VM is
implicitly carried on demand in the communication
messages of parallel applications.

• We integrate the SVS algorithm into Xen Credit
scheduler, and rigorously implement a prototype.
We evaluate our design on a real cluster environ-
ment using the well-known public NPB benchmark.
Experiments show that our solution attains better
performance for tightly-coupled parallel applica-
tions than the state-of-the-art approaches including
Credit scheduler of Xen [11], balance scheduling [4],
and hybrid scheduling [5].

The rest of this paper is organized as follows. We
explain our motivation in detail in Section 2 followed by
the description of synchronization-aware VM schedul-
ing (SVS) algorithm in Section 3. Section 4 describes
the Xen based prototype of our VMM scheduler with
SVS algorithm for virtual clusters. Section 5 presents
the performance evaluation results, by comparing our
solution to other state-of-the-art approaches. We discuss
the pros and cons of our SVS scheduler with a vision of
the future work in Section 6. Section 7 summarizes the
related work comprehensively. Finally, we conclude the
paper in Section 8.

2 DESIGN MOTIVATION

In this section, we first analyze the asynchronous
scheduling problem of virtual clusters running tightly-
coupled parallel applications in overcommitted envi-
ronment. We then discuss the disadvantage of existing
solutions.

Fig. 1. Virtual cluster deployed among two physical nodes.
Each VMM carries out scheduling asynchronously with-

out considering the synchronization requirement of VMs

belonging to the same virtual cluster.

Asynchronous VM scheduling method used by VMMs
in multi-core physical nodes is inefficient for virtual
clusters running parallel applications, when they require
heavy communication in overcommitted environment.

We use Figure 1 to illustrate this problem. In this ex-
ample, a 4-process tightly-coupled parallel application is
running on a virtual cluster. This virtual cluster consists
of two 2-VCPU VMs (vm1 and vm2) that are hosted
in two different physical machines (node1 and node2).
Suppose Xen is used as the VMM, adopting Credit
scheduler [11] (a proportional-share scheduling policy).
With Credit scheduler, each PCPU autonomously hosts
a scheduling program and manage its own run-queue

independently. That is, VCPUs in all run-queues of
PCPUs are scheduled asynchronously on each physical
machine. This kind of asynchronous scheduling policy
usually cannot take over the lock-holder preemption
problem [12]. For example, the VMM can preempt a
VCPU holding a spinlock (assumed to be held for a short
period of time and does not get preempted in a non-
virtualized environment). This will significantly increase
synchronization latency and block the progress of other
VCPUs waiting to acquire the same lock. More details
can be found in existing literatures [4, 5, 13].

Recently, most of existing work (e.g., co-scheduling
methods of VMware [3], hybrid scheduling [5], and
dynamic co-scheduling [6]) on VM-based scheduling is
only designed for concurrent workload processing. That
is, they aim to improve the performance for multi-thread
applications with synchronization operations over SMP
VM, instead of the parallel applications on virtual clus-
ters. With the existing approaches, all VCPUs of a single
SMP VM can be co-scheduled by VMM scheduler. For
example, as shown in Figure 1, in a multi-processor
physical machine (node1), VMM1 can interrupt the in-
volved PCPUs by sending inter-processor interrupt (IPI)
signals, and make them schedule two VCPUs of vm1
at the same time, attaining a co-scheduling of VCPUs
for vm1. Similarly, the VCPUs of vm2 can also be co-
scheduled by VMM2.

The key problem of these approaches is that all VMs
inside a virtual cluster are scheduled asynchronously
from the perspective of virtual cluster, which may de-
grade the performance of tightly-coupled parallel appli-
cations. As shown in Figure 1, since VMM1 and VMM2
make VM scheduling decisions autonomously, the prob-
ability of vm1 and vm2 (managed by different VMMs)
being scheduled simultaneously is very low. That is, the
existing scheduling methods for SMP VMs neglect the
synchronization requirement of the VMs (belonging to
the same virtual cluster) across physical machines. One
straight-forward idea is to strictly co-schedule all VMs
of a virtual cluster simultaneously among the involved
VMMs via a global controller (which directs all involved
VMMs when and which VMs to be scheduled). However,
it is non-trivial to always guarantee such a strict co-
scheduling for virtual cluster in fast-changing cloud
system hosting various types of applications.

3 OUR APPROACH

In this section, we first introduce the basic idea about
the performance improvement of virtual clusters run-
ning tightly-coupled parallel applications in an over-
committed cloud environment. Then we propose the
synchronization-aware VM scheduling (SVS) algorithm and
describe how it works. At last, we analyze the design of
SVS scheduler including cost, fairness, and scalability.

3.1 Basic Idea

Based on the above analysis, our objective is to design an
autonomous efficient method which can schedule VMs

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

running tightly-coupled parallel applications according
to the synchronization requirements. This issue is very
tough because of no central coordination servers to be
used. Fortunately, based on experiments in virtualized
environment, we find that the inter-VM communication
(e.g., the number of packets) can serve as a signal to
detect the synchronization demands from the viewpoint
of VM-level synchronization. That is, VMMs can make
VM scheduling decisions based on this signal to satisfy
the coordination demands of VMs belonging to the
same virtual cluster. For example, as shown in Figure
1, the virtual cluster that is composed of vm1 and vm2
runs a tightly-coupled parallel application with four
processes. Upon vm1 receiving an amount of packets
from outside between adjacent scheduling timestamps
of VMM1, we can deduce that it probably requires syn-
chronization among vm1 and vm2. That is, vm1 should be
autonomously selected by VMM1 to satisfy the potential
synchronization requirements. Under this approach, all
VMMs make VM scheduling decisions independently
and no global controller among VMMs is needed.

In order to explore the correlation between the number
of packets received by VM and the synchronization
requirements, we investigate the Pearson Correlation
Coefficients (PCC) [14] between the number of pack-
ets and the number of spinlocks (an indicator of syn-
chronization requirement) which are obtained from the
following experiment. Specifically, the PCC (denoted as
r) can be computed by Formula (1), where n is the
number of paired data (Xi, Yi) recorded in the following
experiment, Xi and Yi are the number of packets and
that of spinlocks recorded at the ith sampling step,
respectively, X and Y refer to the mean value of Xi

and Yi, respectively. The correlation coefficient r ranges
from - 1 to 1. A value that is close to 1 implies a fairly
strong positive relationship between the two items, while
a value of 0 means non-correlation between them.

r =

∑n

i=1
(Xi −X)(Yi − Y)

√

∑n

i=1
(Xi −X)2

√

∑n

i=1
(Yi − Y)2

(1)

In the experiment, four 8-VCPU VMs are used to run
a set of MPI programs with 32 processes in parallel.
We choose three benchmark programs (called is, ep, and
lu) from NPB suite of version 2.4 [15], as they exhibit
three typical types of parallel executions: communication
intensive application with little computation (is); CPU
intensive application with little communication (ep); and
the one that lies in between them (lu). For each VM, the
number of packets and that of spinlocks are recorded ev-
ery 120 milliseconds (multiplying the 30ms of Xen Credit
scheduler by the number of VMs in this experiment) over
60 seconds.

The statistical data is shown in Table 1. It is observed
that the average Pearson Correlation Coefficients (PCC)
between the number of packets and that of spinlocks
in tightly-coupled parallel applications (i.e., lu and is)
are 0.89 and 0.97, respectively, while that value in

computation-intensive application (i.e., ep) is only 0.17.
This implies that the inter-VM communication is a fairly
good signal to detect potential synchronization require-
ments.

