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Abstract

The recent emergence of ultra high-speed networks up to 100 Gb/s has
posed numerous challenges and has led to many investigations on efficient
protocols to saturate 100 Gb/s links. However, end-to-end data transfers
involve many components, not only protocols, affecting overall transfer per-
formance. These components include disk I/O subsystem, additional com-
putation associated with data streams, and network adapters. For example,
achievable bandwidth by TCP may not be implementable if disk I/O or
CPU becomes a bottleneck in end-to-end data transfer. In this paper, we
first model all the system components involved in end-to-end data transfer
as a graph. We then formulate the problem whose goal is to achieve maxi-
mum data transfer throughput using parallel data flows. We also propose a
variable data flow GridFTP XIO stack to improve data transfer with data
compression. Our contributions lie in how to optimize data transfers consid-
ering all the system components involved rather than in accurately modeling
all the system components involved. Our proposed formulations and solu-

IThe submitted manuscript has been created by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (”Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on behalf
of the Government.

∗Principal corresponding author
Email addresses: esjung@mcs.anl.gov (Eun-Sung Jung), kettimut@mcs.anl.gov

(Rajkumar Kettimuthu), venkatv@mcs.anl.gov (Venkatram Vishwanath)

Preprint submitted to Journal of Parallel and Distributed Computing October 17, 2014



tions are evaluated through experiments on the ESnet 100G testbed and a
wide-area cluster-to-cluster testbed. The experimental results on ESnet 100G
testbed show that our approach is several times faster than Globus Online –
8x faster for datasets with many 10MB files and 3-4x faster for other datasets
of larger size files. The experimental results on the cluster-to-cluster testbed
show that our variable data flow approach is up to 4x faster than a normal
cluster data transfer.

Keywords: Disk-to-Disk Data Transfer, System Modeling, Optimization,
High-Speed Networks

1. Introduction

Scientific workflows are getting more data-intensive as technology ad-
vances in sensors, sequencers, detectors, etc. make abundant data available
for analysis. In addition, distributed high-performance computing resources,
such as supercomputers, make data movement among geographically dis-
tributed sites a major factor that should be taken into account for efficient
and reliable scientific workflow management. The increasing amount and
complexity of data flows require sophisticated data flow orchestration. Espe-
cially, end-to-end data transfers involve many components affecting the over-
all transfer performance. Disk-to-disk data transfers start with disk reads,
go through data processing and data transmission over network, and end up
with disk writes. But the process is not simple. For example, disk reads may
involve multiple disks on which data are distributed randomly or with some
rules.

The recent emergence of high-speed network up to 100 Gb/s has posed
considerable challenges and many studies have been conducted on new 100G
high-speed networks. In [1], various data transfer middleware such as GridFTP
[2] and SRM [3] has been evaluated to determine whether they can saturate
a 100G network link. The results in [1] show that they can achieve 80-90
Gb/s in case of memory-to-memory data transfer, where the system’s RAM
buffer cache is big enough to hold the entire dataset, so the dataset is loaded
into memory before data transfer.

Such performance improvements have resulted from several research ar-
eas. First, the attempts to optimize network protocols have brought en-
hanced network throughput. Globus eXtensible Input/Output System (XIO)
[4] provides a framework and API for applications to use different transport
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protocols without changing the application code. RDMA-based protocols
have been evaluated and compared with common protocols such as TCP for
high-performance data transfers [5]. The results show that RDMA-based
protocols can achieve 10 Gb/s data transfer with much lower operating sys-
tem overheads and much less host CPU consumption. Another research
area focuses on exploiting multiple flows to achieve high-performance data
transfer. For example, GridFTP utilizes pipelining [6] and concurrency [7],
to offset protocol overhead for small files.

However, because of the lack of a holistic approach to end-to-end data
transfer, achieving high-performance data transfer is difficult in varying hard-
ware and software environments. End systems are becoming more and more
complex and heterogeneous. System hierarchy is becoming deep and com-
plex with multi-dimensional topologies. Applications must be smart enough
to take advantage of parallelism in various sub-systems. So far, manual
hardware and software tuning have been needed in order to figure out what
configurations are to be set to meet the required data transfer rate. In this
paper, we address this problem by modeling system components involved in
data transfer and solving mathematically formulated problems.

In this paper, we focus on optimizing parallel flows and CPU loads in
end-to-end data transfers. We first show how the throughput for datasets
with many files can be improved through optimizing the number of parallel
flows under constraints of CPU, disk I/O, and so on. For many applications,
the individual file sizes in the dataset are still small with respect to increas-
ing bandwidth-delay products even though the total volume of the datasets
has increased significantly in the past decade. For large files, the approach
of splitting a file into multiple chunks and transferring the chunks simulta-
neously improves the performance. However, the same approach does not
work with small files - it can even hurt the performance. We show that our
approach improves the performance significantly compared to GridFTP and
Globus Online, by optimizing parallel data flows.

We propose a new I/O architecture with variable data flows to better
improve data transfer throughput. This is motivated by our observation that
the same number of data flows at each software I/O layer does not lead to
efficient utilization of system resources. For example, the optimal number of
data flows from a disk is just one from the view point of throughput whereas
the optimal number of data flows for compression is more than one (ideally,
it should be equal to the number of cores) to harness the multi-cores in the
host to the maximum. In addition, we propose a cluster-wise data transfer
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algorithm to determine the number of hosts at each cluster such that the
data transfer throughput between clusters is maximized when the hardware
configuration of the hosts in the same cluster is assumed to be homogeneous.

The remainder of the paper is organized as follows. In Section 2, we
describe preliminaries and related work to help understand the context of
our work and highlight our contributions. In Section 3, we present a graph-
based system modeling and data transfer optimization algorithms. In Section
5, we present a novel software architecture for enhanced high-throughput
data movement and cluster-wise data transfer optimization algorithms. In
Section 6, we evaluate our approaches in two different testbeds, one of which
represents high-speed networks, and the other of which represents a cluster-
to-cluster data transfer especially when network bandwidth is a bottleneck.
In Section 7, we briefly summarize our work.

