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Abstract. We present a filter line-search algorithm that does not require inertia information about the
linear system to ensure global convergence. The proposed approach performs curvature tests along the search
step to ensure descent. This feature permits more modularity in the linear algebra, enabling the use of a
wider range of iterative and decomposition strategies. We use the inertia-free approach in an interior-point
framework and provide numerical evidence that this is as robust as inertia detection via symmetric indefinite
factorizations and can lead to important reductions in solution time.
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1. Introduction. Filter line-search strategies have proven effective at solving large-scale
nonconvex nonlinear programs (NLPs) [34, 14, 11, 33, 6, 25]. These strategies monitor the
inertia of the linear system to detect negative curvature and regularize the linear system when
such is present. This approach ensures that the computed directions are of descent when the
constraint violation is sufficiently small, a necessary condition for global convergence. The
ability to handle negative curvature is also essential from a practical standpoint in order to
deal with highly nonlinear and inherently ill-conditioned problems [39]. Inertia information
is provided by symmetric indefinite factorization routines such as MA27, MA57, MUMPS,
and Pardiso [19, 18, 2, 31]. An inertia-revealing preconditioning strategy based on incomplete
factorizations has also been proposed that enables the use of iterative linear strategies [32].
Unfortunately, many other linear algebra strategies and libraries cannot be used because they
do not provide inertia information. Examples include iterative techniques such as multigrid,
Lagrange-Newton-Krylov, and inexact constraint preconditioning [8, 7, 5]; parallel solvers for
graphics processing units (GPUs) and distributed-memory systems [1, 3]; and decomposition
strategies for stochastic optimization, optimal control, and network problems widely used in
convex optimization [20, 27, 29, 36, 30, 42, 23]. Consequently, although inertia information
is key to enabling robust performance, it can also hinder modularity, application scope, and
scalability.

Byrd, Curtis, and Nocedal recently proposed a line-search exact penalty framework that
does not require inertia information [10]. In their approach, termination tests are included to
guarantee that the search step provides sufficient progress in the merit function. This approach
can also deal with inexact linear algebra and has been extended to deal with rank-deficient
Jacobians [15]. The strategy has also proven to be effective when used within an interior-point
framework [16].

In this work, we present an inertia-free filter line-search strategy for nonconvex NLPs. The
approach tests for curvature along the tangential component of the search step. We prove that
global convergence can be guaranteed if the step satisfies this test and if the iteration matrix
is nonsingular. These requirements are less restrictive than the standard positive definiteness
assumption for the reduced Hessian used in existing implementations. We also present an
inertia-free alternative that performs a curvature test directly on the full search step, and we
prove that global convergence can also be guaranteed. We implement the inertia-free strategies
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in an interior-point framework and perform small- and large-scale numerical experiments to
demonstrate that these are as robust as inertia detection based on symmetric indefinite LBLT

factorizations in terms of iteration counts. In addition, we demonstrate that the inertia-free
strategies can significant reduce the number of trial factorizations due to increased flexibility
in step acceptance.

The paper is structured as follows. Section 2 presents the filter line-search algorithm of
Wächter and Biegler [34, 35] in an interior-point framework and discusses regularity and inertia
assumptions needed to guarantee global convergence. Section 3 presents the new inertia-free
strategies and establishes global convergence. Section 4 compares the numerical performance
of both strategies. Section 5 presents concluding remarks.

2. Interior-Point Framework. Consider the NLP of the form

min f(x) (2.1a)

s.t. c(x) = 0 (2.1b)

x ≥ 0 (2.1c)

Here, x ∈ <n are primal variables, and the objective and constraint functions are f : <n → <
and c : <n → <m, respectively. We use a logarithmic barrier framework with subproblems of
the form

min ϕµ(x) := f(x)− µ
n∑
j=1

lnx(j)

s.t. c(x) = 0

(2.2)

where µ > 0 is the barrier parameter and x(j) is the jth entry of vector x. We consider a
framework that solves a sequence of barrier problems (2.2) and drives the barrier parameter µ
monotonically to zero. For adaptive barrier strategies, see [28]. To solve each barrier problem,
we apply Newton’s method to the optimality conditions:

∇xϕµ(x) +∇xc(x)λ = 0 (2.3a)

c(x) = 0 (2.3b)

x ≥ 0. (2.3c)

Here, λ ∈ <m are multipliers for equality constraints. The primal variables and multipliers at
iteration k are denoted as (xk, λk). Their corresponding search directions (dk, λ

+
k − λk) can

be obtained by solving the linear system[
Wk(δ) JTk
Jk

] [
dk
λ+k

]
= −

[
gk
ck

]
. (2.4)

We refer to this system as the Karush-Kuhn-Tucker (KKT) system. Here, ck := c(xk), Jk :=
∇xc(xk)T ∈ <m×n, gk := ∇xϕµk , Wk(δ) := Hk+Σk+δI with scalar δ > 0 and I is the identity
matrix, Hk := ∇xxL(xk, λk) ∈ <n×n, L(xk, λk) := ϕµ(xk) + λTk c(xk), and Σk := X−2k . One
can show that the approximation Σk ≈ X−1k Vk, where Vk := diag(νk) and νk are multiplier

estimates for the bounds (2.1c), can be used as long as the products x
(j)
k ν

(j)
k remain bounded

by µ [35, 16]. To enable compact notation, we define the matrix

Mk(δ) :=

[
Wk(δ) JTk
Jk

]
, (2.5)
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and we refer to this as the KKT matrix. One can compute the search directions (dk, λ
+
k −λk)

using the decomposition

dk = nk + tk. (2.6)

Here, nk satisfies Jknk = −ck, and tk is computed from[
Wk(δ) JTk
Jk

] [
tk
λ+k

]
= −

[
gk +Wk(δ)nk

0

]
. (2.7)

We define a two-dimensional filter of the form F := {θ(x), ϕ(x)} with θ(x) = ‖c(x)‖,
ϕ(x) := ϕµ(x) for a fixed barrier parameter µ, where ‖ · ‖ is the Euclidean norm. At each
value of µ, the filter is initialized as

F0 := {(θ, ϕ) | θ ≥ θmax} (2.8)

with a given parameter θmax > 0. Given a search step dk, a line search is started from counter
l ← 0 and αk,0 = αmaxk ≤ 1 to define trial iterates xk(αk,l) := xk + αk,ldk. We consider the
following conditions to check whether a trial iterate should be accepted.

• Filter Condition FC:

(θ(xk(αk,l)), ϕ(xk(αk,l))) /∈ Fk

• Switching Condition SC:

−mk(αk,l) > 0 and [−mk(αk,l)]
sϕ [αk,l]

1−sϕ > κθ[θ(xk)]sθ

• Armijo Condition AC:

ϕ(xk(αk,l)) ≤ ϕ(xk) + ηϕmk(αk,l).

• Sufficient Decrease Condition SDC:

θ(xk(αk,l)) ≤ (1− γθ)θ(xk) or ϕ(xk(αk,l)) ≤ ϕ(xk)− γϕθ(xk).