TABLE 1

The Pearson Correlation Coefficient (PCC) between the
number of packets a VM received and that of spinlocks

during benchmarks running

Benchmarks lu is ep
Pearson Correlation Coefficient (PCC) 0.89 0.97 0.17
Standard Deviation of PCC 0.094 0.046 0.24

Based on the finding about the correlation between
the number of packets received by VM and the syn-
chronization requirements, our basic idea is to devise a
synchronization-aware VM scheduling (SVS) algorithm to
help make scheduling decisions for VMMs. Specifically,
for each VM of virtual cluster that runs tightly-coupled
parallel application, we will count the number of packets
received since its last de-scheduled moment, which can
be recognized and counted by VMM itself. And then, we
take the statistics of packets as one of four metrics (which
will be introduced in Section 3.2) to select and schedule
VMs. The schedulers of VMMs with our SVS algorithm
can take into account the synchronization requirement
among VMs, and autonomously determine which VM
should be scheduled from their own perspective, so as
to improve the performance of tightly-coupled parallel
application running in virtual cluster. This contrasts the
strict co-scheduling approach for virtual cluster, which
needs global controller for VMMs to schedule all VMs
of virtual cluster online and offline at the same time.

3.2 SVS Algorithm

Based on the observation presented above, SVS al-
gorithm promotes the scheduling priority of the VM
(running tightly-coupled parallel application) with the
largest number of received packets counted from the
last de-scheduled moment. Intuitively, when a tightly-
coupled parallel application is running in a virtual clus-
ter, the more packets a VM receives during the last
scheduling period, the more urgent the synchronization
requirement of this VM is. Hence, the objective of the
SVS algorithm is to differentiate the priority of the VMs
which receive different amounts of packets during the
last scheduling period. Specifically, the VM receiving
more packets will have higher chance to be promoted on
its priority for satisfying synchronization requirement of
VMs belonging to the same virtual cluster.

Note that we should also guarantee the fairness of
the resource consumption among VMs when promoting
the priorities for some of them, thus our SVS algorithm
also takes into account three other metrics in addition
to the number of packets: (1) the type of the application
running on VM, (2) the remaining CPU shares (e.g., the
remaining credit values of Xen), and (3) the original
orders in the run-queue of PCPU.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Basically, there are four situations to deal with, ac-
cording to the information of PCPU run-queue, as listed
below.

• If there is no VM that runs tightly-coupled parallel
application in the run-queue of PCPU, SVS algo-
rithm will select the VM at the head of run-queue
directly, just like the Credit scheduler of Xen does.

• If there exists only one VM that runs parallel ap-
plication in the run-queue of PCPU, SVS algorithm
will select that VM without any hesitation.

• If there are more than one VM, which runs some
tightly-coupled parallel application in the run-queue
of PCPU, SVS algorithm will select the VM that
receives the largest number of packets counted from
the last de-scheduled moment. Further more, if two
VMs receive the same number of packets, their
remaining CPU shares (e.g., remaining credit values
of Xen) will be used to carry out the VM selection,
and the more the remaining CPU shares, the higher
the priority.

• If the VMs still cannot be differentiated, SVS algo-
rithm will pick a VM from among all qualified VMs
according to their original orders in the run-queue
of PCPU.

TABLE 2

Variables and Functions in Algorithm

Variables and Functions Description
v a VCPU
runq the run-queue of PCPU
VM(v) the VM to which the v belongs
pcpuSet a set of PCPUs
vcpuSet a set of VCPUs
vmSet a set of VMs
do loadbalance() migrate VCPU residing in the

run-queue of neighboring PCPUs
once there are no VCPUs in the
local run-queue

get first element(runq) return the VCPU which is at the
head of run-queue runq

get parallel vcpus with
maxPackets(runq)

return VCPUs from runq if par-
allel VMs they belong to receive
maximum packets since their last
de-scheduled

get vcpus with
maxRemainingShares(vcpuSet)

return VCPUs from VCPUs set
vcpuSet if they have the most
remaining CPU shares

get vcpu with
oOrderinRunq(vcpuSet)

return a VCPU from VCPUs set
vcpuSet according to their origi-
nal order in runq

get pcpus of vm(VM(v)) return all PCPUs where the VC-
PUs of VM(v) are allocated

get pcpu(v) return the PCPU which hosts v
get running vm(pcpuSet) return all VMs which are running

in pcpuSet

After SVS scheduler determines which VM should
be scheduled for running the parallel application, the
VMM scheduler will schedule all VCPUs of the VM si-
multaneously by sending Inter-Processor Interrupt (IPI)
signals to the involved PCPUs on the same physical ma-
chine. Unrestricted simultaneous scheduling all VCPUs
for SMP VM through sending IPIs, however, may cause
excessive numbers of preemptions due to repeatedly
interrupting VMs, which results in serious performance

degradation [16, 17]. To mitigate this problem with unex-
pected preemptions, we devise a VM preemption mecha-
nism. For tightly-coupled parallel applications, it is very
important to timely handle network packets, thus it is
necessary to prevent the preemption during such a time
period. In other words, the duration for handling packets
by each VM can be treated as a threshold to determine
whether the VM can be preempted. We calculate such
a threshold value for each VM (denoted as TVM) based
on the estimated time interval a VM will take to handle
packets in next run, as shown in Formula (2).

TVM = NumPackets

VM ×AveTimeOnePacket

VM (2)

TVM is a product of two metrics: 1) the number of
packets (denoted as NumPackets

VM
)) that a VM received

since its last de-scheduled moment (these packets should
be handled during its next run), and 2) the time spent
in handling one packet (denoted as AveTimeOnePacket

VM
).

Specifically, the first metric (the number of packets) for
each VM can be counted in the driver domain of VMM
(e.g., Domain 0 of Xen). Because the packets that a
VM received since its last de-scheduled moment may
have different size, the time spent in handling a packet
may vary. We estimate the second metric by averaging
the historic monitoring data about handling one packet.
When the VM is scheduled to run for the first time, the
TVM is an empirical value by default. In Section 5, it is
set to 2ms in our experiments, because the tick time of
Xen Credit scheduler is 10ms.

The pseudo-code of SVS algorithm is described in
Algorithm 1. We call a VM running non-parallel (par-
allel) application “non-parallel VM” (“parallel VM”).
Similarly, we call its VCPUs the “non-parallel VCPU”
(“parallel VCPU”). The variables and functions used in
Algorithm 1 are described in Table 2. The SVS algorithm
takes run-queue information as an input. If there are no
runnable VCPUs (line 1), do_loadbalance() will be
called to balance the VCPUs’ load across PCPUs on a
host with multiple processors. That is, once there are
no VCPUs in the run-queue of a PCPU, this function
migrates a VCPU residing in the run-queue of its neigh-
boring PCPUs. (lines 2 and 3). Otherwise, if runnable
VCPUs are only non-parallel ones, our algorithm will
act like Credit scheduler of Xen, that is, it selects the
VCPU which is at the head of run-queue (lines 4-6).

Four functions are used to get a suitable VCPU when
runnable VCPUs include parallel ones (lines 8-19). First,
it calls get_parallel_vcpus_with_maxPackets()

to obtain VCPUs, which are put in vcpuSet1, from run
queue runq if parallel VMs they belongs to receive
maximum packets since their last de-scheduled (line
8). If there is more than one VCPU in vcpuSet1,
function get_vcpus_with_maxRemainingShares()

will be called to return VCPUs according to their
remaining CPU shares (line 13). If more than
one VCPU has the most remaining CPU shares,
get_vcpu_with_oOrderinRunq() will be used to

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

CPU CPU ... CPU

Physical Machine

SVS Scheduler

CPU

VMM

VM
VCPU VCPU......

Scheduling all

VCPUs of VM

simultaneously

when necessary

Virtual Cluster

Communication among VMs CPU CPU ... CPU

Physical Machine

CPU

VMM

Scheduling all

VCPUs of VM

simultaneously

when necessary

Considering the synchronization

requirement among VMs when

making VM scheduling decision

VM
VCPU VCPU...

VM
VCPU VCPU......

VM
VCPU VCPU...

Gathering the

information of

packet & CPU

run-queue

SVS Scheduler

Gathering the

information of

packet & CPU

run-queue

Fig. 2. Overview of SVS scheduler. With SVS algorithm, the scheduler can take into account the synchronization
requirement among VMs which belong to the same cluster when scheduling VMs. Meanwhile, with the preemption

mechanism, it can avoid over context-switch.