2. Preliminaries and Related Work

2.1. Globus Toolkit and GridFTP

With the proliferation of grid computing, many grid computing soft-
ware packages facilitating executing distributed applications on grid resources
have been proposed and developed. Among such software packages, the
Globus Toolkit [8] is an open source software package for building grids, and
GridFTP is a data movement tool in the Globus Toolkit in replacement of ftp,
the early well-known file transfer tool. GridFTP has been widely adopted by
numerous research institutes for efficient data sharing among collaborative
scientists. Globus Online [9] provides more user-friendly web-based interface
and more reliable and secure file transfers on top of GridFTP.

More specifically, GridFTP has exploited parallelism in many ways for
enhanced data transfer throughput with regard to the typical ftp service
[10], [11]. First, GridFTP provides users with a control parameter for the
number of TCP streams. The multiple TCP streams enable an application to
fully utilize available network bandwidth because a single TCP stream usu-
ally shows saw-shaped utilization due to its AIMD (additive increase mul-
tiplicative decrease) property. Another GridFTP feature using parallelism
in network protocols is pipelining FTP protocol message changes regarding
lots of small files (LOSF) transfer [12]. Pipelining allows a client to send
many unacknowledged transfer commands at once in order to mitigate the
overhead of waiting ACKs for file transfer requests sequentially. In addition,
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GridFTP allows a client to use concurrent file reads from disks, called con-
currency by launching multiple GridFTP servers, which can be regarded as
exploitation of data flow parallelism. Overall, we can take two examples, one
10 GB file transfer and many 10 MB file transfer, for the illustration of func-
tions described above. For the former case of one 10 GB file transfer, we may
set the number of TCP streams to 3, which leads to three threads sending
3 partitions of a 10 GB file in 3 TCP streams. For the latter case of many
10 MB file transfer, we may set the number of concurrent file reads to 3,
which leads to three threads reading and sending different files concurrently.
From the perspective of data flows, once the number of data flows can be
set by users according to the system configuration and dynamic status such
as network congestion, it is usually assumed and implemented that one flow
is not split into multiple flows in the course of transferring. For instance, if
one process reads data from a disk, the same process usually compresses the
data to send over networks. However, if multiple threads for compression
are employed, the one data flow from a disk can be split into multiple data
flows. Our approach in this paper models and optimizes split and merge of
data flows to improve the overall data transfer throughput.

Beyond one-to-one data transfer (one single host to another single host
data transfer), m-to-n data transfer (one cluster to another cluster data trans-
fer) is also supported by GridFTP, through striped servers [2]. This m-to-n
data transfer was further extended by dynamic data transfer node provision-
ing in [13].

Along with scalability through striped servers, GridFTP achieves flexibil-
ity through extensible I/O framework called extensible input/output (XIO)
framework [4]. Basically, Globus XIO framework provides a user with a
dynamically stackable software architecture with regard to simple open/
close/read/write (OCRW) file operations as in Fig. 1. Globus XIO frame-
work moves user data to the driver stack, which is dynamically configured
by a user, and manages the interactions between stacked drivers. There are
two classes of drivers, transform and transport drivers. Transform drivers are
doing some data processing such as compression. Some examples of trans-
form drivers include popen [14] and compression driver [4], which perform
unix command and compression operations on data, respectively. Transport
drivers are located at the bottom of a driver stack and are responsible for
sending data outside. Some examples of transport drivers [15] include TCP
and UDT protocol drivers. Users can write their own drivers along with de-
fault drivers supported by Globus Toolkit. Putting all together, say we want
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to send files to a remote host via TCP protocol after encrypting and com-
pressing. We can configure the driver stack such that a TCP driver is located
at the bottom, and a compression and an encryption driver are placed on
top of the TCP driver. The limitation of current implementation is that all
data processing is performed by a single thread. In this paper, we propose a
multi-threaded XIO framework to overcome the limitation. Given a multi-
threaded XIO framework, the optimized resource allocation is also crucial for
maximal data transfer throughput.

User API 

Fram
ew

ork 

Driver Stack 

Transform 

Transform 

Transport 

Figure 1: Globus XIO framework.

2.2. Optimizing Data Transfer
Recently many studies have been conducted on new 100G high-speed

networks. Several studies including our work have attempted to optimize
the disk transfer throughput in a holistic way by considering all involved
system components such as disks and CPUs [16, 17]. In [17], authors pro-
posed heuristics to determine the optimal number of streams and disk/CPU
stripes. In our work [16], we formulated the problem as mixed-integer linear
programming (MILP) based on a graph model capturing the system topology
and characteristics, which is more flexible in terms of system configuration
changes and additional computations. However, because split or merge of
data flows is not assumed in the system model, we need to extend the pre-
vious formulations such that appropriate number of data flows/threads at
each driver in XIO driver stack are determined. The new system models and
formulations will be presented in detail in the following sections.
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2.3. Data Compression

Data compression has been used in various areas such as multimedia and
network domains to improve disk space usage and data transmission time.
Recently, motivated by rapid growth of available CPU resources, several stud-
ies tried to utilize data compression for I/O throughput in high performance
computing systems. In [18], the feasibility of data compression in the I/O
forwarding layer was shown through extensive experiments on various com-
pression libraries and datasets in the context of high-performance computing
clusters. In [19], efficient data forwarding algorithms using data compression
in supercomputers have been proposed. In [20], a framework incorporating
various compression and decompression as well as customized compression
algorithms for scientific datasets were presented. Data compression is use-
ful in situations where network bandwidth is a major bottleneck and CPU
resources are relatively abundant in the case of one-to-one data transfer, or
many applications or hosts are contending for network resources as in the
case of m-to-n data transfer. We can think of this problem as balancing
allocations of network and CPU resources.

Our work focuses on optimizing the throughput of end-to-end data trans-
fers in wide-area networks using data compression. Our work differs from
the previous work in that we propose the layered data processing framework
with different number of data flows per layer and algorithms for determining
proper numbers of data flows in layers.

3. Optimizing Single-node Disk-to-Disk Data Transfer

In this section, we describe how to model system components relevant to
end-to-end data transfer and we formulate the problem mathematically based
on models. We will call this single-node data transfer (SNDT) problem for
the rest of the paper.

3.1. System Modeling

In this section, we discuss how we can model each component of the
system so that we can develop optimization formulations to solve.