Here, κθ > 0, sθ > 1, sϕ ≥ 1, and ηϕ ∈ (0, 1) are given constants and

mk(α) := αgTk dk (2.9)

is a linear model of ϕ(xk + αdk)− ϕ(xk).
The filter condition FC is the first requirement for accepting a trial iterate xk(αk,l). If

the pair (θ(xk(αk,l)), ϕ(xk(αk,l))) ∈ Fk (i.e., the trial iterate is contained in the filter), then
the step is rejected, and we decrease the step size. If the trial iterate is not contained in the
filter, then we continue testing additional conditions. We have two possible cases:

• If SC holds, then the step dk is a descent direction, and we check whether AC holds.
If AC holds, then we accept the trial point xk(αk,l). If not, we decrease the step size.

• If SC does not hold and SDC holds, then we accept the trial iterate xk(αk,l). If not,
we decrease the step size.

If the trial iterate xk(αk,l) is accepted in the second case, then the filter is augmented as

Fk+1 ← Fk ∪ {(θ, ϕ) | ϕ ≥ ϕ(xk)− γϕθ(xk), θ ≥ (1− γθ)θ(xk)} (2.10)
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with parameters γϕ, γθ ∈ (0, 1); otherwise, we leave the filter unchanged (i.e., Fk+1 ← Fk).
If the trial step size αk,l becomes smaller than αmink and the step has not been accepted in
either case, then we revert to feasibility restoration, and the filter is augmented. A strategy
to obtain αmink is proposed in [35]. We define the set Rinc as the set of iteration counters k
in which feasibility restoration is called.

We refer to the first condition of SDC as SDCC to emphasize that this condition accepts
the trial iterate if it improves the constraint violation. Similarly, we refer to the second con-
dition as SDCO to emphasize that this condition accepts the trial iterate if it improves the
objective function. We refer to successful iterates in which the filter is not augmented (iterates
in which the switching condition SC holds) as f -iterates. The filter line-search algorithm is
summarized below.

Filter Line-Search Algorithm

0. Given starting point x0, constants θmax ∈ (θ(x0),∞], γθ, γϕ ∈ (0, 1), ηϕ ∈ (0, 1),
κθ > 0, sθ > 1, sϕ ≥ 1, ηϕ ∈ (0, 1), and 0 < τ2 ≤ τ1 < 1.

1. Initialize filter F0 := {(θ, ϕ) : θ ≥ θmax} and iteration counter k ← 0.
2. Check Convergence. Stop if xk is a stationary point.
3. Compute Search Direction. Compute step dk.
4. Backtracking Line-Search.

4.1. Initialize. Set αk,0 ← αmaxk and counter `← 0.
4.2. Compute Trial Point. If αk,` ≤ αmink revert to feasibility restoration in Step

8. Otherwise, set trial point xk(αk,`)← xk + αk,`dk.
4.3. Check Acceptability to the Filter. If FC does not hold, reject trial point

xk(αk,`), and go to Step 4.5.
4.4. Check Sufficient Progress.

4.4.1. If SC and AC hold, accept trial point xk(αk,`) and go to Step 5.
4.4.2. If SC does not hold and SDC hold, accept trial point xk(αk,`), and go to

Step 5. Otherwise, go to Step 4.5.
4.5. New Trial Step Size. Choose αk,`+1 ∈ [τ1αk,`, τ2αk,`], set ` ← ` + 1, and go

to Step 4.2.
5. Accept Trial Point. Set αk ← αk,` and xk+1 ← xk(αk,`).
6. Augment Filter. If SC is not satisfied, augment filter using (2.10). Otherwise, leave

filter unchanged.
7. Next Iteration. Increase iteration counter k ← k + 1 and go to Step 3.
8. Feasibility Restoration. Compute an iterate xk+1 that satisfies FC and SDC.

Augment filter using (2.10), and go to Step 7.

The global convergence analysis of the filter line-search algorithm provided in [35] assumes
a step decomposition of the form

dk = Ykq̄k + Zkp̄k (2.11a)

q̄k := −(JkYk)−1ck (2.11b)

p̄k := (ZTkWk(δ)Zk)−1ZTk (gk +Wk(δ)Ykq̄k), (2.11c)

where Yk ∈ <n×m and Zk ∈ <n×(n−m) are matrices such that the columns of [Yk Zk] form
an orthonormal basis for <n and the columns of Zk are the basis of the null space of Jk (i.e.,
JkZk = 0). The analysis also relies on the criticality measure

χk := ‖Zkp̄k‖ = ‖p̄k‖, (2.12)
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where the last identity follows from the orthonormality of Zk (i.e., ZTk Zk = I). The analysis
requires assumptions (G) [35, p. 10]. These require the reduced Hessian ZTkWk(δ)Zk to be pos-
itive definite (G3) and the Jacobian to have full row rank (G4). These are needed to guarantee
that the criticality measure χk is well defined in the sense that as the measure converges to
zero we approach a first-order stationary point. To see this, consider a subsequence {xki} with
limi→∞χki = 0 and limi→∞xki = x∗ for some feasible point x∗. Under a full rank assumption
of the Jacobian (G4) and (2.11b) we have that limi→∞q̄ki = 0 as limi→∞xki = x∗. From
limi→∞χki , (2.11c), and (2.12); and because (G3) guarantees nonsingularity of the reduced
Hessian we have that limi→∞‖ZTkigki‖ = 0.

Positive definiteness of the reduced Hessian (G3) also guarantees that the search direction
is of descent when the constraint violation is sufficiently small and the criticality measure is
nonzero (see Lemma 2 in [35]). As we will discuss in Section 3, this descent lemma is essential
in order to establish global convergence.

Positive definiteness of the reduced Hessian (G3) can be ensured in a practical setting by
monitoring the inertia of the KKT matrix M(δ) and correcting it (if necessary) by using the
regularization parameter δ. This approach is justified from the results of Gould [21] that prove
that the reduced Hessian is positive definite if and only if M(δ) has n positive, m negative,
and no zero eigenvalues. We state this condition formally as

Inertia(M(δ)) = {n,m, 0}. (2.13)

The KKT matrix M(δ) can be decomposed as LBLT by using symmetric indefinite linear
solvers, where L is a nonsingular lower triangular matrix and B is a matrix composed of 1× 1
and 2 × 2 diagonal blocks. By Sylvester’s law of inertia we also know that the eigenvalues
of M(δ) are the eigenvalues of B. Furthermore, because each 2 × 2 block is constructed by
having one positive and one negative eigenvalue, the inertia of M(δ) can easily be estimated
from the inertia of B [9].

A basic inertia-based regularization strategy is as follows. The matrix M(δ) is decom-
posed as LBLT for δ = 0 and the step dk is computed using this decomposition. If the inertia
is correct (i.e., condition (2.13) is satisfied), the step dk is accepted. If not, the regularization
parameter δ is increased and a new step dk is obtained. The procedure is repeated until the
matrix M(δ) has the correct inertia. Heuristics are incorporated to accelerate the rate of
increase/decrease of δ in order to ensure that the number of trial factorizations is not too
large. The inertia correction strategy implemented in the current version of IPOPT [34] is
shown below.