Algorithm 1 The synchronization-aware VM scheduling
(SVS) algorithm

Input: run-queue information of the PCPU where the scheduler re-
sides

Output: scheduling decision
1: if there are no runnable VCPUs then
2: v = do loadbalance();
3: v.type = LOADBALANCE;
4: else if runnable VCPUs are only non-parallel ones then
5: v =get first element(runq);
6: v.type = NONPARALLEL;
7: else /∗ runnable VCPUs include parallel ones ∗/
8: vcpuSet1 =get parallel vcpus with maxPackets(runq);
9: if there is only one VCPU in vcpuSet1 then

10: v =get first element(vcpuSet1);
11: v.type = PARALLEL;
12: else /∗ more than one VCPU has max. packets ∗/
13: vcpuSet2 =get vcpus with maxRemainingShares(vcpuSet1);
14: if only one VCPU exists in vcpuSet2 then
15: v =get first element(vcpuSet2);
16: v.type = PARALLEL;
17: else /∗ more than one VCPU has max. CPU shares ∗/
18: v =get vcpu with oOrderinRunq(vcpuSet2);
19: v.type = PARALLEL;
20: end if
21: end if
22: end if
23: if v.type = PARALLEL then
24: pcpuSet =get pcpus of vm(VM(v));
25: pcpuSet = pcpuSet − get pcpu(v);
26: vmSet =get running vm(pcpuSet);
27: if VM(v) can preempt all VMs in vmSet then
28: send Inter-Processor Interrupt (IPI) to these PCPUs in

pcpuSet and schedule VCPUs of VM(v) to PCPUs
simultaneously;

29: else
30: schedule v to PCPU;
31: end if
32: else
33: schedule v to PCPU;
34: end if

return a VCPU based on VCPUs’ original order in
run-queue runq (line 18).

After obtaining the selected VCPU v, scheduling de-
cision is made based on the following two alternative
decisions: (1) schedule all VCPUs of VM(v) to their
corresponding PCPUs simultaneously; or (2) only sched-
ule VCPU v to PCPU. If VM(v) runs a tightly-coupled
parallel application and can preempt the running VMs,

we choose the first scheduling decision, or we choose
the second one otherwise. Specifically, VM preemption
mechanism is used to determine whether VM(v) can
preempt the running VMs in vmSet when it runs parallel
application (line 27). And if satisfied, all VCPUs of
VM(v) are scheduled to their corresponding PCPUs si-
multaneously by sending Inter-Processor Interrupt (IPI)
(line 28).

3.3 SVS Scheduler

Based on SVS algorithm, we design our SVS scheduler
in this section, the overview of which is presented by
giving an example of two nodes as shown in Figure 2.

The SVS scheduler monitors the communication states
inside each VMM, and dynamically analyzes the statis-
tics of received packets. The monitored communication
state is driven by the running parallel application, and
we call it locally visible synchronization requirement infor-
mation. With such information, our SVS scheduler can
take the synchronization requirement into consideration
when scheduling VMs. Meanwhile, SVS scheduler suf-
fers little overheads, because the coordination informa-
tion demanded (i.e., the statistics of received packets
in VM) is implicitly carried in the communication mes-
sages. As for the intra-VM scheduling, all VCPUs of each
SMP VM can be scheduled at the same time by sending
Inter-Processor-Interrupt (IPI) to involved PCPUs when
demanded.

Cost analysis. The space complexity is O(Q), and the
computational complexity is O(Qlog2Q), where Q is the
number of VCPUs in the run-queue of each PCPU. This
is because SVS scheduler selects the scheduling object by
sorting PCPU’s run-queue with merge sort. As the value
of Q grows, so does the computational complexity of
SVS Scheduler. However, in real environment, the value
of Q is very small. For example, VMware shows that
the average value is 4 based on analyzing 17 real-world
datacenters [8].

It should be noted that, if the selected VCPU and its
siblings which need to be co-scheduled cannot preempt
the VCPUs occupying the related PCPUs, SVS scheduler

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

will only schedule the selected VCPU to PCPU (lines
27-31 of Algorithm 1). That is, there is no extra cost in
such situation, because SVS scheduler does not need to
reselect a VCPU from the run-queue of PCPU.

Fairness guarantee. One important feature of our
SVS scheduler is improving the performance of tightly-
coupled parallel application by adjusting the scheduling
order according to some key metrics, such as type of ap-
plications, the number of received packets, and remain-
ing shares (e.g., credits in Xen). Our scheduler does not
degrade the scheduling fairness of the overall system,
because it adopts proportional-share scheduling strategy
for VMs running different types of applications, which
allocates CPU in proportion to the amount of shares
(weights) that VMs have been assigned, to guarantee the
fairness among VMs over time. This strategy is widely
used by VMMs such as Xen. The key part of this strategy
is the concept of weight, while the CPU time obtained by
a VM is equally distributed among its VCPUs. In Section
5.4, an experiment is used to test the fairness among
VMs.

Scalability. Due to our autonomous design, all VMMs
with SVS scheduler make VM scheduling decisions
based on their locally visible synchronization require-
ment information (e.g., the statistic about packets re-
ceived by each VM), implying a higher scalability com-
pared to the strict co-scheduling method of virtual clus-
ter with centralized controller among VMMs. Such a
feature makes it better suitable to the complex and fast-
changing cloud environment. And we also evaluate the
scalability of our method in Section 5.2.

4 IMPLEMENTATION

It is convenient to apply our design in practice. SVS
scheduler just requires a simple modification to the VM
scheduler in the VMM. It is generic and thus applicable
to many VMMs (e.g., Xen, VMware ESX [18]).

The prerequisite of all co-scheduling algorithms is to
know the type of workload running in VMs. That is,
the scheduler must understand whether the workload is
parallel application or not. Here, we adopt our previous
method of inferring the type of application in virtualized
system [19].

We implement a working prototype, called sched SVS,
by extending the Credit scheduler of Xen 3.2 because
of its open-source codes. Before we describe the imple-
mentation of SVS scheduler, we give an overview of the
working mechanism of Credit scheduler as follows.

Credit scheduler is currently the default scheduler in
Xen. It allocates the CPU resources to VCPU according
to the weight of the domain that the VCPU belongs to. It
uses credits to track VCPU’s execution time. Each VCPU
has its own credits. If one VCPU has credits greater than
0, it gets UNDER priority. When it is scheduled to run,
its credit is deducted by 100 every time it receives a
scheduler interrupt that occurs periodically once every
10ms (called a tick). If one VCPU’s credit is less than

0, its priority is set to OVER. All VCPUs waiting in
the run-queue have their credits topped up once every
30ms, according to their weights. The higher weight
a domain has, the more credits are topped up for its
VCPUs every time. An important feature of the Credit
scheduler is that it can automatically load-balance the
VCPUs across PCPUs on a host with multiple processors.
The scheduler on each PCPU can “steal” VCPUs residing
in the run-queue of its neighboring PCPUs once there are
no VCPUs in its local run-queue.

Since SVS scheduler is based on the Credit scheduler,
SVS scheduler inherits its proportional fairness policy
and multi-core support. SVS scheduler mainly consists
of three modules (VCPU initial mapping, load balancing,
synchronization-aware VM scheduling), as shown in
Figure 3.

Through extending the VCPU initial mapping, load
balancing, and scheduling mechanisms of Credit sched-
uler, we implement the SVS scheduler modules of VCPU
initial mapping, load balancing, and synchronization-
aware VM scheduling.

VCPU VCPU

Scheduling all

VCPUs of VM

simultaneously

when necessary

VCPU VCPUVCPU VCPU

Gathering the

information of

packet & CPU

run-queue

Fig. 3. Modules of SVS scheduler based on the Credit
Scheduler of Xen.