The overall system can be modeled as a graph as shown in Fig. 2. In the
graph, there are five classes of nodes, and edges that link adjacent nodes.
The five classes of nodes are disk node, data channel, computation node,
NIC, and logical node. A node is not associated with any attribute, but an
edge is associated with attributes describing a node’s characteristics. Data
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Figure 2: Data flow graph model.

channel nodes reflect contention among data flows. For example, if all disks
are connected to only one disk interface adapter, maximum disk throughput
may not scale linearly as the number of disks increases due to data contention.
Logical nodes are inserted for explicit data flow start and end in a graph
model. The CPU cores are not expressed explicitly as a node but are put
implicitly as costs on edges and constraints in the resulting formulations.

Two attributes are assigned on an edge. One is capacity/bandwidth of a
source node. The other is cost of a data flow on the edge. Both attributes
can be either a constant value or a function of some parameters originating
from underlying system behaviors. Depending on two end nodes linked by
an edge, the edge has different attributes. First, the edge linking from a
logical start node to a disk node, logical edge, is a logical link with unlimited
bandwidth and zero cost function. Second, the edge linking from a disk or
data channel node to any other node, disk edge, represents a disk I/O path
from a disk or data channel. Third, the edge linking from a computation
node to another computation node or a NIC node, compute edge, represents
a data flow going through computations such as GridFTP and compression
computation. Fourth, the edge linking from a NIC node to a logical end
node, network edge, represents a network path from a source node to a desti-
nation node. Each edge is associated with a bandwidth function and a cost
function. A bandwidth function and a cost function of an edge describe the
performance throughput and CPU resource consumption of a source node,
respectively. In the following subsections, we describe each edge’s attributes
and associated modeling in detail.
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3.1.1. Disk modeling

A disk edge is associated with disk capacity/bandwidth and CPU load
related to disk I/O operations. Even though many parameters such as disk
cache size are involved in disk I/O bandwidth, the number of data flows per
disk is the most important variable assuming that other parameters are fixed
and not adjustable.

Equation (1) computes utilization of a disk as a function of number of
processes and disk access probability [21]. Here p is a ratio of request data
size and the stripe size of a RAID disk. If we assume that file size or request
data is bigger than the stripe size of a disk, p can be substituted by 1.
The resulting equation is U ' 1/(1 + γd

L
), which means the disk utilization

increases to some extent as the number of processes increases. γd is a constant
to take into account other factors in disk performance such as block size and
disk cache.

U ' 1/(1 + 1
L

(1
p
− 1 + γd))

U : Utilization

L : Number of processes issuing requests

p : Probability that a request will access a given disk

γd : Empirically calibrated value

(1)

The disk throughput can be determined by Equation (2) in which the
disk utilization in Equation 1 is multiplied by N ·SU

E(S)
. The equation can be

rearranged as Equation (3) after substituting N ·SU
E(S)

by αd
L

, where αd = N ·SU ,

since E(S), the expected service time of a given disk request, is proportional
to L. We can determine αd and γd in Equation (3) through experimental
values. The cost function associated with a disk edge represents a CPU usage
for disk I/O from a disk to kernel memory. Since the disk I/O operation is
done asynchronously through a hardware interrupt and CPU is not involved
at all, we set the cost function for a disk edge to zero. Additional operations
such as memory copies for actual reads by an application are accounted by
computation modeling in the next section.
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T = U ·N ·SU
E(S)

T : Throughput

U : Utilization

N : Number of disks in a RAID disk

SU : Stripe size

S : Service time of a given disk request

(2)

T = 1
1+

γd
L

· αd
L

= αd
L+γd

αd, γd : Empirically calibrated value
(3)

If the source node is data channel node, the disk edge can be associated
with this bandwidth function when the data channel node has fan-in disk
nodes, or the disk edge can be associated with infinite bandwidth when the
data channel node has fan-out nodes.

Equation (3) will be used as bandwidth function Bn
lk in Section 3.2 and

approximated by a linear/quadratic function for linear programming solver
such as cplex [22].

3.1.2. Computation modeling

A compute edge is the edge whose source node is a computation node,
and it has attributes of linear bandwidth and cost functions. The bandwidth
function is a function of the number of flows as in Equation (4), and the cost
function can be defined as in Equation (5).

T = αcns + γc
ns : Number of parallel data transfer streams

αc, γc : Empirically calibrated value

(4)

C = βcr
C : CPU load

r : Data flow rate

βc : Empirically calibrated value

(5)

Equation (4) and (5) will be used as bandwidth function Bc
lk() and cost

function Cc
lk(), respectively, in Section 3.2.

3.1.3. Network modeling

A network edge is the edge linking a NIC node and a logical destination
node, and it has attributes of a throughput function and a cost function.
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In order to simplify the problem, only TCP is considered and a NIC is as-
sumed to have a preassigned protocol property associated with corresponding
throughput function.

Several throughput models for parallel TCP streams have been proposed
to predict the performance. The simplest model is proposed in [23] and given
by Equation (6).

T ≤ min{NC, MSS×c
RTT

· nt√
p
}

T : Achievable throughput

NC : Capacity of NIC

MSS : Maximum segment size

RTT : Round trip time

p : Packet loss rate

nt : Number of parallel data transfer streams

(6)

Since MSS×c
RTT

· 1√
p

is a constant, Equation (6) can be rearranged as α · nt
where α = MSS×c

RTT
· 1√

p
.

The cost function for TCP is given by Equation (7).

C = βnr
C : CPU load

r : Data flow rate

βn : Empirically calibrated value

(7)

Equation (6) will be used as bandwidth function Bn
lk, and Equation (7)

will be used as cost function Cp
lk in Section 3.2.

3.2. Problem Formulation

In order to simplify the problem, the following assumptions are made:

• There is only one machine at each end; Cluster-level modeling and
formulation are discussed in the next section.

• There is a dedicated network path between the sender and the receiver
machine.

• The data rates of all parallel data flows are same. This means that the
total data rate (and data I/O load) is evenly distributed over current
parallel flows. Even though disks attached to the machine may have
slightly different capacities, we assume homogeneous disk resources in
this paper.
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• A sender and a receiver have similar hardware such that optimization
on the sender side is sufficient for end-to-end data transfer optimization.

• Number of parallel transport protocol (TCP/RoCE) flows can be greater
than the number of parallel data flows from disks.

The last assumption means that the system can automatically adjust the
number of network transfer streams if one network transfer stream is not
enough, in order to accommodate output data rate from computation nodes.
For example, GridFTP [2] use multiple logical TCP flows, called parallelism,
per one data stream to overcome the limitation of TCP protocol in high-
bandwidth high-latency networks.