Inertia-Based Regularization (IBR)
IBR-1 Factorize M(δ) with δ = 0. If (2.13) holds, compute dk and stop.
IBR-2 If δlast = 0, set δ ← δ̄0, otherwise set δ ← max{δmin, κ−δlast}.
IBR-3 Factorize M(δ) with current δ. If (2.13) holds, set δlast ← δ, compute dk and stop.
IBR-4 If δlast = 0, set δ ← κ̂+δ, otherwise set δ ← κ+δ and go to IBR-3.

Here, 0 < δ̄min < δ̄0 < δ̄max, 0 < κ− < 1 < κ+ < κ̂+ are given constants.

3. Inertia-Free Strategies. Estimating the inertia of M(δ) can be complicated or im-
possible when a decomposition of the form LBLT is not available. As we noted in the intro-
duction, this situation limits our options for computing the search step and motivates us to
consider inertia-free strategies. If we take one step back, we realize that the primary practical
intention of inertia correction is to guarantee that the direction dk is of descent when the
constraint violation is sufficiently small. This approach, however, introduces a disconnect be-
tween the regularization procedure (IBR) and the filter line-search globalization procedure. In
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particular, the inertia test (2.13) is based solely on the structural properties of M(δ) and not
on the computed direction dk. Hence, the regularization procedure IBR can implicitly discard
productive descent directions in attempting to enforce a correct inertia. We thus consider
another route to enforce descent.

We first discuss a inertia-free strategy that uses the step decomposition (2.6), KKT system
(2.7), and the criticality measure

Ψt
k = ‖tk‖. (3.1)

As argued in Section 3.1, a step decomposition is not strictly necessary, but it is advantageous
for the analysis and can be used to enable the use of projected conjugate gradient strategies
[22].

For our analysis we use the following assumptions.

Assumptions (RG)
(RG1) There exists an open set C ⊆ <n with [xk, xk + dk] ⊆ C for all k /∈ Rinc in which ϕ(·)

and c(·) are twice differentiable and their values and derivatives are bounded.
(RG2) The matrices Wk(δ) are uniformly bounded for all k /∈ Rinc.
(RG3) There exists αt > 0 such that for all k /∈ Rinc

tTkWk(δ)tk + max{tTkWk(δ)nk − gTk nk, 0} ≥ αttTk tk (3.2)

with tk computed from (2.7) (RG3a). Furthermore, Mk(δ) is nonsingular (RG3b).
(RG4) The Jacobian Jk has full row rank for all k /∈ Rinc.
(RG5) There exists a constant θinc > 0 such that k /∈ Rinc whenever θ(xk) ≤ θinc.

The key difference between assumptions (RG) and assumptions (G) in [35] is that we do
not require positive definiteness of the reduced Hessian (G3). This requirement is replaced by
our assumption (RG3a), which requires Wk(δ) to have positive curvature along the tangential
direction tk and by (RG3b), which requires nonsingularity of the KKT matrix Mk(δ). Our
assumptions are therefore less restrictive.

Assumption (RG3a) can always be satisfied for sufficiently large δ and for sufficiently
small αt such that αt ≤ λmin(ZTkWk(δ)Zk). The reason is that tk lies on the null space
of Jk and, consequently, can always be expressed as tk = Zku for a given nonzero vector u
and the curvature condition then implies that uTZTkWk(δ)Zku ≥ αtu

Tu. We also know that
an appropriate αt exists for any δ because λmin(ZTkWk(δ)Zk) is an increasing function of δ.
Note also that the term (max{tTkWk(δ)nk − gTk nk, 0}) does not affect these properties. This
is because if the argument is negative, then this is set to zero and if argument is positive, it
provides additional flexibility to satisfy the curvature test.

We now prove that conditions (RG3b) and (RG4) guarantee that the reduced Hessian is
nonsingular and that the proposed criticality measure Ψt

k is well defined.

Lemma 3.1. Let (RG3b) and (RG4) hold for fixed δ and define M = Mk(δ), W = Wk(δ),
Z = Zk, and J = Jk. Then (i) the reduced Hessian ZTWZ is nonsingular and (ii) the inverse
of M exists and can be expressed as

Minv =

[
W JT

J

]−1
=

[
P (I − PW )JTV −1

V −1J(I −WP ) −V −1J(W −WPW )JTV −1

]
(3.3)

with

P = Z(ZTWZ)−1ZT (3.4)
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and V = JJT .

Proof: Part (i) follows from Lemmas 3.2 and 3.4 in [21]. These results establish that if the
Jacobian has full row rank (RG4) there exists a nonsingular matrix R such that

RTMR =

 I
ZTWZ

I

 . (3.5)

From Sylverster’s law of inertia and the structure of RTMR we have that Inertia(M) =
Inertia(ZTWZ) + {m,m, 0}. Consequently, the number of zero eigenvalues of M is equal to
the number of zero eigenvalues of ZTWZ. Because M is nonsingular (RG3b), we know that
it does not have zero eigenvalues. Consequently, ZTWZ does not have zero eigenvalues either
and therefore is nonsingular.

To prove (ii), we first note that (RG3b) and (RG4) guarantee that P exists. We denote
the blocks of MinvM as A11, A12 = AT21, A22, and we seek to prove that MinvM = I. By
direct calculation and noticing that JT (JJT )−1J = I−ZZT [4, p. 20] and JZ = 0, we obtain

A11 = WP + JTV −1J(I −WP )

= WP + (I − ZZT )(I −WP )

= I − ZZT + ZZTWZ(ZTWZ)−1ZT

= I (3.6a)

A12 = W (I − PW )JT (JJT )−1 − JT (JJT )−1J(W −WPW )JT (JJT )−1

= ZZT (W −WPW )JT (JJT )−1

=
(
ZZTW − ZZTWZ(ZTWZ)−1ZTW

)
JT (JJT )−1

= 0 (3.6b)

A22 = J(I − PW )JT (JJT )−1

= J(I − Z(ZTWZ)−1ZT )JT (JJT )−1

= JJT (JJT )−1 − JZ(ZTWZ)−1ZTWJT (JJT )−1

= I. (3.6c)

The proof is complete. �

We note that in contrast to the results in [22], we do not need to assume nonsingularity
of the Hessian Wk(δ) to obtain an expression for the projection matrix Pk (3.4).

From the explicit form of the inverse of Mk(δ) in (3.3) and (2.7) we have that,

tk = −Zk(ZTkWk(δ)Zk)−1ZTk (gk +Wk(δ)nk). (3.7)

We now prove that the criticality measure (3.1) is well-defined under assumptions (RG).

Theorem 3.2. Consider a subsequence {xki} with limi→∞xki = x∗ for a feasible x∗, let
(RG3b) and (RG4) hold, let nki satisfy Jkinki = −cki , and let tki solve (2.7). Then

lim
i→∞

Ψt
ki = 0 =⇒ lim

i→∞
‖ZTkigki‖ = 0

for Zki spanning the null space of Jki .
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Proof: Define M = Mki(δ), W = Wki(δ), J = Jki , and Z = Zki . Because Jnki = −cki ,
condition limi→∞xki = x∗ for feasible x∗ ensures limi→∞nki = 0. Under the assumptions of
Lemma 3.1 we know that ZTWZ is nonsingular and therefore that the projection matrix Pki
exists and is nonsingular. From (3.1), (3.7), and limi→∞nki = 0 as limi→∞xki = x∗ we obtain
the result. �

We are now ready to establish the following descent lemma, which is needed to guarantee
global convergence of the filter line-search algorithm.