VCPU initial mapping. When a VM is created, each
VCPU of the VM will be inserted to the run-queue of a
PCPU by this module. As for the type of SMP VMs that
run tightly-coupled parallel application, we implement
this module by balancing all VCPUs of a SMP VM to
different run-queue of PCPU. That is, there are no two
VCPUs of a VM associated to the same PCPU’s run-
queue when the VM is running. As for other types of
VMs, we map their VCPUs like the Credit scheduler
does. Through implementing such kind of mapping
strategy, it not only can reduce the cost of co-scheduling
VCPUs, but also resolve the VCPU-stacking problem
presented in [4] (that is, the lock waiter is scheduled
before the lock holder on the same PCPU) for tightly-
coupled parallel application running on SMP VM.

Load balancing. With this module, SVS scheduler can
automatically perform local balancing among its local
run-queue and the ones of its neighbor PCPUs of the
same physical node. Specifically, the VCPUs residing in

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

the neighbor PCPUs’ run-queues can be dynamically
migrated into the local run-queue on demand. Similar
to VCPU initial mapping, we implement this module
by extending the load balancing mechanism of Credit
scheduler to guarantee that no two VCPUs of a VM
exist in the same PCPU’s run-queue, when making the
decision of migrating VCPUs due to the same reasons.

Synchronization-aware VM scheduling. We imple-
ment this module based on SVS algorithm (described
in Section 3.2) through extending Credit scheduler of
Xen. For example, we add a variable (domu rx packets)
and an array (domu handling time[MAX SIZE]) for each
VM to record information, where MAX SIZE is the size
of historic monitoring data about time spent in han-
dling one packet. Specifically, domu rx packets is used
to record the number of packets that a VM has re-
ceived since its last de-scheduled moment, which is
taken as one of metrics to schedule VM. The domu
handling time[MAX SIZE] make us look backwards last
MAX SIZE data, and the time used in computing the
threshold of VM preemption mechanism is the average
of all data in domu handling time[MAX SIZE].

In Xen, the Xen-netback is responsible for receiving
packets and forwarding them to corresponding VMs.
We add an instruction in Xen-netback to increment the
domu rx packet variable for receiving every packet. The
computational complexity of this operation is O(1) -
a constant, so it does not introduce extra overhead in
the system at all. Similarly, the operation of array (i.e.,
domu handling time[MAX SIZE]) has no impact on
the computational complexity of system either. Hence,
the packet analysis suffers from little overhead in the
system.

5 PERFORMANCE EVALUATION

We first describe our experimental methodology in Sec-
tion 5.1, and then present experimental results about SVS
approach in the following sections.

5.1 Experimental Methodology

(1) Experimental Platform. A private infrastructure is
deployed in our university. It is used as our main exper-
imental platform because commercial cloud providers
(e.g., Amazon EC2) do not allow users to modify their
VMM schedulers. In this experimental platform, there
are 32 nodes with totally 256 cores connected by a 1Gbps
Ethernet. Each physical node is equipped with two Intel
Xeon E5345 quadcore CPU and 8 GB of DDR2 DRAM.
These nodes run Xen 3.2, and all VMs (4-VCPU) run the
CentOS5.5 Linux distribution with a Linux 2.6.18 kernel.
Although open source cloud computing software (e.g.,
Eucalyptus [20] and CloudStack [21]) can be used to
build and manage our private infrastructure, we do not
adopt it because it will introduce extra problems of cloud
resource scheduling (e.g., how to place or migrate VMs
in cloud), which probably make our study more complex
and affect the evaluation of our work in VMM. Note

that in this paper, we focus on the scheduling problem
in VMM rather than that of cloud scheduler.

(2) Scheduling approaches. On this platform, we
compare our SVS approach to three other state-of-the-
art scheduling approaches as follows:

• CREDIT: the default scheduler of Xen.
• Hybrid Scheduling (HS): It adopts two different

algorithms correspondingly for two types of VMs
- high-throughput VM and concurrent VM that
are classified according to the type of application
running on VM. For high-throughput VM, it uses
proportional share scheduling algorithm. For con-
current VM, it uses co-proportional share schedul-
ing algorithm, which co-schedules the VCPUs of
SMP VM to the PCPUs in the physical node while
guaranteeing that the CPU time is allocated to VMs
in proportion to their weight values.

• Balance Scheduling (BS): To remediate the synchro-
nization latency problem faced by the open source
hypervisors (e.g., Xen) with the default schedulers,
Balance Scheduling approach balances VCPU sib-
lings of SMP VM on different PCPUs without
strictly scheduling the VCPUs simultaneously. That
is, it is a probabilistic co-scheduling approach.

(3) Classification of experiments. There are many
factors in the platform to affect the approaches’ perfor-
mance, such as the degree of overcommitment (that is,
the ratio of VCPU-to-PCPU), the size and number as well
as placement of virtual clusters running parallel applica-
tions, and the interference of other types of applications.

In order to evaluate the performance of approaches
clearly, we first devise a test in Section 5.2 with some
restrictions, e.g., using the given configuration (the size,
number, and placement) of virtual clusters, which is split
into two parts. The first one fixes the ratio of VCPU-to-
PCPU (i.e., fixing the number of VMs hosted on each
physical node), and investigates the performance with
different scales (different numbers of physical nodes).
The second one fixes the number of physical nodes
and dynamically adjusts the ratio of VCPU-to-PCPU by
changing the number of VMs hosted on each physical
node at runtime.

Then, we release these restrictions about the config-
uration of virtual cluster in Section 5.3 to evaluate the
performance of different scheduling approaches, where
we synthesize the size and number of virtual clusters
launched in cloud environment based on the job traces
of a Linux cluster (Thunder) at Lawrence Livermore
National Laboratory [22]. This test is also split into two
parts. The first one only runs parallel applications. The
second one adds web applications and disk-intensive
applications as interference workload into the platform
which are very common applications in cloud environ-
ment. At last, we evaluate the CPU fairness of our
approach in Section 5.4.

(4) Benchmarks. The benchmarks used in our experi-
ments are NPB suite, Web server, and Bonnie++ [23].

• NPB suite of version 2.4. A set of MPI programs de-

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of physical nodes (VMs)

CREDIT
BS

HS
SVS

(a) lu

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of physical nodes (VMs)

CREDIT
BS

HS
SVS

(b) is

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of physical nodes (VMs)

CREDIT
BS

HS
SVS

(c) ep

Fig. 4. Performance comparison of approaches (CREDIT, BS, HS, and SVS) with fixed ratio of VCPU to PCPU when

running benchmarks on 2, 4, 8, 16, and 32 nodes (VMs).

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5 3 3.5 4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Ratio of VCPU-to-PCPU

CREDIT
BS

HS
SVS

(a) lu

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5 3 3.5 4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Ratio of VCPU-to-PCPU

CREDIT
BS

HS
SVS

(b) is

 0

 0.2

 0.4

 0.6

 0.8

 1

2.5 3 3.5 4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Ratio of VCPU-to-PCPU

CREDIT
BS

HS
SVS

(c) ep

Fig. 5. Performance comparison of approaches (CREDIT, BS, HS, and SVS) when running benchmarks with different

ratios of VCPU-to-PCPU.

signed to help evaluate the performance of clusters
and supercomputers.

• Web server. The average response time of Web server
is measured by httperf [24].

• Bonnie++. A benchmark suite that aims at perform-
ing a number of simple tests of hard drive and file
system performance.

In general, cloud users construct the virtual cluster for
their own individual purposes, so we assume without
loss of generality that each virtual cluster runs one
application in all of our experiments.

5.2 Scenarios with Restrictions

The benchmark employed is NPB suite of version 2.4.
And we select three benchmark programs (is with size
A, ep with size C, and lu with size A) from NPB for
experiment because they exhibit three typical types of
parallel executions: communication intensive application
with little computation (is); CPU intensive application
with little communication (ep); and the one that lies in
between them (lu).

5.2.1 Fixed Ratio of VCPU to PCPU

In this experiment, we scale the number of physical
nodes from 2 to 32 (2, 4, 8, 16, and 32), and four 4-
VCPU VMs are booted up on each physical node. The
fixed VCPU-to-PCPU ratio is 2.5:1 when considering the
number of VCPUs in privileged domain (domain 0).
Four identical virtual clusters are built using all VMs
in the platform, and the four VMs on each physical
node belong to them separately. We run lu on these four

virtual clusters simultaneously for ten times, and record
the execution time of lu on each virtual cluster. The same
test procedures also go to is and ep, respectively.