The overall problem-solving procedure is as follows.

• Compute parameters of capacity functions based on empirical data.

• Formulate the modified multicommodity flow problem based on the
capacity/cost functions on edges.

• Find a solution including the number of parallel flows, the number
of required CPUs, and the number of NICs using linear programming
solver, cplex [22].

• Determine the number of parallel TCP/RoCE flows based on the amount
of flows on network edges.
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Figure 3: NERSC host graph model.

The graph model as in Fig. 3 can be formally represented by a graph
G = (V,E), where V is a set of vertices, and E is a set of edges.
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Table 1: Notations for problem formulation

Notation Description
Vs Logical source node
Vd Logical destination node
Nd Number of disks
Nc Number of CPU cores
ns Number of data streams per each disk; integer variable
nt
lk Number of parallel TCP streams on an edge (l, k)

rlk Data rate on an edge (l, k)
Bd

lk(ns) Disk capacity/bandwidth of Vl, a disk node, associated with an edge (l, k)
Bc

lk(ns) Computation capacity of Vl, a computation node, associated with an edge (l, k)
Bn

lk(nt) Maximum network capacity/bandwidth of Vl, a NIC node,
associated with an edge (l, k)

Cc
lk(rlk) CPU/Computation cost of Vl, a computation node, associated with an edge (l, k)

Cp
lk(rlk) CPU/Computation cost related to network protocol on Vl, a NIC node,

associated with an edge (l, k)

Table 1 gives a list of notations for mathematical formulations, and the
complete formulation is described in Fig. 4. The formulation in Fig. 4
is mixed-integer convex programming (MICP) since ns, the number of data
streams, is integer and bandwidth function Bd

lk is approximated by quadratic
functions.

The objective function is given in Expression (8), which is to maximize
overall throughput of data transfer. Expression (10) set the range of the
number of data streams per disk. Expression (11) is a bandwidth/capacity
constraint on the edges, where rlk denotes data rate on an edge (l, k) and
bandwidth functions are chosen depending on the edge type. The flow con-
servation constraint given by Equation (12) ensures that the sum of incoming
data rates should be same as that of outgoing data rates at every node. In
special cases such as compression computation, the sum of outgoing data
rates can be a fraction of that of incoming data rates. Expression (13) and
(14) constrain the total outgoing data rates from the logical source and to
the logical destination node to be greater than or equal to T , which is to be
maximized. In this way, we can get the solution that maximizes the overall
data throughput. The computation constraints by the number of CPU cores
in the system and the number of data flows is given by Expression (15).
Note that the formulation assumes a circumstance where the number of data
flows per disk is same, but the formulation can be easily extended to reflect
different number of data flows per disk by assigning separate variables per
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Objective

maximize T (8)

Subject to:

rlk ≥ 0, (l, k) ∈ E (9)

0 ≤ ns ≤Ms,Ms is maximum number of data streams. (10)

rlk ≤


Bd
lk(ns), (l, k) ∈ E, if Vl is a disk node

Bc
lk(ns), (l, k) ∈ E, if Vl is a computation node

Bn
lk(nt), (l, k) ∈ E, if Vl is a NIC node

(11)

∑
k:(l,k)∈E

rlk −
∑

k:(k,l)∈E

rkl = 0,

l 6= sj, l 6= dj (12)∑
k:(s,k)∈E

rsk −
∑

k:(k,s)∈E

rks ≥ T (13)

∑
k:(k,d)∈E

rks −
∑

k:(d,k)∈E

rdk ≥ T (14)

∑
k:(l,k)∈E

C(rlk) ≤ min (Nc × 100, ns ×Nd × 100) (15)

Figure 4: Flow optimization algorithm for single node data transfer (SNDT) problem

disk.

4. Enhancing Performance with Data Compression

In this section, we present a novel software architecture based on Globus
XIO framework for enhanced data transfer throughput and modified formu-
lations in accordance with the new software architecture.

4.1. Motivation

In Section 3, we described model-based optimization algorithms for disk-
to-disk data flows over 100 Gb/s wide-area networks. We assumed that a
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certain data flow is not split in the course of data transfer in our graph
model shown in Fig. 2. Accordingly, all the bandwidth function of edges
in our graph model are either constants, i.e., infinity, or functions of the
number of data streams per each disk. The assumption regarding our data
flow model is based on the actual implementation of GridFTP [2]. The
Globus XIO framework deployed by GridFTP, which is described in Section
2.1, is consistent with our graph model with unsplittable data flows to some
extents. Our graph model in particular matches well with the Globus XIO
framework since one transform driver in a XIO driver stack can be mapped
to one computation node in the graph model.

One noticeable observation from experiments is that a variable number
of data flows per layer may help improve data transfer throughput. Fig. 5
shows the throughput of data transfer with compression when GridFTP
popen driver [14] is used in the Globus XIO framework. The throughput
hits the ceiling of disk I/O bandwidth when the number of threads is 5 since
the disk I/O bottleneck indicated by the thin solid line in Fig. 5 gets worse as
the number of data reads/threads grows. If we can assign a single thread for
disk reads independent of subsequent compression threads, we can maintain
the disk I/O bottleneck as constant as a thick solid line in Fig. 5 and we
may be able to achieve ideal throughput indicated by increasing dashed line
in Fig. 5.
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Figure 5: GridFTP throughput when using popen with ’tar cfz’ option.
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4.2. A Novel Software Architecture for Enhanced Data Transfer Throughput

We first present our new architecture and then describe the concrete data
flow problem along with optimization algorithms.

4.2.1. Variable data flows per driver

Basically, the Globus XIO framework is a flexible software I/O stack in
which any software drivers corresponding basic I/O functions can be added
or removed for a customized use. For example, Fig. 6a shows that the Globus
XIO framework is set up with three software drivers such that data are read
from file systems and are sent through TCP protocol after compression at
the sender side. Even though the Globus XIO framework is mainly used by
GridFTP, it can be combined with any applications, which want to send or
receive data in a flexible way, as libraries.

The Globus XIO framework is implemented through a registration of
four basic I/O functions (open/close/read/write) and callback functions. For
example, if an application with the Globus XIO stack as in Fig. 6a calls an
open() function, the framework ensures that registered open() functions of
drivers are called in the order of TCP, Compression, and File layers. It also
ensures that callback functions are called in the reverse order if they are set in
the course of the previous function calls after open() is successfully executed
at the bottom driver, i.e., File driver.