Lemma 3.3. Let (RG1)-(RG4) hold. If xki is a subsequence of iterates for which Ψt
ki
≥ ε

with a constant ε independent of i, then there exist positive constants ε1, ε2 such that

θki ≤ ε1 =⇒ mki(α)

α
≤ −ε2.

Proof: Define W := Wki(δ), J := Jki , g := gki , d := dki , Ψ := Ψt
ki

, θ := θki , n := nki , and
t := tki . Multiplying the first row of (2.7) by t and recalling that Jt = 0, we obtain

tTWt = −gT t− tTWn.

We know that gT d = gTn+ gT t. Thus, combining terms, we obtain

−gT d = tTWt+ tTWn− gTn.

We consider two cases. In the first case we have that tTWn− gTn < 0, and the curvature test
(RG3a) guarantees that tTWt ≥ αtt

T t and −gT d ≥ αtt
T t + tTWn − gTn. From (RG1) we

can obtain the bounds ‖tTWn‖ ≤ c1Ψθ and ‖gTn‖ ≤ c2θ for c1, c2 > 0. From (3.1) we have
that ‖t‖ = Ψ, and we thus have

gT d ≤ −αtΨ2 + c1Ψθ + c2θ

≤ Ψ
(
−αtε+ c2θ +

c3
ε
θ
)
.

Defining ε1 := min
{
θinc,

ε2αt
2(c1ε+c2)

}
, it follows that for all θ ≤ ε1 we have m(α) ≤ −αε2 with

ε2 := ε2αt
2 . In the second case, we have that tTWn− gTn ≥ 0 and the curvature test (RG3a)

guarantees that tTWt + tTWn − gTn ≥ αtt
T t and −gT d ≥ αtt

T t. In this case the result
follows with ε1 := θinc because c1 = c2 = 0 and for ε2 defined previously. �

The descent lemma is crucial because it guarantees that the objective function will be
improved at a subsequence of nonstationary iterates (i.e., those with Ψt

ki
≥ ε) that have a suf-

ficiently small constraint violation θki . This implies that f -iterates will eventually be accepted
and the filter is eventually not augmented. This in turn implies that an infinite subsequence
of nonstationary iterates cannot exist. We now prove that assumptions (RG) guarantee global
convergence of the filter line-search algorithm.

Theorem 3.4. Let assumptions (RG) hold. The filter line-search algorithm delivers a
sequence {xk} satisfying

lim
k→∞

θ(xk) = 0 (3.9a)

lim inf
k→∞

Ψt(xk) = 0. (3.9b)
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Proof: We go through the results leading to the proof of Theorem 2 in [35] and argue that
our assumptions (RG) are sufficient. Unless otherwise stated, all lemmas refer to those in [35].
Lemma 1 establishes boundedness of dk, λ+k , and |mk(α)|. This follows from (RG1), which
guarantees that the right-hand side of the KKT system is bounded, and from (RG3b), which
guarantees that the inverse of Mk(δ) is bounded. Lemma 2 is replaced by the descent Lemma
3.3 of this work. Lemma 3 are standard bounding results that follow from Taylor’s theorem
and require only (RG1). Lemma 4 follows from the descent Lemma 3.3 of this work. Lemma
6 requires only (RG1). Lemma 8 requires the descent Lemma 3.3 of this work. Lemma 10
establishes that for a subsequence of nonstationary iterates the filter is eventually not aug-
mented. This requires the descent Lemma 3.3 of this work. The result follows. �

We use the following strategy to enforce (RG3). Note that because the Jacobian is assumed
to be full rank, conditions (RG3a) and (RG3b) will eventually hold for sufficiently large δ.

Inertia-Free Regularization (IFR)
IFR-1 Given nk, factorize Mk(δ) with δ = 0 and compute tk. If tk satisfies (RG3a) and

Mk(δ) satisfies (RG3b), set dk = tk + nk, and terminate.
IFR-2 If δlast = 0, set δ ← δ̄0, otherwise set δ ← max{δmin, κ−δlast}.
IFR-3 Given nk, factorize Mk(δ) with current δ and compute tk. If tk satisfies (RG3a) and

Mk(δ) satisfies (RG3b), set dk ← nk + tk, and terminate.
IFR-4 If δlast = 0, set δ ← κ̂+δ, otherwise set δ ← κ+δ and go to IFR-3.

Remark: The curvature condition (3.2) is enforced at every iteration. In principle,
however, one can enforce it only at iterations in which the constraint violation is less than a
certain small threshold value θsml. This approach is consistent with the observation that the
switching condition SC needs to be checked only at iterations with small constraint violation
[35]. In either case, however, we might need to regularize the Hessian in order to enforce
nonsingularity of Mk(δ) at every iteration.

Remark: A caveat of inertia-free strategies is that they cannot guarantee that the step
computed via the KKT system is a minimum of the associated quadratic program (the inertia-
based approach guarantees this). While enabling global convergence with enhanced flexibility
is a great benefit of inertia-free strategies, the price to pay is the possibility of having a larger
proportion of steps that are accepted because of improvements on constraint violation and
not on the objective function. This situation might ultimately manifest as a tendency to
get attracted to first-order stationary points with larger objective values than those obtained
with the inertia-based strategy. The effect depends on the application, however, and numerical
experimentation is needed. We provide numerical results in Section 4 and discuss this issue
further.

Remark: As seen in Lemma 3.3, the term (max{tTkWk(δ)nk − gTk nk, 0}) in (RG3a) is
harmless and is included only to provide additional flexibility. Because of this, one might also
consider the simpler test tTkWk(δ)tk ≥ αttTk tk and still enable convergence.

3.1. Alternative Inertia-Free Strategies. Computing the normal and tangential com-
ponents of the step separately can be beneficial in certain situations. For instance, the use of
a projected conjugate gradient (PCG) scheme provides a mechanism to perform the curvature
test

tTk,jWk(δ)tk,j ≥ αttTk,jtk,j (3.10)

on the fly at each PCG iteration j and thus terminate early and save some work if the test
does not hold for the current regularization parameter δ. This approach can also be beneficial
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because more test directions are used to identify negative curvature. This approach, however,
requires a constraint preconditioner which might not be available in certain applications.