Figure 4 shows the average execution time of lu, is, and
ep running on virtual clusters with different solutions BS,
HS and SVS. Their execution times are all normalized by
comparing to that of traditional approach CREDIT.

Based on Figure 4(a) and 4(b), it is clearly observed
that our SVS approach exhibits the best performance and
scalability for lu and is. For example, in absolute terms,
the execution times of lu application under HS and BS
approaches are longer than that under our SVS approach
by 0.65/0.42=155% and 0.92/0.42=219% when the num-
ber of physical nodes (that is, the number of VMs in
virtual cluster) is 2. The performance and scalability of
HS is much better than that of BS. We analyze the key
reasons as follows.

• For tightly-coupled parallel applications (e.g., lu and
is), our SVS scheduler outperforms the other three
approaches (BS, HS and CREDIT) and scales better
because it considers the synchronization require-
ments of the VMs that belong to the same vir-
tual cluster when making VM scheduling decisions.
Moreover, with our designed SVS algorithm, VMMs
can autonomously determine which VM should be
scheduled.

• BS is a probabilistic co-scheduling approach [4], and
the probability of co-scheduling VCPUs of virtual
cluster will become lower and lower with increasing
number of physical nodes (VMs of virtual cluster).
Thus, BS has a slight performance gain over CREDIT
when the number of physical nodes is small (e.g., 2),

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

while the performance gain is not clear with large
number of nodes.

• Although HS co-schedules all VCPUs of SMP VMs
on single physical node, all VMs belonging to
the same virtual cluster are still scheduled asyn-
chronously because involved VMMs neglect the
synchronization requirements among VMs when
making scheduling decision. Therefore, the perfor-
mance and scalability of HS are between these of
SVS and BS, that is, HS is better than BS, but worse
than our SVS solution.

From Figure 4(c), we can observe that these four
approaches have almost the same performance and scal-
ability. The reason is that SVS and HS will gracefully
degrade into CREDIT with respect to the CPU intensive
applications with little communication (e.g., ep). In this
situation, all of the three solutions will exhibit almost
the same performance, which is extremely close to the
classic CREDIT approach.

5.2.2 Varying Ratios of VCPU-to-PCPU

In this experiment, we dynamically adjust the ratio of
VCPU-to-PCPU from 2.5 to 4 by changing the number
of VMs hosted on each physical node of platform from
4 to 7. As the configuration of virtual clusters in Section
5.2.1, VMs on each physical node belong to different
virtual clusters separately. Figure 5 presents the average
execution time of lu, is, and ep when running on virtual
clusters with BS, HS and SVS, respectively. The execution
time is also normalized in comparison to that of CREDIT.

From Figure 5(a) and 5(b), we can easily observe that
our SVS approach has the best performance for lu and is
in scenarios with different ratios of VCPU-to-PCPU, and
the performance of HS are between these of SVS and
BS. Specifically, the performance of SVS and HS become
better with increasing ratio of VCPU-to-PCPU, while the
performance gain of BS over CREDIT is not obvious at
all. The reasons behind these figures are as follows.

• As the ratio of VCPU-to-PCPU increasing, the prob-
ability of co-scheduling VCPUs of virtual cluster
using BS approach becomes lower and lower. There-
fore, the performance gain over CREDIT is not clear
in such situation.

• HS outperforms BS and CREDIT because it can co-
schedule the VCPUs of SMP VM that runs tightly-
coupled parallel application. However, it is still
worse than our SVS approach due to the fact that in-
volved VMMs with HS neglect the synchronization
requirements among VMs when making scheduling
decision.

From Figure 5(c), we observe that these approaches
have almost the same performance and scalability for ep
as the ratio of VCPU-to-PCPU changing, which is due
to the same reasons for Figure 4(c) in Section 5.2.1.

5.3 Scenarios without Restrictions

In the real work, it is very common for cloud systems
(e.g., Amazon EC2) to host different types of applications

with different sizes. Therefore, we devise a test to carry
out further evaluation of scheduling approaches (i.e.,
CREDIT, HS, BS, and SVS), where we synthesize the size
and number of virtual clusters launched in our platform
based on the job traces of a Linux cluster (Thunder)
at Lawrence Livermore National Laboratory [22]. And
we adopt a random placement algorithm to place these
virtual clusters in this test. Besides, the type of the appli-
cation running on virtual clusters is selected randomly
from several typical benchmarks. That is, different from
experiment in Section 5.2, we release restrictions about
the configuration of virtual clusters and the type of
application running on them.

The test in this section is split into two parts. The
first part (in Section 5.3.1) only runs different type of
parallel applications. The other one (in Section 5.3.2)
adds web applications and disk-intensive applications
as interference workload into the platform, which are
very popular applications in cloud environment. In these
two parts, 128 4-VCPU VMs are hosted on 32 physical
nodes (each node hosts four 4-VCPU VMs). The VCPU-
to-PCPU ratio is 2.5:1 when considering the number of
VCPUs in privileged domain (domain 0), which means
a fairly overcommitted situation.

5.3.1 Mix of Parallel Applications

First, we evaluate the performance of approaches using a
mix of different parallel applications. We will add non-
parallel applications into the platform, and do further
evaluation in Section 5.3.2.

(1) The configuration of virtual clusters. Different
from the restricted configuration of virtual clusters in
Section 5.2, we synthesize the size and number of vir-
tual clusters based on the job traces of a Linux cluster
(Thunder) at Lawrence Livermore National Laboratory
(LLNL).

Specifically, we make the size of each virtual cluster in
the platform lie in the range between 8 and 128 VCPUs.
Such a setting is due to the fact that the number of CPUs
required by majority (about 91.5% in Table 3) of jobs is
no more than 128, according to the job traces of a Linux
cluster (Thunder).

TABLE 3

The percentage of the number of jobs with different sizes
(i.e., the number of CPUs required by jobs) based on the

traces of Linux cluster (Thunder)

Size 4 8 16 32 64 128 others
Percentage 48.5% 12.2% 13.8% 4.7% 8.4% 3.9% 8.5%

Based on the total number of VMs in our platform,
we also try to make the distribution of virtual clusters
be consistent with the trace. For example, the number of
virtual clusters with 8 VCPUs (12.2%) is about 3 times
much more than that of ones with 128 VCPUs (3.9%).
Specifically, from the 128 VMs, ninety are used to build
the 10 virtual clusters with different sizes, and the other
thirty-eight VMs act as independent VMs. Therefore, the

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

10 virtual clusters are organized as follows, according to
the trace data in Table 3.

• Three 8-VCPU virtual clusters (labeled as VC1 ∼

VC3, respectively), each of which has two 4-VCPU
VMs.

• Three 16-VCPU virtual clusters (VC4 ∼ VC6).
• One 32-VCPU cluster (VC7).
• Two 64-VCPU virtual clusters (VC8 and VC9).
• One 128-VCPU virtual cluster (VC10).
(2) The placement of virtual clusters. The placement

of virtual clusters is a non-trivial issue, and more details
about various policies of virtual cluster placement can
be found in [25]. This part is beyond the scope of this
paper, so we just adopt a random placement algorithm
in our experiment here to place these 10 virtual clusters
and 38 independent VMs.

(3) Benchmarks. In this experiment, each of virtual
clusters and independent VMs runs a randomly selected
application from lu.A, is.A, and ep.C of NPB benchmark.
One run of an application may differ from another, so
multiple applications will not finish at the same time
when they simultaneously start to run on corresponding
virtual clusters and independent VMs. Therefore, we run
each application repeatedly with a batch program. And
the number of repetitions is set large enough that all
other applications are still running when each applica-
tion finishes its 10th round.