However, the current Globus XIO framework does not exploit data paral-
lelism effectively. Current implementation is based on a single thread, which
has a lot of room for improvement. Depending on the properties of a driver
and system configuration, the optimal number of threads may vary. The opti-
mal number of threads for File driver may be one if a file system is established
on a single physical disk since multiple reads from a single disk usually de-
grade the overall system throughput. In contrast, the optimal number of
threads for Compression driver may be equivalent of the number of cores in
a system since compression is a compute-intensive job and partitioned data
for multiple threads will help improve the overall system throughput.

We propose a novel Globus XIO framework where variable multiple threads
are deployed according to properties of drivers as in Fig. 6b. This can be im-
plemented through multi-threaded read/write functions of a driver where the
number of threads can be adjusted dynamically and each thread will handle
its own partitioned data among the whole data. Consequently, the number
of threads equals the number of parallel data flows.

16



File 

Disk 

Compression 

TCP 

(a) Current XIO stack.

File 

Disk 

Compression 

TCP 

(b) New XIO stack.

Figure 6: Current vs. new XIO stack architecture.

4.3. Optimizing Data Transfer with Data Compression

In this section, we investigate how variable data flows per layer in Globus
XIO framework affect the overall performance and how we can optimize the
new Globus XIO framework via mathematical formulations. Especially, we
focus on a data compression Globus XIO driver where multiple data flows
using multi-threads have a large impact on the performance, and develop
optimization algorithms for cluster-to-cluster data transfers.

4.3.1. Problem Formulation for Enhanced Data Compression

We can extend the formulation for SNDT problem in Fig. 4 such that the
extended formulation can take into account variable flows per layer. Fig.7
shows how we can assign nodes to a layer Li and we associate the number of
data flows ni with the layer Li. In Table 2, we list up additional notations
including ni and Li for the formulation.

The complete MICP formulation is described in Fig. 8. Equation 20 is
added compared to the previous formulation in Fig. 4. The number of data
flows at each layer i is defined as ni, and bandwidth function is defined by
ni as in Equation 19.
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Figure 7: Variable data flow graph model

Table 2: Additional notations

Notation Description
Nsrc Number of hosts at the source cluster
Ndst Number of hosts at the destination cluster
Ltotal Total number of layer
Li A set of nodes at layer i, 0 ≤ i < Ltotal

ni Number of data flows at layer i, 0 ≤ i < Ltotal; integer variable
Mi maximum number of data flows at layer i, 0 ≤ i < Ltotal; integer variable

5. Cluster-wise End-to-End Data Transfer

In this section, we present an intelligent resource provisioning mechanism
for data transfers from a cluster of size m to another cluster of size n, called
m-to-n data transfer.

5.1. Problem Statement

The cluster-to-cluster data transfer (CCDT) problem is different from
the single-node data transfer (SNDT) problem in Section 3. The CCDT
problem in this paper takes into account variable data flows per layer and
it also seeks for optimal number of hosts at both ends of clusters, when the
maximum numbers of hosts of both clusters are given, as well as optimal
number of variable data flows per layer to achieve maximum data transfer
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Objective

maximize T (16)

Subject to:

rlk ≥ 0, (l, k) ∈ E (17)

0 ≤ ni ≤Mi, 0 ≤ i < Ltotal (18)

rlk ≤


Bd
lk(ni), (l, k) ∈ E, i ∈ Li if Vl is a disk node

Bc
lk(ni), (l, k) ∈ E, i ∈ Li if Vl is a computation node

Bn
lk(ni), (l, k) ∈ E, i ∈ Li if Vl is a NIC node

(19)

∑
k:(l,k)∈E

rlk − c
∑

k:(k,l)∈E

rkl = 0,

l 6= sj, l 6= dj, c =

{
compression ratio, if l is compression node

1, otherwise
(20)∑

k:(s,k)∈E

rsk −
∑

k:(k,s)∈E

rks ≥ T (21)

∑
k:(k,d)∈E

rks −
∑

k:(d,k)∈E

rdk ≥ T (22)

∑
k:(l,k)∈E

C(rlk) ≤ min (Nc × 100, ns ×Nd × 100) (23)

Figure 8: Variable flow optimization algorithm

throughput. We assume that all the hosts of a cluster are homogeneous in
terms of hardware configuration.

5.2. Algorithms for CCDT Problem

Through the algorithm in Fig. 8, we can determine the maximum through-
put of a single host at both ends, Thrsrc single, Thrdst single, which are the
throughput of a source host and the throughput of a destination host, respec-
tively. ThrNsrc single and ThrNdst single are network throughput correspond-
ing to Thrsrc single and Thrdst single. Network throughput is data transfer
rate over the network. Thus host throughput is usually greater than network
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throughput when data compression is deployed. Since we assume homoge-
neous hosts in a cluster, we can simply match source and destination nodes
based on throughput as in Algorithm 1. The network bandwidth, BW , is
also given as an input to the algorithm.

Algorithm 1 Node determination algorithm for cluster-to-cluster data
transfer (CCDT) problem

Input: Nsrc, Ndst, Thrsrc single, Thrdst single, ThrNsrc single, BW
Output: nsrc, ndst

1: nsrc, ndst ← 0
2: while ndst < Ndst do
3: ndst ← ndst + 1
4: if Thrdst single < Thrsrc single then
5: if BW − ThrNsrc single < 0 then
6: return;
7: end if
8: nsrc ← nsrc + 1
9: BW ← BW − ThrNsrc single

10: else
11: Increase nsrc up to by bThrdst single/Thrsrc singlec while decreasing

BW in the same way in lines 5 through 9.
12: end if
13: end while

6. Experimental Evaluation

6.1. Disk to Disk Transfer on High-Speed Networks

We have conducted experiments on ESnet 100G testbed [24] in two loca-
tions: NERSC (Oakland, CA) and StarLight (Chicago, IL). Fig. 9 shows the
detailed configuration of the testbed. At NERSC, there are 5 hosts of three
different hardware configurations. Three hosts, nersc-diskpt-1, nersc-diskpt-
2, and nersc-diskpt-3, have Intel Xeon Nehalem E5650 (2 x 6 = 12 cores),
multiple 10G NICs, and 4 RAID 0 sets of 4 drives. Other two hosts do not
have RAID drives but have only a local disk. On the other hand, there are
3 hosts without disk arrays at StarLight. These hosts have 2 AMD 6140 (2
x 8 = 16 cores) and multiple 10G NICs, but do not have RAID disks. The
hosts at StarLight have only local disks, which are slow (i.e., ∼300MB/s)
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Figure 9: ESnet 100G testbed.

and thus cannot saturate even a 10G link. For this reason, we conducted
disk-to-memory tests where all data flows departing from hosts at NERSC
are directed to /dev/null on hosts at StarLight so that we can assume that
the hosts at StarLight have same disks as those of the hosts at NERSC.