In some applications it might be desirable to operate directly on the full step dk. In this
case, we can impose a curvature condition of the form

dTkWk(δ)dk + max{−(λ+k )T ck, 0} ≥ αddTk dk, (3.11)

with dk computed from (2.4).
To argue that test (3.11) is consistent, we use the criticality measure

Ψd
k = ‖dk‖. (3.12)

If (RG3b) and (RG4) hold, we have from Lemma 3.1 that

dk = −Pgk − (I − PW )JT (JJT )−1ck

= −Z(ZTWZ)−1ZT (gk −W (δ)JT (JJT )−1ck) + JT (JJT )−1ck. (3.13)

If we set Yk = JTk , we have that dk has the same structure as the decomposition in (2.11).
Moreover, we have that

Ψd
k = Ψt

k +O(‖ck‖). (3.14)

Consequently, the results of Theorem 3.2 still hold, and the criticality measure is well defined.
If −(λ+k )T ck < 0, from (3.11), (RG1), (RG4), and (RG3b) we have that ‖λ+k ‖ ≤ κ for some
κ > 0 and, therefore,

gTk dk = −dTkWkdk + dTk J
T
k λ

+
k

= −dTkWkdk + cTk λ
+
k

≤ −αd(Ψd
k)2 + κθk. (3.15)

Consequently, the results of Lemma 3.3 hold with an appropriate definition of constants. If
−(λ+k )T ck ≥ 0 the result follows with κ = 0.

The curvature condition (3.11) holds for any δ and αd ≥ λmin(Wk(δ)), and we note that
the term max{−(λ+k )T ck, 0} is harmless and is used only to enhance flexibility.

Assumption (RG1) can be guaranteed to hold only if all iterates xk remain strictly in the
interior of the feasible region. This condition guarantees that the barrier function ϕmu(xk) and
its derivatives are bounded. One can show that Theorem 3 in [35] holds under assumptions
(RG). This result establishes that the iterates xk remain in the strict interior of the feasible
region if the maximum step size αmaxk is determined by using the following fraction-to-the-
boundary rule

αmaxk := max{α ∈ (0, 1] : xk + αdk ≥ (1− τ)xk}, (3.16)

for a fixed parameter τ ∈ (0, 1). The full row rank assumption of Jk (RG4), together with the
assumption that its rows and the corresponding rows of the active bounds of xk are linearly
independent as well as the nonsingularity of the reduced Hessian (which follows from (RG3b)
and Lemma 3.1), is sufficient to establish the result.

4. Numerical Results. In this section we benchmark the inertia-based and inertia-free
strategies using the PIPS-NLP interior-point framework [13]. We first describe the implemen-
tation used to perform the benchmarks. We then present results for small-scale problems and
large-scale problems arising from different applications.
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4.1. Implementation. Our filter line-search implementation follows along the lines of
that of IPOPT [34], but we implement neither a feasibility restoration nor watchdog heuristics.
If the restoration phase is reached, we terminate the algorithm. We prefer to use this approach
in order to isolate the effects of inertia correction on performance. As in IPOPT, we allows
steps that are very small in norm ‖dk‖ to be accepted even if they do not satisfy SDC or
SAC. We have validated the performance of our implementation by comparing it with that of
IPOPT, and we have obtained nearly identical results.

We compare three regularization strategies: (1) IBR: inertia-based regularization, (2)
IFRd: inertia-free regularization with the curvature test (3.11), and (3) IFRt: inertia-free
regularization with the curvature test (3.2). We use the same parameters for the IBR and
IFR to increase/decrease the regularization parameter δ. For IFRd and IFRt we set both αt
and αd to 1 × 10−12 as default. We also scale these parameters using the barrier parameter
µ, as suggested in [16].

For the IFRt strategy, we compute the normal step by solving the linear system

[
Wk(δ) JTk
Jk

] [
nk
·

]
= −

[
0
ck

]
, (4.1)

by factorizing Mk(δ) using MA57 [18], and we reuse the factorization to compute the tangential
component from (2.7). For IBR we estimate the inertia of the KKT matrix using MA57.

We use the optimality error described in [34, Section 2] with a convergence tolerance of
1× 10−6, we perform iterative refinement for the KKT system with a tolerance of 1× 10−12,
and we set the maximum number of iterations to 1,000. If the line search cannot find an
acceptable point within 20 trials, the last trial step size is used in the next iteration. We use
a pivoting tolerance of 1× 10−4 for MA57.

Some of the test problems considered have Jacobians that are nearly rank-deficient. To
deal with these instances, we regularize the (2,2) block of the KKT matrix as in IPOPT
whenever we detect the KKT matrix to be singular [34, Section 3.1]. We emphasize that the
convergence theory of this work and the supporting theory in [35] does not hold in this case
anymore. In practice, however, we still observe convergence and satisfactory performance. We
leave the theoretical treatment of this case as part of future work.

4.2. Small-Scale Tests. We consider 100 CUTEr instances, all requiring regularization
in at least one of the three regularization strategies. We also use additional instances from
energy applications that include building optimization, security-constrained optimal power
flow, optimal control of chemical reactors, and optimal control of natural gas networks. The
corresponding models are reported in [37, 12, 40, 38].

The performance of the three strategies is presented in Table 4.1. Here, we report the
optimal objective value (Obj) as well as the number of iterations (Iter), and regularizations
(Reg). The total number of factorizations is equal to the number of iterations plus the number
of regularizations. We use the term “MAX” to denote the tests reaching the limit of iterations
and the term “FAIL” to denote those tests terminated because a restoration phase is required.
The last five instances in the table are the energy problems.
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Fig. 4.1. Number of iterations
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Fig. 4.2. Number of factorizations

As seen in Table 4.1, four test problems fail to converge with IBR as well as with IFRd.
In three of those instances both strategies fail. With IFRt, six test problems fail, with two
also failing for IBR and IFRd. We conclude that the robustness of the inertia-free strategies is
competitive. In Figures 4.1 and 4.2 we present Dolan-Moré profiles [17] for the total number of
iterations and factorizations reported in Table 4.1. In Figure 4.1 we can see that IBR requires
fewer iterations to converge in 60% of the instances, but the differences are not dramatic.
The robustness of IFRd is the same as that of IBR in 90% of the problems. In Figure 4.2
we can see that IFRd and IFRt significantly outperform IBR in terms of the total number
of factorizations. From the numbers in Table 4.1 we have calculated that IBR requires,
on average, 0.77 regularizations per iteration while IFRd and IFRt require 0.34 and 0.24
regularizations per iteration, respectively. These are relative improvements of over 50% in
the total number of factorizations. We thus conclude that IFR strategies provide significantly
more flexibility to accept steps.

Among all the instances that can be solved with the three strategies, IFRd and IFRt yield
the same objective values as IBR in more than 90% of the instances. The performance is
remarkable. IBR yields better objectives in eight instances (biggs5, biggs6, hatlfde, humps,
s267, s272, s393, and s394). The names of these instances are highlighted in boldface in
Table 4.1. We attribute the tendency of IBR to reach better objectives to the fact that the
solutions of the KKT system are actual minimizers of the associated quadratic program at each
iteration, whereas the solutions obtained with the inertia-free strategies are not. Consequently,
we expect that steps computed with IBR should yield improvements in the objective more
often. To verify this claim, we compared the percentages of steps accepted by the filter for
the three strategies as a result of improvements in the objective function and in the constraint
violation. We recall that a trial step size can be accepted under three cases: (1) SAC: both
SC and AC hold, (2) SDCO: SDC holds because of sufficient decrease in the objective, and
(3) SDCC: SDC holds because of sufficient reduction in the constraint violation. In Table
4.2 we present the percentage of successful trial steps obtained for each case. We note that
the percentages do not add to 100% in some cases because we allow the line search to accept
very small steps and because we round the percentages to the nearest integer. To perform
this comparison, we consider only problems in which all strategies are successful, and we
consider only problems with constraints (the unconstrained instances have a percentage of
acceptance for SAC of 100%). The last row presents the average percentages for all problems.
From this row we can see that the IBR algorithm accepts 12% of the steps due to SAC. In
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Table 4.1
Performance of inertia-based and inertia-free strategies on small-scale instances.