(4) Experimental results. Figure 6 shows the average
execution time of applications running in each virtual
cluster and independent VM with BS, HS and SVS
normalized to that with CREDIT. The application names
in the parentheses indicate which virtual cluster (VC) is
running which application based on the random assign-
ment. For each application, the coefficient of variation of
its run times is less than 10%. Then the average value
could be used to compare the performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Ind.(ep)
Ind.(is)

Ind.(lu)
VC1(lu)

VC2(is)
VC3(ep)

VC4(ep)
VC5(lu)

VC6(ep)
VC7(lu)

VC8(is)
VC9(lu)

VC10(ep)

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

CREDIT BS HS SVS

Fig. 6. Normalized execution time of applications (lu, is,
and ep) running on ten virtual clusters of different sizes

and independent VMs in our platform.

From Figure 6, we can see that the performance of
lu.A (Ind.(lu)) and is.A (Ind.(is)) running on independent
VM is improved by using HS and SVS approaches. And
it confirms the effectiveness of co-scheduling methods
(HS and SVS) for tightly-coupled parallel applications
running on a single SMP VM. However, the performance
of HS is not as good as that of SVS when lu.A and is.A
run on virtual clusters (VC1, VC2, VC5, VC7, VC8, and
VC9). The reason is that HS approach does not consider
the synchronization requirements of related VMs that

belong to the same virtual cluster when it co-schedules
VCPUs of a VM.

For ep, these four approaches (SVS, HS, BS, and
CREDIT) have the similar performance, because SVS,
HS, and BS adopt similar strategy as CREDIT when they
schedule VMs that host CPU intensive applications.

From Figure 4(a), 4(b), 5(a), and 5(b) in Section 5.2.1,
and Figure 6 in this section, we can also find that SVS
provides more performance gains with respect to lu
than that with respect to is. That is, our SVS approach
is more suitable for such type of applications as lu.
The performance difference of SVS in different kinds of
tightly-coupled parallel applications lies in their different
characteristics of internal communication pattern, which
will be investigated in our future work.

5.3.2 Mix of Parallel and Non-parallel Applications

In this experiment, we further evaluate the performance
of approaches with parallel applications and non-parallel
applications. Because web applications and disk inten-
sive applications are very common in cloud environ-
ment, we take them as the representative of non-parallel
applications.

(1) Benchmark. Three types of benchmarks are used
in this experiment: 1) web server, the average response
time of which is measured by httperf ; 2) Bonnie++, a
benchmark suite that aims at performing a number of
simple tests of hard drive and file system performance;
and 3) NPB suite of version 2.4.

(2) Experiment settings. The experiment environment
is built following the settings described in subsection
5.3.1. The application running on each virtual cluster is
randomly selected from lu, is and ep of NPB benchmark.
Meanwhile, the application running on each indepen-
dent VM is randomly selected from the set of web server,
Bonnie++, lu, is and ep. For web server, we use httperf with
default configuration to measure its average response
time. For Bonnie++, the default configuration is used, and
the performance metrics are Bonnie Sequential Output
(BSO) (— Per Chr), Bonnie Sequential Output (BSO) (—
Block), and Bonnie Sequential Input (BSI) (— Per Chr).

 0

 0.2

 0.4

 0.6

 0.8

 1

BSO(Per Chr) BSO(Block) BSI(Per Chr) Httperf

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e CREDIT BS HS SVS

Fig. 7. The performance of scheduling approaches on

web and disk intensive applications, respectively.

(3) Experimental results. The average throughput of
Bonnie++ and the average response time of web server
with BS, HS and SVS approaches are normalized to that
of them with CREDIT, respectively. The experimental
results are shown in Figure 7.

We can see that the performances (SO (— Per Chr), SO
(— Block), and SI (— Per Chr)) of Bonnie++ with SVS, HS,

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

and BS approximate to those with CREDIT. The average
response time of web server with SVS and HS is about
84% of those with CREDIT.

The reason behind the experimental results is that
the average response time of non-parallel application
with HS and SVS approaches becomes longer due to
the scheduling priority declining, which results in the
performance degradation of delay-sensitive application
(such as web application) and has minimal impact on
delay-insensitive application (such as Bonnie++). The
findings about the NPB benchmarks running on virtual
clusters with four approaches in this experiment are con-
sistent with the conclusions of the experiment in Section
5.3.1. Therefore, the experiment results are omitted here.

5.4 Evaluation of CPU Fairness

The fairness of system is guaranteed by the modules
of CPU time allocation and consumption in our SVS
scheduler. In order to measure the fairness for CPU time
allocation among VMs hosted in virtualized system, we
adopt Jain’s fairness index [26] which is a well-known
indicator for this purpose.

J (x1, x2, ..., xn) =
(
∑n

i=1
xi)

2

n ·
∑n

i=1
x2

i

(3)

Fairness index can be computed by Formula (3), where
there are n VMs and xi is the CPU time obtained by the
ith VM. Its values are always in [0,1], and the higher
its value, the higher fairness degree of the VM resource
allocation is. When all VMs receive the same allocation,
the fairness index will be equal to 1.

The Credit scheduler of Xen is a well-known fair
scheduler. Therefore, we treat it as the baseline in our
experiment. As described in Section 5.3.1, different ap-
plications may not finish at the same time when they
simultaneously start to run on corresponding virtual
clusters and independent VMs. Therefore, we use a
batch program to run each application repeatedly. And
the number of repetitions is set large enough that all
applications are running during the experiment about
CPU fairness.

TABLE 4
Results of CPU fairness with Jain’s fairness index

Appraoches
Metrics CREDIT SVS
Jain’s fairness index 0.999949737 0.999212079
Standard Deviation 0.0000220134 0.000351322

We first record the CPU time obtained by each VM
every ten minutes on a randomly selected node using
the same experiment as Section 5.3.2 during one day (24
hours). That is, we compute the CPU fairness among
VMs every ten minutes, and we obtain 144 Jain’s fairness
indexes in total ((24 hours * 60 minutes per hour)/10
minutes). At last, we get the mean and standard de-
viation about these 144 Jain’s fairness indexes, which
are shown in Table 4. And we can observe that SVS

scheduler has almost the same fairness as that of Credit
scheduler.

6 DISCUSSION AND FUTURE WORK

In this section, we discuss the following questions and
our future work.

(1) Can SVS be more precise, thus SVS can get better
performance?

SVS schedules virtual cluster running tightly-coupled
parallel applications by locally visible synchronization
requirement information (e.g., the statistics of received
packets in VM), rather than in an absolutely precise
way (i.e., strict co-scheduling). The reason behind this
design is that we want to make our method simple and
practical, because strict co-scheduling through central-
ized controller is not cost-effective and introduces too
much overhead. Though SVS has proved its prominent
performance, we will further explore and characterize
the relation model between local behavior of VMs (e.g.,
the average waiting time of spinlock, Inter-Processor
Interrupt communications) and synchronization require-
ments among them, so as to make SVS adaptive to more
complex scheduling scenario.

(2) How to choose a cloud infrastructure to run parallel
applications, overcommitted or non-overcommitted?

Amazon EC2 has launched Cluster Compute Instances
(CCI) [27] hosted on dedicated infrastructure to support
parallel applications, where one physical node only hosts
one CCI. Actually, there are always tradeoffs between
performance and cost and thus choices between over-
committed and non-overcommitted systems for running
parallel applications. Many practical factors, such as
pricing policy, the type and size of parallel applications,
VCPU-to-PCPU ratio, and customer satisfaction [28], can
significantly influence users’ choices. In order to provide
users with more options, we focus on improving the
deliverable performance of parallel applications in over-
committed cloud environment in this paper. And we will
build a performance-cost tradeoff model to help users
choose a suitable environment (overcommitted or non-
overcommitted) for running different kinds of parallel
applications.

7 RELATED WORK

In this section, we provide an overview of the research
work related to our study.