We have chosen various size of datasets including lots of small files (LOSF)
dataset for evaluation of optimizing the end-to-end data transfer rates. We
use four different datasets – ten thousands of 1 MB files, one thousand 10 MB
files, one hundred 100 MB files, and ten 1 GB files such that total amount of
each dataset would be around 10 GB. The files were synthetically generated
using /dev/urandom in Linux.

To measure the disk performance, we use dd and iozone [25] as disk I/O
benchmark tools. In addition, we use nmon [26] and netperf [27] as bench-
mark tools to measure CPU load and network performance, respectively.

6.1.1. Subsystem Tests for Model Parameter Setting

We first conducted basic disk I/O performance tests using dd disk utility
to obtain baseline performance of disk throughputs. Fig. 10 shows the disk
read throughputs (∼500MB/s) of 4 RAID sets attached to hosts at NERSC.
The theoretical upper limits of each RAID disk is around 1.2 GB/s since the
RAID disk is composed of four disks with 300 MB/s read performance. Even
though there are performance variances among disks, we ignore the variances
for simplicity in this paper.
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Figure 10: Disk throughput at NERSC
using dd: similar disk throughput with
varying block size.
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Figure 11: Disk throughput at NERSC
using iozone: decreasing disk through-
put with increasing number of data
streams.

Next, we measured the multithread disk read performance depending on
file size and the number of threads to determine the value of α, γ in Equation
(3). Fig. 11 shows that disk throughput decreases as the number of streams
increases regardless of applications’ read unit sizes (i.e., 1MB and 10MB).
We conducted experiments in case of sequential disk read. Equation (3)
determined by these results would be Bd

lk(·) in Fig. 4 where ns equals L, and
l is a disk node.

However, as Fig. 12 shows, the aggregate disk throughput using multiple
disks does not scale linearly due to channel contention. We model the channel
contention using a data channel node and associated bandwidth function as
in Equation (3).

We measured the application (i.e., GridFTP) throughput while varying
the number of data streams as in Fig. 13. We can model GridFTP throughput
through Equation (4) by ignoring the decreasing throughput after hitting
the peak because that is due to disk bottleneck which is already modeled
by disk edges. Even though the data movement tool GridFTP is the only
application used for the end-to-end data transfers in this paper, we can model
any applications such as compression in a similar way through Equation (4)
and (5).

Regarding network edges, Fig. 14a and 14b shows the throughput and
CPU load of TCP protocol, respectively. We conducted memory-to-memory
transfer using a single 10Gb NIC, and we measured these TCP performance
results by netperf. Fig. 14a shows that network transfer throughput is sat-
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Figure 12: Multiple disk throughput at NERSC using iozone: increased throughput using
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Figure 13: GridFTP throughput: increasing throughput until disk throughput or data
contention among multiple data streams becomes a bottleneck.
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urated with 3 TCP streams, and is near the full capacity of the 10Gb NIC.
Without 10Gb capacity limitation, the TCP throughput with 3 TCP streams
should be beyond 10Gb. Fig. 14b also shows that CPU load is extraordinar-
ily high near 10Gb/s due to contention among 3 streams. We note that 100%
CPU corresponds to a full usage of one CPU out of multiple CPUs in a host.
Even though such non-linear behaviors happen, we can capture them using
linear regression (i.e. Equation (6) and (7)) since this is simple and more
conservative. For example, the linear function that captures TCP CPU load
in Fig. 14b will overestimate the CPU load for TCP traffic more than the
actual CPU load.
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Figure 14: TCP protocol characteristics.

6.1.2. Results and Discussion

We have compared our model-based optimization approach with two
cases: (1) GridFTP with only -fast option, (2) GridFTP with auto-tuning op-
timizations currently used by Globus Online [9], as these are the commonly
used approaches by the end users for GridFTP data movement. Globus
Online’s auto-tuning algorithm uses different GridFTP optimization options
depending on file size. If the number of files is more than 100 and an av-
erage file size smaller than 50 MB, it uses GridFTP with concurrency=2
files, parallelism=2 sockets per file, and pipelining=20 requests outstanding
at once. If file size is larger than 250 MB, Globus Online uses options of con-
currency=2, parallelism=8, and pipelining=5. In all other cases, the default
setting is used: concurrency=2, parallelism=4, and pipelining=10.
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(a) Default GridFTP transfer.
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(b) Globus Online transfer.
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(c) Model-based transfer.

Figure 15: Data transfer throughput comparison.

Fig. 15 shows the experimental results of all three cases. The data trans-
fer experiments have been done from NERSC to StarLight by varying the
number of hosts at NERSC from 1 to 5 and the number of hosts at StarLight
from 1 to 3. The numbers of hosts at NERSC and StarLight are kept same
except when the number of hosts at NERSC is greater than 3. In such cases,
the number of hosts at StarLight is set to 3. The disk-to-disk data trans-
fer on this testbed is bottlenecked by disks while each host has multiple 10
Gb/s NICs and the wide-area network links have enough bandwidth of 100
Gb/s. In such cases, we can achieve higher throughput by utilizing multiple
hosts together with optimized data transfer. We compute the data trans-
fer throughput by measuring the total time taken for transferring certain
datasets. Globus Online outperforms the naive GridFTP especially in the
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cases of 1 MB and 10 MB datasets. Our model-based optimizations are 3-4
times faster than Globus Online in most cases, and 8 times faster than Globus
Online, particularly, in the case of 1 MB datasets. It is mainly because our
model can effectively identify the number of data flows based on disk through-
put performance models and utilize data flow parallelism through multiple
disks. For instance, with -cc=2 options, Globus Online can utilize only two
data streams from disks, which has a lot room for improvement, and cannot
utilize the advantages of multiple disks. Based on models, our formulation in
Fig. 4 could find the proper number of data flows, 8, 6, 3, 2 in the case of 1
MB, 10 MB, 100 MB, 1 GB files, respectively. The data transfer throughput
scales well as the number of hosts at NERSC increases up to 3 hosts. In case
of 4 and 5 hosts at NERSC, the increasing rate slows down because those
hosts have only local disks. In addition, our formulation could find a solu-
tion suggesting using multiple NICs in case that the aggregate throughput is
beyond the capability of a 10G NIC.