IBR IFRd IFRt
Problem Obj Iter Reg Obj Iter Reg Obj Iter Reg

avion2 9.47E+07 42 47 9.47E+07 59 10 9.47E+07 55 10
biggs3 9.99E-14 8 5 9.99E-14 8 5 9.99E-14 8 5
biggs5 1.08E-19 20 19 3.06E-01 19 3 3.06E-01 19 3
biggs6 8.91E-15 33 26 3.06E-01 18 0 3.06E-01 18 0
disc2 1.56E+00 79 84 1.56E+00 91 40 2.30E+00 86 20
dixmaang 1.00E+00 16 17 1.00E+00 176 6 1.00E+00 176 6
expfit 2.41E-01 8 8 2.41E-01 11 7 2.41E-01 11 7
expquad -3.62E+06 23 17 -3.62E+06 34 0 -3.62E+06 34 0
fminsurf 1.00E+00 31 10 1.00E+00 40 0 1.00E+00 40 0
foo 2.03E+00 19 5 2.03E+00 34 5 2.03E+00 40 2
goffin 4.54E-06 3 2 4.54E-06 3 0 4.54E-06 3 0
grasp nonc 4.91E-01 37 18 4.91E-01 42 4 4.91E-01 51 4
growth 1.00E+00 72 12 1.00E+00 74 1 1.00E+00 74 1
gulf 2.14E-16 21 11 5.01E-22 26 13 5.01E-22 26 13
hatlfde 4.43E-07 25 9 1.53E+01 18 0 1.53E+01 18 0
humps 8.84E-13 509 753 1.11E+03 203 220 1.11E+03 203 220
hvycrash FAIL FAIL FAIL
hypcir 0.00E+00 5 0 0.00E+00 5 3 0.00E+00 5 0
kissing FAIL FAIL 1.00E+00 657 15
kowosb 3.08E-04 8 5 3.08E-04 10 1 3.08E-04 10 1
mexhat -4.01E-02 3 2 -4.01E-02 4 0 -4.01E-02 4 0
minc44 2.57E-03 15 10 2.57E-03 20 6 2.57E-03 28 10
minmaxbd 1.16E+02 66 20 1.16E+02 49 17 1.16E+02 56 2
minsurf socp FAIL MAX MAX
mistake -1.00E+00 17 8 -1.00E+00 54 29 -1.00E+00 54 29
nb L1 eps 1.30E+01 253 144 1.30E+01 789 404 1.30E+01 463 210
nb L2 2.65E+00 38 7 2.65E+00 36 3 2.65E+00 36 3
ngone -6.37E-01 47 36 -6.37E-01 201 44 -6.42E-01 133 27
nonconvqp -2.50E+05 10 10 -2.50E+05 10 9 -2.50E+05 10 10
osborne1 5.46E-05 46 10 5.46E-05 44 0 5.46E-05 44 0
price 2.92E-13 44 5 4.93E-13 44 0 4.93E-13 44 0
robotarm3 2.03E+00 19 5 2.03E+00 34 5 2.03E+00 40 2
s205 2.15E-21 11 7 2.91E-25 11 6 2.91E-25 11 6
s212 1.16E-22 11 6 1.16E-22 11 6 1.16E-22 11 6
s219 -1.00E+00 60 28 -1.00E+00 21 0 -1.00E+00 21 0
s221 -1.00E+00 61 37 -1.00E+00 35 20 -1.00E+00 61 9
s232 -1.00E+00 14 13 -1.00E+00 17 13 -1.00E+00 17 13
s236 -8.20E+00 12 2 -8.20E+00 12 2 -8.20E+00 12 2
s237 -5.89E+01 26 7 -5.89E+01 25 6 -5.89E+01 26 7
s238 -8.20E+00 71 57 -8.20E+00 19 9 -5.89E+01 50 12
s239 -8.20E+00 13 5 -8.20E+00 14 8 -8.20E+00 13 5
s242 5.40E-08 18 8 4.56E-08 21 5 4.56E-08 21 5
s245 1.59E-14 11 8 4.95E-13 8 0 4.95E-13 8 0
s247 1.72E-16 7 6 1.72E-16 6 0 1.72E-16 6 0
s248 -8.00E-01 15 5 -8.00E-01 15 5 -8.00E-01 15 5
s250 -3.30E+03 12 10 -3.30E+03 12 10 -3.30E+03 12 10
s251 -3.46E+03 12 9 -3.46E+03 12 9 -3.46E+03 12 9
s252 4.00E-02 19 0 4.00E-02 19 1 4.00E-02 19 0
s254 -1.73E+00 7 7 -1.73E+00 8 6 -1.73E+00 7 7
s257 7.54E-17 12 5 7.54E-17 14 5 7.54E-17 14 5
s258 2.74E-18 40 5 2.74E-18 40 5 2.74E-18 40 5
s260 2.74E-18 40 5 2.74E-18 40 5 2.74E-18 40 5
s265 1.90E+00 6 7 1.90E+00 6 7 1.90E+00 6 7
s267 1.42E-18 33 32 1.50E-02 31 4 1.50E-02 31 4
s270 9.03E-08 19 20 9.14E-08 21 1 9.14E-08 21 1
s272 1.48E-13 76 83 5.66E-03 19 6 5.66E-03 19 6
s282 1.94E-18 60 2 1.94E-18 60 2 1.94E-18 60 2
s287 1.37E-17 40 5 1.37E-17 40 5 1.37E-17 40 5
s289 0.00E+00 8 6 0.00E+00 8 6 0.00E+00 8 6
s294 3.97E+00 19 3 3.97E+00 19 3 3.97E+00 19 3
s295 3.99E+00 29 7 1.54E-16 39 10 1.54E-16 39 10
s296 3.99E+00 38 7 3.91E-19 47 10 3.91E-19 47 10
s311 5.80E-25 6 5 3.18E-17 7 4 3.18E-17 7 4
s315 -8.00E-01 13 8 -8.00E-01 12 6 -8.00E-01 12 6
s316 3.34E+02 7 7 3.34E+02 7 7 3.34E+02 6 0
s319 4.52E+02 11 7 4.52E+02 11 7 4.52E+02 8 0
s320 4.86E+02 13 7 4.86E+02 13 7 4.86E+02 9 0
s321 4.96E+02 16 13 4.96E+02 16 8 4.96E+02 11 0
s322 5.00E+02 33 43 5.00E+02 22 9 5.00E+02 16 0
s327 3.06E-02 18 2 3.06E-02 23 0 3.06E-02 23 0
s329 -6.96E+03 13 7 -6.96E+03 13 7 -6.96E+03 13 7
s333 4.33E-02 7 3 4.33E-02 7 0 4.33E-02 7 0
s334 8.21E-03 7 5 8.21E-03 8 0 8.21E-03 8 0
s336 -3.38E-01 17 11 -3.38E-01 17 11 -3.38E-01 25 0
s338 -7.21E+00 13 17 -7.21E+00 13 17 -7.21E+00 11 9
s340 -5.40E-02 9 7 -5.40E-02 10 7 FAIL
s341 -2.26E+01 7 0 -2.26E+01 10 4 -2.26E+01 7 0
s350 3.08E-04 8 5 3.08E-04 10 1 3.08E-04 10 1
s351 3.19E+02 10 7 3.19E+02 11 2 3.19E+02 11 2
s353 -3.99E+01 7 0 -3.99E+01 7 0 -3.99E+01 7 0
s355 6.97E+01 34 34 6.97E+01 93 38 6.97E+01 71 31
s356 1.88E+00 14 12 MAX 1.88E+00 45 4
s358 5.46E-05 23 7 5.46E-05 20 0 5.46E-05 20 0
s365 5.21E+01 20 8 5.21E+01 24 16 FAIL
s366 1.23E+03 20 3 1.23E+03 20 3 1.23E+03 20 3
s367 -3.74E+01 36 39 -3.74E+01 16 9 -3.74E+01 13 0
s368 0.00E+00 46 71 3.55E-15 5 0 3.55E-15 5 0
s374 2.33E-01 51 67 2.33E-01 60 6 2.91E-01 29 2
s375 -1.52E+01 19 18 -1.52E+01 19 19 -1.52E+01 19 18
s378 -4.78E+01 22 12 -4.74E+01 55 13 FAIL
s380 3.17E+00 69 13 3.17E+00 45 1 3.17E+00 56 0
s387 -8.25E+03 17 10 -8.25E+03 17 10 -8.25E+03 21 12
s388 -5.82E+03 62 76 -5.82E+03 30 10 -5.82E+03 76 54
s389 -5.81E+03 84 110 -5.81E+03 40 18 -5.81E+03 33 14
s393 8.63E-01 31 23 1.03E+00 13 2 1.03E+00 13 2
s394 1.92E+00 14 9 4.97E+00 13 0 4.97E+00 13 0
s395 1.92E+00 14 11 1.92E+00 14 3 1.92E+00 14 3
static3 FAIL -1.53E+03 23 0 -1.53E+03 23 0
tre 1.72E-46 9 7 1.72E-46 9 7 1.72E-46 9 7
woods 6.85E-15 40 5 6.85E-15 40 5 6.85E-15 40 5