Since the Xen virtualization technology was devel-
oped, many performance studies [7, 29, 30] have been
conducted to investigate the feasibility of using virtu-
alized platforms to run parallel applications. Virtualiza-
tion may cause problems which do not exist in tradi-
tional distributed systems. For instance, with dynamic
[31, 32] or implicit co-scheduling [33–35], independent
schedulers on each workstation coordinate parallel jobs
through local events (e.g., spinlock) that occur naturally
within the communicating applications in traditional
distributed systems. However, a spinlock held by a VM

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

can be preempted due to VCPU preemption [29] in the
virtualized environment, which vastly increases synchro-
nization latency and potentially blocks the progress of
other VCPUs waiting to acquire the same lock. Therefore,
the solutions in traditional distributed environments do
not perform very effectively for the scheduling of virtual
clusters in overcommitted cloud environment.

The negative influence of virtualization on synchro-
nization in parallel workloads is discussed in [5], and
a hybrid scheduling framework is introduced to deal
with the performance degradation of parallel workload
running on a SMP VM. In [6] an adaptive dynamic co-
scheduling approach is proposed to mitigate the per-
formance degradation of parallel workload on a SMP
VM. The co-scheduling solution of VMware [3] tries
to maintain synchronous progress of VCPU siblings by
deferring the advanced VCPUs until the slower ones
catch up. A probabilistic type of co-scheduling named
balance scheduling is provided in [4], the concept of
which is to balance VCPU siblings on different CPUs
without considering the precise scheduling of VCPUs at
the same time. The authors of [36] present Flex, a VCPU
scheduling scheme, to enforce fairness at VM-level, and
to flexibly schedule VCPUs to minimize wasted busy-
waiting time, so as to improve the efficiency of parallel
applications running on SMP VM. A demand-based
coordinated scheduling scheme for consolidated VMs
that host multithreaded workloads is presented in [17].
Actually, these co-scheduling solutions are all targeted
for SMP VMs rather than virtual clusters.

In [37] authors improve the performance of virtual
MapReduce cluster through batching of I/O requests
within a group and eliminating superfluous context
switches. A communication-aware CPU scheduling al-
gorithm is presented in [38] to alleviate the problem of
CPU schedulers being agnostic to the communication
behavior of modern, multi-tier, Internet server appli-
cations in virtualization-based hosting platforms. The
authors of [39] propose VMbuddies, which presents a
high-level synchronization protocol to guarantee appli-
cation’s SLA when the correlated multiple VMs are
migrated across geographically distributed data centers
concurrently. In [40] authors present Nephele, which is
a High-Throughput Computing framework to explicitly
exploit the dynamic resource allocation offered by to-
day’s IaaS clouds for both, task scheduling and execu-
tion. Based on this framework, they perform evaluations
of MapReduce-inspired processing jobs on an IaaS cloud
system and compare the results to the popular data
processing framework Hadoop. In [41] authors explore
to deploy a computing cluster on the top of a multicloud
infrastructure, for solving loosely coupled Many-Task
Computing (MTC) applications. In this way, the cluster
nodes can be provisioned with resources from different
clouds to improve the cost effectiveness of the deploy-
ment, or to implement high-availability strategies. Our
work differs from these work [37–41], because we focus
on improving the tightly-coupled parallel applications

that run on virtual clusters in overcommitted cloud.

8 CONCLUSIONS

More and more users from academic and commercial
communities are exploring cloud computing system as
an alternative to local clusters to execute their tightly-
coupled parallel applications. However, they still face the
performance degradation problem, which results from
that the synchronization requirement of VMs among
the same virtual cluster running tightly-coupled parallel
application is neglected by VMMs.

This paper targets the challenge of how to schedule
virtual clusters hosting tightly-coupled parallel applica-
tions and mitigate performance degradation in overcom-
mitted cloud environment. For this purpose, we analyze
the inadequacy of existing solutions, and introduce a
synchronization-aware VM scheduling (SVS) approach
of virtual clusters. With our SVS approach, no extra
communication cost is introduced in schedulers because
of our synchronization-aware design. This approach is
simple to apply in practice. Meanwhile, it allows partic-
ipating VMMs to act autonomously, thus retaining the
independence of VMMs. We implement a SVS scheduler
with SVS algorithm, and compare it to existing methods
such as CREDIT, BS and HS in a series of experiments.
For tightly-coupled parallel application, our SVS ap-
proach improves the application performance signifi-
cantly in comparison to the state-of-the-art approaches.
For example, in absolute terms, the execution times of lu
under HS and BS approaches are longer than that under
our SVS approach by 162% and 188% when it runs on
virtual cluster (VC9). Our SVS approach also maintains
a high fairness among VMs. The Jain’s fairness index of
our approach is greater than 0.9992, which is very close
to that of Credit scheduler (0.9999).

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insight-
ful comments and suggestions. This work was sup-
ported by National Science Foundation of China under
grant No.61232008 and No.61472151, National 863 Hi-
Tech Research and Development Program under grant
No.2013AA01A213, Chinese Universities Scientific Fund
under grant No.2013TS094, Research Fund for the Doc-
toral Program of MOE under grant No.20110142130005.
This work was also supported by the U.S. Department
of Energy, Office of Science, under Contract DE-AC02-
06CH11357.

REFERENCES

[1] Thomas J Hacker and Kanak Mahadik. Flexible
resource allocation for reliable virtual cluster com-
puting systems. In Proc. SC, page 48. ACM, 2011.

[2] Thomas J Hacker and Kanak Mahadik. Magellan
Final Report. U.S. Department of Energy (DOE),
2011.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[3] Vmware, inc. vmware vsphere 4: The
cpu scheduler in vmware esx 4.1, http:
//www.vmware.com/files/pdf/techpaper/VMW
vSphere41 cpu schedule ESX.pdf.

[4] Orathai Sukwong and Hyong S Kim. Is co-
scheduling too expensive for smp vms? In Proc.
EuroSys, pages 257–272. ACM, 2011.

[5] Chuliang Weng, Zhigang Wang, Minglu Li, and
Xinda Lu. The hybrid scheduling framework for
virtual machine systems. In Proc. VEE, pages 111–
120. ACM, 2009.

[6] Chuliang Weng, Qian Liu, Lei Yu, and Minglu Li.
Dynamic adaptive scheduling for virtual machines.
In Proc. HPDC, pages 239–250, 2011.

[7] Constantinos Evangelinos and Chris N. Hill. Cloud
computing for parallel scientific hpc applications:
Feasibility of running coupled atmosphere-ocean
climate models on amazon’s ec2. In In The 1st
Workshop on Cloud Computing and its Applications
(CCA), 2008.

[8] Vijayaraghavan Soundararajan and Jennifer M An-
derson. The impact of management operations
on the virtualized datacenter. In ACM SIGARCH
Computer Architecture News, volume 38, pages 326–
337. ACM, 2010.

[9] Charles Reiss, Alexey Tumanov, Gregory R Ganger,
Randy H Katz, and Michael A Kozuch. Heterogene-
ity and dynamicity of clouds at scale: Google trace
analysis. In Proc. SoCC, page 7. ACM, 2012.

[10] Sheng Di, Yves Robert, Frédéric Vivien, Derrick
Kondo, Cho-Li Wang, Franck Cappello, et al. Opti-
mization of cloud task processing with checkpoint-
restart mechanism. In Proc. SC, 2013.

[11] Credit scheduler. a proportional fair share cpu
scheduler, http://wiki.xen.org/wiki/Credit
Scheduler/.

[12] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund,
and Uwe Dannowski. Towards scalable multipro-
cessor virtual machines. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium,
pages 43–56, 2004.

[13] Xiang Song, Jicheng Shi, Haibo Chen, and Binyu
Zang. Schedule processes, not vcpus. In Proc.
APSys, page 1. ACM, 2013.

[14] Joseph Lee Rodgers and W Alan Nicewander. Thir-
teen ways to look at the correlation coefficient. The
American Statistician, 42(1):59–66, 1988.

[15] Nas parallel benchmarks, http://www.nas.nasa.
gov/Resources/Software/npb.html.