The disk-to-disk data transfer on ESnet 100G testbed suffers from disk
bottlenecks in case of big files over 100MB as shown in Fig. 13. The emerging
high-performance solid state storages (SSDs) can improve the overall data
transfer throughput. The high-performance SSDs can affect our model-based
optimization approach in two ways. First, the disk performance model for
SSD is different from the model for HDD. In case of HDD RAID disks in our
paper, the read performance decreases as the number of threads increases as
shown in Fig. 11 and 12. The read performance of SSDs would show less
performance degradation with more number of threads since an SSD does
not have a mechanical arm to read and write data and accordingly needs less
wait time between consecutive disk service requests. The read performance
of SSDs can still be modeled by the same equation as Equation 1. In contrast,
it is more complicated to model the write performance of SSDs than HDD
because a write operation of SSDs is involved in additional erase and wear-
level management operations [28]. However, we can also model the write
performance as long as there are analytical or empirical models that can be
approximated by linear functions. Second, the high-performance SSDs will
make the disk part not bottlenecked any more in overall disk-to-disk data
transfer. Consequently, the high-performance SSDs will result in less number
of disks and more other resources such as CPU and network to use to achieve
higher data transfer throughput than HDDs.

The advantages of using model-based optimization formulations are as
follows: (1) it can suggest the future hardware plan optimized for overall
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data transfer throughput just by simulating different configurations of hard-
ware as well as software, (2) it can be used by systems such as Globus Online
and other intelligent data transfer managers to adaptively optimize transfers
for varying CPU resource availability and network status, and (3) it can pro-
vide basic models for simulating bulk data movement in the next generation
networks.

6.2. Cluster-wise Data Transfer with Data Compression
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Figure 16: Data transfer infrastructure.

We have performed experiments on data transfer nodes (DTNs) at NERSC
[29] and Tukey at Argonne as in Fig. 16. There are four DTNs at NERSC
and Tukey has a total of 96 compute nodes, where each node has 16 CPU
cores and two NVIDIA Tesla M2070 GPUs. Data are transferred from Tukey
to NERSC where the number of hosts at Tukey varies from 1 to 4 and the
number of hosts at NERSC varies from 1 to 12. One thing that is distin-
guished from the previous testbed in Fig. 9 is that the storage systems of
both clusters are shared parallel file systems.

We use FLASH, an astrophysics simulation, datasets to evaluate cluster-
wise data transfer with data compression. FLASH datasets consist of several
datasets, and we pick three datasets such as temp, pres, and velx, which
represent high compression ratio dataset, middle compression ratio dataset,
and low compression ratio dataset, respectively.
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6.2.1. System modeling for parallel file systems and compression

The testbed in Fig. 16 is different from the previous testbed in Fig. 9
in two aspects. First, the new testbed has parallel file systems as storage
systems of both clusters. Second, data compression computation is deployed
for improving overall data transfer throughput in case of network bottleneck.

We first measured performance of shared file systems at both clusters
using IOR [30], a parallel file system benchmark tool. Fig. 17 and 18 show the
file system performance, when file read/write size is 10 MB, at NERSC and
Tukey, respectively. Only read performance is considered at Tukey whereas
only write performance is considered at Tukey since data are transferred from
Tukey to NERSC. The storage system performance is modeled using linear
or quadratic regression since there is no well-known mathematical analytic
models for parallel file systems.
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Figure 17: Storage system benchmark via
IOR at NERSC.
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Figure 18: Storage system benchmark via
IOR at Tukey.

We use blosc compression algorithm [31] which has better performance
compared with typical compression algorithms in terms of both compression
ratio and compression time. Fig. 19 shows that the blosc compression ratios
of FLASH/temp, FLASH/pres, and FLASH/velx are 69.89, 4.49, and 2.46,
respectively. We also measured blosc compression/decompression through-
put by varying the number of threads up to the number of cores at the host to
model the throughput using linear functions. We noticed that the throughput
decreases beyond a certain point due to internal blosc compression algorithm
operations as in Fig. 20, and set the maximum number of threads to that
point (e.g. 8 at Tukey) in order to model the throughput simply using linear
functions.

28



1 

10 

100 

de
ns

 
ein

t 
en

er 
fla

m 

ga
me 

pre
s 

su
my 

tem
p 

ve
lx 

ve
ly 

ve
lz ye

 

C
om

pr
es

si
on

 R
at

io
 

Datasets in FLASH 

Figure 19: blosc compression ratio with re-
gard to FLASH datasets [19].
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Figure 20: blosc throughput in terms of the
number of threads regarding random data.

6.2.2. Results and Discussion

We first measured the performance of data transfer between single hosts
at each cluster in order to compare with the performance of cluster-to-cluster
data transfer. We then measured the performance of cluster-to-cluster data
transfer by increasing the number of data transfer processes from 1 to 12
at each cluster regarding three datasets, i.e., FLASH/temp, FLASH/pres,
and FLASH/velx. Only one data transfer process is assigned to one host at
Tukey since one process is enough to achieve the maximum throughput of one
host, which will be explained in the following. On the other hand, multiple
data transfer processes are assigned to one host at NERSC in a round-robin
fashion when the number of process is beyond 4 since the number of DTNs
at NERSC is limited to 4. We also varied the number of compression threads
from 1 to 8 to show how the parallelism of data flow affect the overall data
transfer throughput. Lastly, we discuss our variable optimization algorithms’
solutions with respect to the measured performance results.

Fig. 21 shows the maximum data transfer throughput between single
nodes at each cluster. This is a memory-to-memory data transfer results
without data compression and the throughput is limited by capacity of NICs,
1 Gb/s(∼120 MB/s) of hosts at Tukey.