buildings 1.75E+03 183 161 1.75E+03 153 24 1.75E+03 106 3
IEEE57 opf 5.84E+00 32 38 5.84e+00 29 29 5.84e+00 29 29
IEEE162 opf 1.64E+00 145 183 1.64E+00 23 0 1.64E+00 23 0
IEEE300 opf 1.17E-02 33 9 1.17E-02 31 0 1.17E-02 31 0
reactor 8.92E+00 74 32 8.93E+00 74 9 FAIL
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Table 4.2
Percentage of steps accepted by different criteria in the filter.

IBR IFRd IFRt
Problem SAC SRCO SRCC SAC SRCO SRCC SAC SRCO SRCC

avion2 40 33 26 34 47 19 27 51 20
disc2 11 34 52 1 54 44 0 49 50
foo 0 53 47 0 56 44 0 53 48
goffin 67 33 0 67 33 0 67 33 0
grasp nonconvex 30 40 30 24 24 52 20 31 49
minc44 0 67 33 0 50 50 0 71 29
minmaxbd 0 33 67 0 27 73 0 29 71
mistake 0 71 29 0 59 41 0 59 41
nb L1 eps 40 44 16 11 51 38 21 49 31
nb L2 5 71 24 6 78 17 6 78 17
ngone 0 79 21 0 62 38 0 71 29
nonconvqp 90 10 0 80 10 10 90 10 0
robotarm3 0 53 47 0 56 44 0 53 48
s219 0 35 65 0 5 95 0 5 95
s221 43 13 43 51 40 9 44 13 43
s236 0 92 8 0 92 8 0 92 8
s237 4 88 8 4 88 8 4 88 8
s238 3 70 27 0 84 16 2 66 32
s239 8 77 15 7 64 29 8 77 15
s247 43 57 0 17 83 0 17 83 0
s248 0 47 53 0 47 53 0 47 53
s252 5 63 32 5 68 26 5 63 32
s254 0 14 86 0 25 75 0 14 86
s265 33 0 17 33 0 17 50 0 17
s270 5 89 5 5 86 10 5 86 10
s315 8 77 15 8 83 8 8 83 8
s316 0 14 86 0 14 86 0 17 83
s319 18 9 73 18 9 73 0 13 88
s320 8 15 77 8 15 77 0 11 89
s321 6 13 81 13 6 81 0 9 91
s322 3 27 67 5 14 82 0 6 94
s327 6 83 11 4 87 9 4 87 9
s336 6 12 82 6 12 82 0 24 76
s338 8 23 69 8 23 69 0 36 64
s341 14 43 43 10 40 50 14 43 43
s355 3 94 3 1 85 14 0 90 10
s367 14 58 25 0 88 12 0 85 15
s374 0 76 24 2 60 38 0 90 10
s380 1 42 57 0 42 58 2 48 50
s387 6 53 41 6 53 41 5 57 38
s388 2 63 35 3 50 47 1 63 36
s389 11 40 49 3 53 45 3 58 39
s393 6 94 0 15 85 0 15 85 0
s394 7 93 0 0 100 0 0 100 0
s395 0 93 7 0 100 0 0 100 0

buildings 12 34 54 7 20 73 9 13 77
IEEE162 opf 3 94 2 0 96 4 0 96 4
IEEE300 opf 0 64 36 0 61 39 0 61 39

Average 12 52 35 10 52 38 9 53 37

contrast, the percentages are only 10% and 9% for IFRd and IFRt, respectively. If we add the
total percentages in which the steps are accepted because of improvements in the objective
(add SAC and SDCO), we have that the percentages are 64%, 62%, and 62% for IBR, IFRd,
and IFRt, respectively. The IBR strategy accepts more steps that decrease the objective.
An interesting observation is that IFRt and IFRd accept the same percentage of steps. We
note, however, that we cannot draw general conclusions about the tendency of the strategies to
provide better objective values because of the presence of multiple local minima. In particular,
we note that IFRt and IFRd yield better objective values than does IBR in three instances
(s238,s295,s296).