[16] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heese-
ung Jo, and Joonwon Lee. Task-aware virtual ma-
chine scheduling for i/o performance. In Proc. VEE,
pages 101–110. ACM, 2009.

[17] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joon-
won Lee, and Seungryoul Maeng. Demand-based

coordinated scheduling for smp vms. In Proc.
ASPLOS, pages 369–380. ACM, 2013.

[18] Vmware esx, http://www.vmware.com/products/
esx/.

[19] Huacai Chen, Hai Jin, Kan Hu, and Jian Huang.
Scheduling overcommitted vm: Behavior moni-
toring and dynamic switching-frequency scaling.
Future Generation Computer Systems, 29(1):341–351,
2013.

[20] Eucalyptus, https://www.eucalyptus.com/.

[21] Cloudstack, http://cloudstack.apache.org/.

[22] Parallel workloads archive, http://www.cs.huji.ac.
il/labs/parallel/workload/.

[23] Bonnie++. a benchmark suite aimed at performing
hard drive and file system performance, http://
www.coker.com.au/bonnie++/.

[24] Httperf. a tool for measuring web server
performance, http://www.hpl.hp.com/research/
linux/httperf/.

[25] Asser N. Tantawi. A scalable algorithm for place-
ment of virtual clusters in large data centers. In
Proc. MASCOTS, pages 3–10. IEEE, 2012.

[26] Raj Jain, Arjan Durresi, and Gojko Babic. Through-
put fairness index: An explanation, feb. 1999. In
ATM Forum/99-0045.

[27] High performance computing (hpc) on aws, http:
//aws.amazon.com/hpc-applications/.

[28] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei
Sun, Young Choon Lee, and Albert Y Zomaya.
Tradeoffs between profit and customer satisfaction
for service provisioning in the cloud. In Proc. HPDC,
pages 229–238. ACM, 2011.

[29] Adit Ranadive, Mukil Kesavan, Ada Gavrilovska,
and Karsten Schwan. Performance implications of
virtualizing multicore cluster machines. In Proceed-
ings of the 2nd workshop on System-level virtualization
for high performance computing, pages 1–8. ACM,
2008.

[30] Sayaka Akioka and Yoichi Muraoka. Hpc bench-
marks on amazon ec2. In Proc. WAINA, pages 1029–
1034. IEEE, 2010.

[31] Patrick G Sobalvarro and William E Weihl.
Demand-based coscheduling of parallel jobs on
multiprogrammed multiprocessors. In Job Schedul-
ing Strategies for Parallel Processing, pages 106–126.
Springer, 1995.

[32] Patrick G Sobalvarro, Scott Pakin, William E Weihl,
and Andrew A Chien. Dynamic coscheduling on
workstation clusters. In Job Scheduling Strategies for
Parallel Processing, pages 231–256. Springer, 1998.

[33] Andrea C Dusseau, Remzi H Arpaci, and David E
Culler. Effective distributed scheduling of parallel
workloads. In SIGMETRICS, volume 24, pages 25–
36. ACM, 1996.

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[34] Andrea C Arpaci-Dusseau, David E Culler, and
Alan M Mainwaring. Scheduling with implicit in-
formation in distributed systems. In SIGMETRICS,
volume 26, pages 233–243. ACM, 1998.

[35] Andrea Carol Arpaci-Dusseau. Implicit coschedul-
ing: coordinated scheduling with implicit informa-
tion in distributed systems. ACM Transactions on
Computer Systems (TOCS), 19(3):283–331, 2001.

[36] Jia Rao and Xiaobo Zhou. Towards fair and efficient
smp virtual machine scheduling. In Proc. PPoPP,
pages 273–286. ACM, 2014.

[37] Hui Kang, Yao Chen, Jennifer L Wong, Radu Sion,
and Jason Wu. Enhancement of xen’s scheduler for
mapreduce workloads. In Proc. HPDC, pages 251–
262. ACM, 2011.

[38] Sriram Govindan, Jeonghwan Choi, Arjun R Nath,
Amitayu Das, Bhuvan Urgaonkar, and Anand Siva-
subramaniam. Xen and co.: communication-aware
cpu management in consolidated xen-based host-
ing platforms. IEEE Transactions on Computers,
58(8):1111–1125, 2009.

[39] Haikun Liu and Bingsheng He. Vmbuddies: Co-
ordinating live migration of multi-tier applications
in cloud environments. IEEE Transactions on Parallel
and Distributed Systems, 99(PrePrints):1, 2014.

[40] Daniel Warneke and Odej Kao. Exploiting dynamic
resource allocation for efficient parallel data pro-
cessing in the cloud. IEEE Transactions on Parallel
and Distributed Systems, 22(6):985–997, 2011.

[41] Rafael Moreno-Vozmediano, Ruben S Montero, and
Ignacio M Llorente. Multicloud deployment of com-
puting clusters for loosely coupled mtc applications.
IEEE Transactions on Parallel and Distributed Systems,
22(6):924–930, 2011.

Song Wu is a professor of computer science and
engineering at Huazhong University of Science
and Technology (HUST) in China. He received
his Ph.D. from HUST in 2003. He is now served
as the director of Parallel and Distributed Com-
puting Institute at HUST. He is also served as
the vice director of Service Computing Technol-
ogy and System Lab (SCTS) and Cluster and
Grid Computing Lab (CGCL) of HUST. His cur-
rent research interests include cloud computing,
system virtualization, datacenter management,

storage system, in-memory computing and so on.

Haibao Chen is currently working toward the
PhD degree in Service Computing Technology
and System Lab (SCTS) and Cluster and Grid
Lab (CGCL) at Huazhong University of Science
and Technology (HUST) in China. His research
interests include parallel and distributed comput-
ing, virtualization, and resource scheduling on
cloud computing.

Sheng Di received the masters degree (MPhil)
from Huazhong University of Science and Tech-
nology in 2007 and the PhD degree from The
University of Hong Kong in 2011. He is cur-
rently a post-doctor researcher at Argonne Na-
tional Laboratory. His research interest includes
optimization of distributed resource allocation
and fault tolerance for Cloud Computing and
High Performance Computing. His background
is mainly on the fundamental theoretical analysis
and system implementation. He is a member of

the IEEE.

Bing Bing Zhou received the BS degree from
Nanjing Institute of Technology, China and the
PhD degree in Computer Science from Aus-
tralian National University, Australia. He is cur-
rently an associate professor at the Univer-
sity of Sydney. His research interests include
parallel/distributed computing, Grid and cloud
computing, peer-to-peer systems, parallel algo-
rithms, and bioinformatics. His research has
been funded by the Australian Research Council
through several Discovery Project grants.

Zhenjiang Xie is currently working toward the
Master degree in Service Computing Technol-
ogy and System Lab (SCTS) and Cluster and
Grid Lab (CGCL) at Huazhong University of
Science and Technology (HUST) in China. His
research interests include virtualization and re-
source scheduling on cloud computing.

Hai Jin received the PhD degree in computer
engineering from HUST in 1994. He is a Che-
ung Kung Scholars chair professor of computer
science and engineering at Huazhong University
of Science and Technology (HUST) in China. He
is currently the dean of the School of Computer
Science and Technology at HUST. He is the chief
scientist of ChinaGrid, the largest grid comput-
ing project in China, and the chief scientist of
National 973 Basic Research Program Project
of Cloud Security. He is a senior member of

the IEEE and a member of the ACM. His research interests include
computer architecture, virtualization technology, cluster computing and
cloud computing, peer-to-peer computing, network storage, and network
security.

Xuanhua Shi is a professor in Service Com-
puting Technology and System Lab and Cluster
and Grid Computing Lab, Huazhong University
of Science and Technology (HUST) in China.
He received his Ph.D. degree in Computer En-
gineering from HUST in 2005. From 2006, he
worked as an INRIA Post-Doc in PARIS team at
Rennes for one year. His current research inter-
ests focus on the scalability, resilience and au-
tonomy of large-scale distributed systems, such
as peta-scale systems, and data centers.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne National
Laboratory (”Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