The experimental results of memory-to-memory data transfer when mul-
tiple nodes are utilized are shown in Fig. 22 where Normal indicates data
transfer without data compression and CompressionX indicates data transfer
with data compression using X threads. The results show that the perfor-
mance scales well with regard to the number of nodes at Tukey in all cases.

29



0 

20 

40 

60 

80 

100 

120 

140 

1 2 3 4 

Th
ro

ug
hp

ut
 (M

B
/s

) 

Number of Processes 

Figure 21: Memory-to-memory data transfer between single hosts.

Since the network link between NERSC and Tukey is 10 Gb/s (∼1.2GB/s),
normal data transfer seems to achieve the maximum throughput using 12
hosts at Tukey. The results also show that the performance of all three
FLASH datasets is similar when one thread is used for compression while
the throughput of FLASH/velx dataset with 8 threads is almost 1.5 times
better than the throughput with 1 thread. Compared with the normal case,
the throughput of FLASH/velx dataset is 8 times better, which means data
transfer with optimized data compression helps improve throughput drasti-
cally in case of limited network bandwidth and/or NIC capacities.

Fig. 23 through Fig. 25 show disk-to-disk data transfer throughputs. All
the results show that the throughput of normal disk-to-disk data transfer does
not scale after 10 nodes and even decreases. Considering that the 10 Gb/s
link between NERSC and Tukey is shared by many users and the memory-to-
memory transfer experiments were conducted at different time periods, the
performance decrease in case of normal disk-to-disk data transfer is mainly
due to network link bottleneck. Such situations can be seen in the case
of FLASH/velx data transfer with 6 or 8 compression threads. Since the
compression ratio of FLASH/velx is 2.46, the data transfer of FLASH/velx
with data compression saturates the network link when the number of nodes
is 10. In case of other datasets such as FLASH/temp and FLASH/pres, data
transfers do not saturate the network link due to higher compression ratio
and scale well with regard to the number of nodes.

We compare the experimental results with optimized throughput based
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Figure 22: Memory-to-memory data transfer.
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Figure 23: Disk-to-disk data transfer (FLASH/temp).

on our algorithms in Fig. 8 and Algorithm 1. Fig. 26 shows the data flow
graph model for the CCDT problem. Using formulations in Fig. 8, we could
get the numbers of compression threads, 8, 4, and 6, for FLASH/temp,
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Figure 24: Disk-to-disk data transfer (FLASH/pres).
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Figure 25: Disk-to-disk data transfer (FLASH/velx).
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FLASH/pres, and FLASH/velx, respectively. In addition, we can get the
maximum throughput for single-host data transfer. These numbers are used
to compute the required number of hosts on each cluster. We could get
the numbers of hosts at NERSC and Tukey, (4,12), (4,12) and (3,10) for
FLASH/temp, FLASH/pres, and FLASH/velx, respectively. In particu-
lar, (3,10) for FLASH/velx could achieve 1.3 GB/s, which is comparable
to throughput of (4,10) in the experiments. The solutions based on our ap-
proach are consistent with experimental results. Please note that DTNs at
NERSC are in production and shared by many data transfers, we used the
network bandwidth between NERSC and Argonne probed just before the
algorithms are run to make sure the results reflect the current system status.
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Figure 26: Data flow graph model for the CCDT problem.

6.3. Deployment in real systems

As described in the paper, we need two steps to get the optimized solution.
First, we have to build system models by running some system benchmarks
such as disk throughput and network throughput measurement. Even though
they take long time (a few hours up to one or two days), the benchmark
tests need to be performed only when there is a system change such as new
disk installation. In addition, this step can be automated through scripts if
needed. The dynamic factors such as compression rates need to be updated
more often, but even in such cases, the ratio of the time spent on tests to
the time taken for transfer will be quite small and the tests can be done
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concurrently when other data transfers are being fulfilled. If the number of
parameters affecting the performance and exhaustive benchmark testing to
explore the whole search space is not possible, we can use surrogate models
such as support vector machines to predict with small sets of collected data,
which is out of scope of the paper. Second, we have to run optimization
solver such as CPLEX [22] to get the solution. Since the problem size is
small (the graph consists of tens of nodes and tens of edges), the running
time is a few seconds, which is within reasonable time window. Overall, the
proposed method is useful in practice.

Regarding interplay of flows, we can think of following three cases. As
for interplay of flows in disk I/O, processes are usually allocated fair shares
of CPU, and hence they have equal probability of issuing disk I/O requests.
However, if other processes other than disk I/O processes in our model occupy
the most resources (i.e. overloaded state) or share resources with processes in
our model, disk I/O processes would not behave as models suggest. The more
sophisticated models for disk I/O considering system-wide circumstances are
needed for accurate modeling. Interplay in computing can also be addressed
by similar approaches. Regarding interplay in networks, TCP streams are
believed to fairly share a network link. However, since other network traffics
are injected into the shared networks, similar circumstances to disk I/O can
happen. In order to cope with such situations, the network status needs to be
probed regularly to reflect dynamic variance of available network bandwidths.

Regarding data compression, data may be composed of multiple sets of
sub-data with different characteristics, it is true that the current model and
formulation cannot cope with such situations. To address such issues, the
data to transfer should be evaluated on the fly to estimate the data com-
pression ratios, and the formulation should introduce separate compression
ratio parameters for each flows, which means separate computation nodes for
flows from different disks.

7. Conclusions

We first model all the system components involved in end-to-end data
transfer as a graph. We then formulate the problem whose goal is to achieve
maximum data transfer throughput using parallel data flows. We also pro-
pose a new I/O stack with variable data flows and cluster-wise optimization
algorithms to enhance data transfer throughput using data compression. Our
proposed formulations and solutions are evaluated through experiments on
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the two different testbeds, the ESnet 100G testbed and a cluster data trans-
fer testbed between NERSC and Argonne. The experimental results on the
ESnet 100G testbed show that our approach is around four times faster than
Globus Online in most datasets. The experimental results on the cluster
data transfer testbed show that the throughput of cluster data transfer with
data compression is up to four times faster than the throughput of normal
cluster data transfer and 10 times to 20 times faster than single host data
transfer. It is promising that flexible throughput optimization algorithms
can detect the performance bottleneck and can suggest parameters such as
the number of nodes and whether or not to use compression. This work can
be automated through periodic system profiling and resource provisioning
based on the proposed optimization algorithms.
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