We remark on the behavior of the strategies in instance IEEE 162 opf. From Table 4.1
we can see that IFRt and IFRd do not require regularization and converge in 23 iterations
whereas IBR requires 145 iterations and 183 regularizations. This instance is an ill-conditioned
optimal power flow problem that does not seem to have an isolated local minimum (inertia
is not correct at the solution). In this instance, significant regularization is observed for IBR
during the entire search. This degrades the quality of the steps and results in slow convergence.
On the other hand, from the behavior of IFR we can see that productive steps can be achieved
without regularizing the system. We also observed this difference in performance in instances
s368, static3, and buildings.
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4.3. Large-Scale Tests. We now demonstrate that the inertia-free strategies remain
robust in large-scale problems. We use two-stage stochastic optimization problems arising
from security-constrained optimal power flow (SCOPF) and stochastic optimal control of
natural gas networks [12, 38]. Because of the large dimensionality of these instances we solve
them using a distributed-memory decomposition strategy.

The KKT matrix (2.4) of stochastic optimization problems can be permuted into the
following block-bordered diagonal form:

M̂(δ) =


M̂1(δ) BT1

M̂2(δ) BT2
. . .

...

M̂S(δ) BTS
B1 B2 · · · BS M̂0(δ)

 , (4.2)

where i = 1, 2, ..., S are the scenario indexes and S is the number of scenarios [20, 41, 27].
The zero index corresponds to coupling variables, and we refer to this as the zero scenario.
We use M̂(δ) to denote the permuted form of the KKT matrix M(δ). The diagonal matrices

M̂i(δ) =

[
Wi(δ) JTi
Ji 0

]
(4.3)

for i = 0, ..., S have a saddle-point structure, where Wi(δ) and Ji are the corresponding
Hessian and Jacobian contributions of each scenario and the border matrices Bi define coupling
between scenarios and the zero scenario.

The permuted KKT system can be represented as

M̂(δ)ŵ = r̂, (4.4)

where ŵ = (ŵ1, . . . , ŵS , ŵ0) are the permuted search directions for primal variables and mul-
tipliers, respectively, and r̂ = (r̂1, . . . , r̂S , r̂0) are the permuted right-hand sides. To solve the
structured KKT system (4.4) in parallel, we use Schur decomposition. The solution of (4.4)
can be obtained from

ẑi = M̂i(δ)
−1r̂i, i = 1, . . . , S, (4.5a)

ŵ0 = C(δ)−1(r̂0 −
S∑
i=1

Biẑi), (4.5b)

ŵi = ẑi − M̂i(δ)
−1BTi ŵ0, i = 1, . . . , S, (4.5c)

where

C(δ) = M̂0(δ)−
S∑
i=1

BiM̂i(δ)
−1BTi , (4.6)

is the Schur complement. Each slave processor is allocated with the information of certain
blocks i, and performs step (4.5a) by factorizing the local blocks M̂i(δ) in parallel. A master
processor gathers the contributions of each worker to assemble the Schur complement in (4.6)
and computes the step size for the coupling variables using (4.5b). Having the coupling step
ŵ0, the slave processors compute the local steps ŵi in parallel using (4.5c). We note that
the serial bottleneck in this procedure is the assembly of the Schur complement. Because
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the Schur complement must be re-assembled whenever the regularization term δ is adjusted,
regularization can increase not only total work per iteration but also the parallel performance.

Because an LBLT factorization of the entire matrix M̂(δ) is not available, its inertia can
be inferred by using Haynsworth’s inertia additivity formula [24]:

Inertia(M̂(δ)) = Inertia(C(δ)) +

S∑
i=1

Inertia(M̂i(δ)). (4.7)

We perform the factorization of the subblocks and of the Schur complement and check that
the addition of their inertias gives the necessary inertia Inertia(M̂(δ)) = {n,m, 0}. If this
is not the case, all the Hessian terms Wi(δ), i = 0, ..., S are regularized by using a common
parameter δ until the M̂(δ) has the correct inertia. We note that obtaining the inertia of
the Schur complement C(δ) by factorizing it with a sparse symmetric indefinite routine such
as MA57 is not efficient because this matrix tends to be dense. More efficient codes such as
MAGMA or ELEMENTAL can be used but these are based on dense factorizations schemes
that do not provide inertia information [1, 26]. This situation illustrates a complication that
can be encountered when inertia information is required. In our implementation we use MA57
to factorize the Schur complement (even if it is not the best choice) because we seek to compare
the performance of IFR with that of IBR using a compatible setting.

All tests in this section were performed on the Fusion computing cluster at Argonne
National Laboratory. Fusion contains 320 computing nodes, and each node has two quad-core
Nehalem 2.6 GHz CPUs.

We solve a security-constrained optimal power flow instance (IEEE 300) that contains
878,650 variables and 734,406 constraints and a stochastic optimal control problem instance
(STOCH GAS) that contains 1,024,651 variables and 1,023,104 constraints. The results are pre-
sented in Table 4.3. Here, #MPI denotes the number of MPI processes used for parallelization.
All strategies converge to the same objective values; consequently, we report only one value.
For these problem instances we have used parameter values αt = 1 × 10−10, αd = 1 × 10−10

(scaled by µ) because the default values of 1×10−12 resulted in high variability in the number
of iterations for STOCH GAS. We have, in general, observed that increasing αt, αd enhances
robustness. As expected, however, this comes at the expense of additional regularizations.

Table 4.3
Performance of inertia-based and inertia-free strategies on large-scale instances.

IBR IFRd IFRt
Problem #MPI Obj Iter Fact Time(s) Iter Fact Time(s) Iter Fact Time(s)

IEEE 300 16 1.36E+03 112 274 627 173 190 476 209 241 651
IEEE 300 24 1.36E+03 112 274 424 208 238 403 232 255 475
IEEE 300 40 1.36E+03 112 274 263 160 169 181 168 178 206
IEEE 300 80 1.36E+03 112 274 174 183 203 119 177 190 127
IEEE 300 120 1.36E+03 112 274 126 192 224 91 201 227 103
IEEE 300 240 1.36E+03 113 274 65 170 185 47 219 240 80

STOCH GAS 8 1.26E-02 153 278 832 122 144 621 93 106 491
STOCH GAS 16 1.26E-02 136 251 363 245 277 789 109 122 315
STOCH GAS 32 1.26E-02 146 274 209 211 250 301 99 112 143
STOCH GAS 64 1.26E-02 157 286 123 112 137 74 101 114 79
STOCH GAS 128 1.26E-02 145 275 64 127 158 52 109 125 52

We can see that, in general, IFRd and IFRt require more iterations than does IBR; but
the number of factorizations is reduced, resulting in faster solutions. These problem instances
are highly ill-conditioned, particularly STOCH GAS as is evident from the variability of the
number of iterations as we increase the number of MPI processes. This is the result of linear
system errors introduced by Schur decomposition. The performance, however, is satisfactory
in all cases. For IEEE 300 we note that the number of iterations for IBR does not vary as
MPI processors whereas those of IFRd and IFRt do. While it is difficult to isolate a specific
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source of such behavior, we attribute this behavior to the stabilizing effect that additional
regularizations of IBR provide on the linear system.

5. Conclusions. We have presented new inertia-free strategies for filter line-search al-
gorithms. The strategies perform curvature tests along computed directions that guarantee
descent when the constraint violation is sufficiently small. We have proved that the strategies
yield global convergence and are competitive with inertia-based strategies. The availability of
inertia-free strategies opens the possibility of using different types of linear algebra strategies
and libraries and thus can enhance modularity of implementations.
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